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ABSTRACT
Changes of the plankton community in a shallow, subtropical lagoonal system and its relation to 
environmental conditions were investigated during an annual cycle to provide information on its spatial 
and seasonal variation pattern. The study carried out at four sites (three in the Peixe lagoon and one in 
the Ruivo lagoon), which are located in the Lagoa do Peixe National Park, southern Brazil. The system 
has a temporary connection to the Atlantic Ocean by a narrow channel. The phytoplankton density was 
higher in the Peixe lagoon whereas the specifi c richness was higher in the Ruivo lagoon which is also a 
site with the lower salinity. The phytoplankton biomass near the channel showed seasonal variation with 
the highest value in fall and lowest in winter. Zooplankton richness was inversely correlated with salinity, 
and had the highest values in the Ruivo lagoon. Ordination analysis indicated seasonal and spatial patterns 
in plankton community in this lagoonal system, related to variation in salinity. In addition, the wind action 
and precipitation were important factors on the spatial and seasonal salinity changes in the lagoon with 
direct infl uence on the plankton community dynamics. 
Key words: coastal lagoon, microalgae, Ramsar site, South Brazil.

INTRODUCTION

Spatial and seasonal heterogeneity of phytoplankton 
are regular features in coastal lagoons in different 
parts of the world, and has been the focus of 
studies in temperate (Armi et al. 2010, Chapman 
et al. 1998, Ramdani et al. 2009), tropical (Melo 
and Suzuki 1998, Melo et al. 2007, Varona-Cordero 
et al. 2010), and subtropical zones (Bergesch and 
Odebrecht 1987, Callegaro et al. 1981, Conde and 
Sommaruga 1999, Odebrecht and Abreu 1998, 

Odebrecht et al. 2010a, Torgan 1997, Torgan et 
al. 2000, 2006). These systems fl uctuate between 
freshwater and hypersaline conditions (Kjerfve 
1994), related to the infl ow of seawater or fresh 
water, as well as to wind action (salt spray). 
Moreover, wind velocity and direction may 
infl uence the magnitude of sediment resuspension 
and water exchange, modifying water chemistry 
and physical characteristics (Muller et al. 1991). 

Although coastal lagoons are important 
environments, both ecologically and economically, 
only a relatively small number of studies have 
been carried out in subtropical and in permanently 
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enclosed coastal lagoons (Hennemann and Petrucio 
2011). Phytoplankton community structure 
of subtropical lagoons is related to the spatial 
salinity gradient (Callegaro et al. 1981, Conde 
and Sommaruga 1999, Torgan 1997, Torgan et 
al. 2000). In addition, the spatial heterogeneity 
of subtropical shallow lake plankton is strongly 
infl uenced by hydrodynamics, while seasonality 
impacts community composition (Cardoso and 
Motta Marques 2004a, b, 2009, Crossetti et al. 
2012). In some tropical   lagoons, spatial variation 
in species composition occurred due to changes 
in salinity and nutrients, caused by the opening 
and closing of channels (Melo and Suzuki 1998, 
Melo et al. 2007) or other environmental variables, 
mainly salinity (Varona-Cordero et al. 2010). 

The composition of phytoplankton in temperate 
zones has been driven more strongly by seasonality 
than by spatial changes in salinity (Ramdani et al. 
2009). In the southern Mediterranean, community 
structure was associated with physico-chemical 
factors, especially with the seasonal variation 
of temperature and salinity (Armi et al. 2010). 
Seasonal fl uctuations in abundance were observed 
for many species even in an environment that varies 
little in salinity (limnetic/oligohaline) (Chapman et 
al. 1998). In the Patos lagoon, density, chlorophyll 
a and phytoplankton composition patterns are 
associated with changes in temperature, salinity and 
dissolved inorganic nutrients, and are besides rela-
ted to light availability and precipitation (Odebrecht 
et al. 2005, 2010a, Torgan et al. 2006). Similarly, 
in Targus estuary, where air temperature, river 
fl ow and irradiance were major drivers of seasonal 
phytoplankton patterns (Gameiro et al. 2007). 

Studies in tropical estuaries also suggest that 
seasonality infl uences phytoplankton composition, 
density and biomass: the exchange between mari-
ne and coastal waters during monsoon periods 
influences salinity and the spatial and temporal 
distribution of nutrients (Matos et al. 2011, Yin 
2002). 

Our study was conducted in a shallow 
subtropical lagoonal system located in the coastal 
plain of the Rio Grande do Sul state, Brazil, which 
has a temporary connection to the Atlantic Ocean. 
The hypothesis of this study is that the structure 
and dynamic of the phytoplankton and zooplankton 
in this system are controlled by the hydrodynamics 
and salinity as observed in the other coastal 
lagoons from subtropical zones. Therefore, our aim 
was to identify the spatial and seasonal changes 
of plankton in a subtropical lagoonal system and 
the relation between abiotic factors and community 
dynamics. 

The knowledge about microalgae in Peixe 
lagoonal system was limited to investigations about 
cyanobacteria (Werner 2002, Werner and Sant’Anna 
2000, 2006) and fossil diatom assemblage (Santos 
2011). Thus, the recognized ecological importance 
and the lack of research into plankton dynamics 
justify this study.

MATERIALS AND METHODS

STUDY AREA

The lagoons are located in the Lagoa do Peixe 
National Park and its connection with the sea 
allows the migration of many species, making 
it an important refuge for the reproduction and 
feeding of fi shes and crustaceans. In addition, it is 
an important habitat for many birds on their route 
between North America and Patagonia and for 
resident birds (Knak 1999, Schäfer et al. 2009). This 
park is a major wetland conservation unit, being the 
only Ramsar site in Southern Brazil. It is also a 
Atlantic Forest Biosphere Reserve (UNESCO) in 
addition to being part of the Western Hemisphere 
Shorebird Reserve Network (WHSRN) (Knak 
1999). Currently, the management of the park is 
under the direction of the Chico Mendes Institute 
for Biodiversity Conservation (ICMbio, Instituto 
Chico Mendes de Conservação da Biodiversidade) 
and the municipalities of Mostardas and Tavares. 
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The Peixe lagoon is an elongated shallow 
water body (approximately 35 km long and 1 km 
wide, depth <30 cm). Its maximum depth (about 2 
m) is found near the mouth of the channel, which 
connects the lagoon to the sea. Ruivo lagoon, a small 
oligohaline water body, is connected to the northern 
end of the Peixe lagoon (Fig. 1). The margins of the 
Peixe lagoon are covered by extensive salt marshes 
of Paspalum vaginatum Sw., Cotula coronopifolia 
L., Spartina densiflora Brongn., Hydrocotyle 
bonariensis Lam., Androtrichum trigynum (Spreng.) 
H. Pfeiff., Bacopa monnieri (L.) Wettst. and Juncus 
acutus L.. These species are present with different 
vegetation associations in each sampling site (Costa 
and Tagliani 2011, Knak 1999). 

SAMPLING

Plankton samples (n=16) were collected at three 
sites in the Peixe lagoon, North (31°15’37.68”S, 
50°58’02.49”W), Central (31°21’17.84”S, 
51°02’49.72”W), and South (31°26’25.19”S, 
51°09’45.24”W), and at one location at the Ruivo 
lagoon (31°13’09.84”S, 50°55’50.95”W), in austral 
fall (June 2011), winter (August 2011), spring 
(November 2011) and summer (February 2012). 
Sampling sites are referred to as Px-N, Px-C, Px-S 

and Rvo, respectively (Fig. 1). Px-C is closer to 
the channel, less than 1.5 km from the sea, and 
Px-N and Px-S are distant located at the opposite 
extremities of the lagoon, about 14 km from the 
channel. Ruivo lagoon is the farthest site from the 
sea (about 19 km), connected to the system through 
channels and wetlands to the northern area of the 
Peixe lagoon.

ABIOTIC VARIABLES

Conductivity (mS.cm-1), salinity, pH, water tempe-
rature (°C), dissolved oxygen - DO (mg.L-1), and 
oxidation-reduction potential - ORP (mg.L-1) were 
measured with a HORIBA U52 probe. Depth and 
water transparency (cm) were measured with a 
Secchi disk. Precipitation, wind velocity and wind 
direction data were obtained from the National 
Institute of Meteorology - INMET. We obtained 
these data on sampling dates including seven days 
prior.

Laboratory analyses were performed as follows: 
total phosphorus - TP (mg.L-1) by absorptiometry 
reduction of ascorbic acid (APHA 1998), total 
nitrogen - TN (mg.L-1), according to the Kjeldahl 
method (NBR 10560-1988, 13796-1997), and total 
silicate (mg.L-1) with the silico molybdate method 

Figure 1 - Map of the Peixe and Ruivo lagoons with sampling locations (Adapted from Loebmann 
and Vieira 2006), arrow indicates the location of the sand bar. Peixe lagoon, North (Px-N), Center 
(Px-C), South (Px-S) and Ruivo lagoon (Rvo).
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(APHA 1998). The classifi cation of salinity was 
based on the Venice System (Anonymous 1959). 
Trophic level was determined by the modified 
system of Vollenweider (Wetzel 1993).

PLANKTON 

Phytoplankton samples were collected with bottles 
and a plankton net (25 μm mesh), and fixed 
respectively with neutral Lugol’s solution and 4 % 
formaldehyde. Diatom samples were washed and 
oxidized with potassium permanganate (KMnO4) 
and hydrochloric acid (HCl), according to Simon-
sen (1974), modifi ed by Moreira-Filho and Valente-
Moreira (1981).

Phytoplankton density (ind.mL-1) was 
estimated using the Utermöhl (1958) method in 
10 mL sedimentation chambers. The counting 
effi ciency was at least 80 % (Pappas and Stoermer 
1996) and only individuals with plastids were 
quantified. Dominance and abundance were 
determined according to Lobo and Leighton (1986). 
Specifi c richness was estimated from the number of 
taxa at generic and infra-specifi c level, and species 
diversity was assessed using the Shannon index 
(H ‘) (Shannon and Weaver 1949). Biovolume 
(mm3.L-1) was calculated using Hillebrand’s 
approximate geometric models (Hillebrand et 
al. 1999), with fresh weight expressed as mass 
(1mm3.L-1 = 1mg.L-1; Wetzel and Likens 2000). 
Chlorophyll a was measured by PHYTO-PAM 
chlorophyll fluorometer (Heinz Walz GmbH, 
Effeltrich, Germany) to determine the respective 
concentrations of phytoplankton groups. 

For zooplankton analysis, 100L of water were 
concentrated into 100mL using a plankton net 
(25 μm mesh). Samples were preserved in 4 % 
formaldehyde solution, and subsequently quantifi ed 
using a Sedgewick-Rafter chamber (APHA 1998). 
The volume of analyzed material ranged from 0.5 
mL to 1 mL, reaching a sample effi ciency of at least 
70 % (Pappas and Stoermer 1996).  

DATA ANALYSES

The spatial and seasonal distribution of the sample 
units were related to abiotic factors using Principal 
Component Analysis (PCA) and included 13 
environmental variables. The relationship between 
biotic and abiotic variables with Canonical 
Correspondence Analysis (CCA) and Redundancy 
Analysis (RDA) that included only the abundant 
species according to Lobo and Leighton (1986). 
Data were transformed to log10 (x +1) in order to 
normalize variances (Ter Braak 1986). A Monte 
Carlo permutation test was carried out to assess the 
signifi cance of the ordination axes. The software 
Statistica® version 5.0 was used for descriptive 
analyses and r-Pearson correlation (p <0.05). 
The software Pc-Ord® version 8.6 (McCune and 
Mefford 2011) was used for multivariate analyses 
(PCA, CCA and RDA).

RESULTS

ENVIRONMENTAL CONDITIONS

During the week of each seasonal sampling, 
precipitation was lower in spring and fall, 1.58 
(± 4.66) and 2.33 (± 4.86) mm, respectively, and 
higher in winter and summer, 3.73 (± 5.35) and 
5.31 (± 8.94) mm, respectively (Fig. 2a). The wind 
direction in fall varied mainly from S to NW on 
sampling days. In winter, winds varied from NE 
to SW, with a predominance of southerly winds. In 
spring, winds from the E quadrant prevailed, varying 
from NE to W. The highest hourly variation of 
wind direction was observed in summer. However, 
winds were most persistent from the NE quadrant 
on sampling days. The average wind velocities in 
winter and spring were 6.16 (± 1.40) and 6.17 (± 
1.98) m.s-1, and 4.24 (± 1.47) and 3.92 (± 1.00) m.s-

 

1 
in fall and summer, respectively (Fig. 2b).

The channel was open throughout the year 
of 2010, while in 2011 it was closed after the fall 
sampling, when a small connection with the sea 
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still remained. The channel was artifi cially opened 
in early winter (2 August 2011), and remained open 
during the season. The connection of the lagoon 
with the ocean infl uenced the salinity of the system. 
The fall samples showed the highest saline waters 
uniformly throughout the system, and even Rvo 
and Px-S were mesohaline, while lower salinities 
and highest silicate and DO values were observed 
in winter. As expected, the lowest values   of salinity 
were measured at Rvo (0.5) and Px-S (0.2), sites 
farther from the channel. Concerning TP, the lagoon 
varied from eutrophic to hyper-eutrophic, except 
in Px-S where it was always hyper-eutrophic.  
TN varied from predominantly mesotrophic to 
eutrophic in fall, winter and summer samples, and 
oligotrophic at all points in spring sample. The 

values of physical and chemical variables at the 
sample sites are shown in Table I.

The environmental variables (Table I 
except depth), excepting TP and Secchi, 11 were 
signifi cantly related to the fi rst and second axis 
from Principal Component Analysis (PCA), which 
explained 74.09 % of the variance. Only the fi rst 
axis was significant (p=0.001) (Fig. 3). On the 
negative axis end we observed a spatial trend, where 
Px-C samples, closest to the channel, were grouped 
by salinity and conductivity. On the positive axis 
end we observed a seasonal trend, with winter 
samples grouped at high values of DO and silica. 
The oxidation-reduction potential also contributed 
to the grouping of samples of Rvo. Higher salinity 
was also observed at Px-N and Px-S in summer and 
at Px-N in fall.
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Figure 2 - Precipitation (a) and wind velocity (b) during the 7 days (d) before 
the sampling dates (1d and 2d).
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PHYTOPLANKTON

The phytoplankton community of both lagoons was 
composed of 136 taxa of the classes Bacillario-
phyceae (64), Chlorophyceae (30), Cyanobacteria 
(12), Cryptophyceae (6), Dinophyceae (6), 
Euglenophyceae (2), Chrysophyceae (1) and other 
phytofl agellates (15). The phytoplankton richness 
decreased from winter to summer samples (Fig. 4a) 
and was correlated with temperature (-0.52), pH 
(-0.64) and DO (0.56). Spatially, specifi c richness 
was highest at Rvo and increased from Px-N to Px-S 
(Fig. 4b), thus showing the increment of specifi c 
richness at the end sites of the system, where sea 
infl uence was lower. 

Phytoplankton density ranged from 653 to 
114,829 ind.mL-1, and was in general uniformly 
distributed among the seasons (Fig. 4c), but 
presented a spatial pattern (Fig. 4d), with the 
exception of fall. In the fall, the environment was 
more homogeneous (low precipitation and channel 
closing). Spatially, the density was low in Px-C, 
close to the channel, independent of the season 

(Fig. 4d). Phytoplankton biomass was highest at 
Px-C in fall samples due to a bloom of Euglena 
sp. (23.86 mg.L-1) (Figs. 4e and 4f). The total 
phytoplankton density and biomass were not 
signifi cantly correlated with any chemical variable, 
showing that the spatial and seasonal tendency of 
this dynamic environment was better explained by 
the variation of the species composition.

The values of the specifi c diversity according 
to density and biomass showed little variation 
(mean around 1.8 bits.ind-1 and 1.4 bits.mg.-1) in 
the seasonal samplings (Figs. 4g and 4i), whereas 
spatially the density diversity was higher at Rvo 
(2.0 bits.ind-1) (Figs. 4h and 4j).

Diatoms and cyanobacteria were the most 
abundant groups in terms of density (Fig. 5a). Only 
in fall samples the sites appeared to be spatially 
heterogeneous with a different dominant group at 
each sampling site. In samples from other seasons, 
we could see spatial resemblance in phytoplankton 
group composition, where Px-N and Px-S were 
similar in the warm seasons (spring and summer). 
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Figure 4 - Structure of phytoplankton communities in the Ruivo and Peixe lagoons with regard to seasonal (left) and spatial 
(right) distribution. (Legend for locations see Table I)
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However, in the winter samples, Px-N was more 
similar to Px-C, composed by diatoms, clorophytes 
and cyanobateria. The Chroococcus spp. (83,844 
ind.mL-1) and the diatom Chaetoceros sp. (33,291 
ind.mL-1) were dominant in this season at Px-N 
and Px-S, respectively. Px-N and Px-S were 
dominated by cyanobacteria in spring, indicated 
by the correlation with chlorophyll a - blue (0.78) 
and chlorophyll a - green (0.86), Chroococcus 

spp. (85,302 ind.mL-1) became dominant at Px-S. 
In summer samples, cryptophytes (Hemiselmis sp.) 
and dinophyceae were the most abundant groups 
at Px-N and Px-S, and correlated with chlorophyll 
a - brown (0.50) for cryptophytes and (0.52), for 
dinophyceae. Diatoms were the most abundant 
group at Px-C, in spring samples Asterionellopsis 
glacialis (Castracane) Round and Nitzschia sp. 12 
(9,514 ind.mL-1) were dominant in summer samples. 

Figure 5 - Relative contribution (%) of density (a) and biomass (b) of phytoplankton 
groups in the Ruivo and Peixe lagoons. (Legend for locations see Table I)
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The relative contribution of phytoplankton 
groups to biomass was similar to density, with some 
exceptions (Fig. 5b). The most abundant groups 
were Euglenophyceae and Bacillariophyceae, but 
Dinophyceae also played an important role. Again, 
fall was the most heterogeneous season, but only 
at Px-C Euglena sp. (23.86 mg.L-1) remained 
dominant. Durinskia sp. (2.42 mg.L-1) was the 
dominant species at Rvo. In winter samples, the 
biomass pattern of the groups was the same as 
for density, with Chroococcus spp. (2.92 mg.L-1) 
remaining dominant at Px-N, whereas for Px-C 
and Rvo sites the dominance was replaced by 
larger diatom species, such as Diploneis didyma 
Ehrenberg (Ehrenberg) (0.17 mg.L-1) and Surirella 

sp. 2 (3.19 mg.L-1), respectively. In spring samples, 
Chroococcus spp. (7.78 mg.L-1) remained dominant 
at Px-N, correlating with chlorophyll a - blue 
(0.97) and green (0.74). In summer samples, the 
dominance of dinofl agellates at Px-N and Px-S kept 
these points more similar. Asterionellopsis glacialis 
was the only species recorded at Px-C in samples 
from all seasons, and its biomass was correlated 
with conductivity (0.51) and salinity (0.54). 

The Canonical Correspondence Analysis 
(CCA) relating between the biomass of abundant 
species (n=15 spp.), chlorophyll a, and the physical 
and chemical variables explained 50.1 % (p = 0.02) 
of the variability on the fi rst two axes (Fig. 6). On 
the negative side of axis 1, high values of salinity, 
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conductivity, chlorophyll a - brown, and Secchi 
transparency separated fall from the other seasons, 
however, the samples from Px-C were grouped 
by having their environment more infl uenced by 
the input of seawater through the channel. This 
marine infl uence was indicated by Asterionellopsis 
glacialis, a marine diatom that causes frequent 
blooms in the sea of southern Brazil. On the other 
hand, changes of phytoplankton community in 
response to a salinity decrease generated a seasonal 
gradient at Px-S and Rvo, when cyanobacteria 
(Chroococcus spp.) were found. 

ZOOPLANKTON 

The zooplankton of both lagoons was composed of 
57 taxa of the groups Rotifera (27), Protista (15), 
Copepoda (5), Cladocera (1) and others (different 
larval stages, icthyoplankton, foraminifera, i.e., 
marine organisms) (9). 

The spatial pattern of zooplankton richness 
was similar to phytoplankton, also higher at Rvo, 
but with a distinct seasonal gradient increasing 
from fall to spring (Figs. 7a and 7b). The decrease 
in specific richness in summer samples and at 
Px-C was negatively related to the infl ow of saline 
water, refl ected by negative correlations of specifi c 
richness with conductivity (-0.79) and salinity 
(-0.77).

Zooplankton density ranged from 6,000 
to 2,966,000 ind.m-3. Density was in general 
uniformly distributed among the seasons (Fig. 7c) 
with exception of winter samples. Spatially, the 
lowest densities were recorded at Px-C (Fig. 7d), as 
well as for phytoplankton, but zooplankton density 
was significantly correlated with TP (0.50) and 
chlorophyll a - green (0.59), with peaks at Px-N 
in winter.  

The specifi c diversity was higher in spring (2.0 
bits.cel-1) (Fig. 7e) whereas spatial diversity was 
higher at Rvo (1.8 bits.cel-1) (Fig. 7f), as well as 
for phytoplankton diversity according to density. 

There was a negative correlation between diversity 
and TN (-0.52), mainly due to the decrease of this 
nutrient in spring.

Concerning density, Protista and Rotifera 
were the most abundant groups (Fig. 8), but with 
particular seasonal and spatial distribution. In 
fall, zooplankton composition at Px-N and Px-C 
was similar, consisting mainly of representatives 
of the group others followed by Copepoda. The 
Rotifera group was resident only in extreme sites 
of system (Rvo and Px-S) during fall and winter. In 
winter, Protista dominated the zooplankton and in 
spring, Rotifera became the most abundant group. 
In summer, Copepoda has become an important, 
except at Rvo where Rotifera remained dominant. 

ORDINATION ANALYSIS OF THE PHYTO- AND 
ZOOPLANKTON AND THE ENVIRONMENT

The first two axes of the Redundancy Analysis 
(RDA) explained 45.9 % (p = 0.01) of the variation 
in the density of plankton groups (Fig. 9). Axis 1 
separated the samples associated with Secchi depth 
and chlorophyll a - brown from those associated 
with chlorophyll a - green, chlorophyll a - blue and 
TP. On this axis, Px-S showed a seasonal separation 
mainly related to chlorophyll a. In fall, winter and 
summer, the community at Px-S consisted mostly 
of diatoms and cryptophytes, evidenced by the high 
values   of chlorophyll a - brown in these samples. 
However, in spring the community consisted 
mainly of cyanobacteria, indicated by its close 
proximity to the vector representing chlorophyll 
a - blue. 

The high values of salinity and conductivity 
on the negative side of axis 2 were responsible for 
the seasonal gradient at Px-C, and also led to its 
divergence from the other sites during the summer, 
when salinity in the Peixe lagoon was higher 
(Table I). Euglenoids were dominant with regard 
to density at Px-C in fall. The zooplankton group 
referred to as “other” (larval stages and marine 
zooplankton) was more strongly related to salinity, 
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emphasizing the effect of seawater intrusion on 
the plankton community composition. Salinity and 
conductivity in Px-N was noticeably seasonal with 
fall and summer samples associated to these vectors. 
Summer samples were additionally associated with 
lower values   of DO and with dinofl agellates (Px-N 
and Px-S).

DISCUSSION

The Peixe and Ruivo lagoons are dynamic systems 
strongly infl uenced by salinity fl uctuations due to 
precipitation and evaporation in the area, freshwater 
infl ow from the adjacent wetland and farms, and 
seawater introduction through removal of the sand 

bar that divides the lagoon from the ocean. The two 
last factors are heavily infl uenced by winds.

The Peixe lagoon was more saline in summer, 
which is to be expected in these shallow systems 
due to higher temperature and evaporation. Ruivo 
lagoon was most saline during fall, probably due to 
occlusion of the channel and lower precipitation. 
Low salinity in winter resulted from larger 
precipitation, but also from the recent opening of 
the channel, which drained water from the lagoon 
to the sea. Previous studies in the Peixe lagoon 
(Crippa et al. 2013, Rolon et al. 2013) did not report 
the same variation of salinity observed here, despite 
the temporary closing of the channel. However, 
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Figure 7 - Structure of the zooplankton community in the Ruivo and Peixe lagoons at seasonal (left) and spatial (right) scales. 
(Legend for locations see Table 1)
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Figure 9 - Redundancy Analysis (RDA) Ordination plot of seasonal density 
of planktonic groups in the Ruivo and Peixe lagoons (Legend for locations 
and variables see Table I; BACILLA = Bacillariophyceae, CHLORO = 
Chlorophyceae, CRYPTO = Cryptophyceae, CHRYSO = Chrysophyceae, 
CYANO = Cyanophyceae, DINO = Dinophyceae, EUGLENO = 
Euglenophyceae, PHYTOFLA = Phytofl agellates, PROTI = Protista, ROTI = 
Rotifera, CLADO = Cladocera, COPE = Copepoda, OTHERS = refers to larval 
stages and other marine zooplankton groups such as foraminifera).

Figure 8 - Relative contribution (%) of density of zooplankton groups in the Ruivo and 
Peixe lagoons at all sampling dates. (Legend for locations see Table I)

Rvo

Px-N

Px-C

Px-S
RvoPx-N

Px-C

Px-S

Rvo

Px-N

Px-C

Px-S

Rvo

Px-N

Px-C
Px-S

BACILLA
CHLORO CHYPTO

CHRYSO

CYANO DINO

EUGLENO

PHYTOFLAPROTI
ROTI

CLADO

COPE

OTHERS

SECCHI

COND

OD

SALIN
TP
blue

green

brown

-3 -1 1 3 5

-3

-1

1

3

5

Axis 1 - 26.1%

A
xi

s
2

-1
9.

8%

Seasons

Fall
Winter
Spring
Summer



An Acad Bras Cienc (2016) 88 (1)

262 LETÍCIA DONADEL, LUCIANA DE S. CARDOSO and LEZILDA C. TORGAN

Truccolo (1993) observed similar salinity, as we 
found, with lower values   during winter and higher 
in summer. Inter-annual variability of the salinity 
has been common in the coastal lagoon from South 
of Brazil, as observed in Patos lagoon estuary 
(Abreu et al. 2010) and Tramandaí-Armazém 
lagoons (Callegaro et al 1981), and this variation 
has relation with the rainfall levels in the region 
that are strongly infl uenced by the El Niño Southern 
Oscillation.

Phytoplankton community structure responds 
strongly to abiotic variables, according to their 
ecological preferences (Bellinger and Sigee 2010, 
Reynolds 1984). Diatoms often predominate in 
areas with high salinity, low temperature and high 
silica concentration and turbulence (Armi et al. 
2010, Ramdani et al. 2009). A remarkable presence 
of Asterionellopsis glacialis, a cosmopolitan 
marine diatom species frequently found on the 
southern coast of Brazil and the coast of Argentina, 
was recorded at Px-C. At this site, salinity remained 
high due to the channel opening, maintaining 
communication with the ocean throughout most of 
the study period. High abundances of this species 
can be found off the coast of Rio Grande do Sul 
throughout the year (Odebrecht et al. 1995, 2010b, 
Rörig and Garcia 2003). For example, during the 
summer of 2012 a remarkable bloom was reported 
by the local press (Cardoso 2012). 

Dinofl agellates were more diverse in summer, 
due to higher salinity, as observed by Fujita and 
Odebrecht (2007) and lower wind velocity, 
probably because of their preference for low-
turbulence waters (Wong et al. 2007).  We did not 
record the presence of harmful Dinofl agellates as 
observed in the Patos lagoon estuary (Fujita and 
Odebrecht 2007). The richness of this group was 
higher (Fujita and Odebrecht 2007) probably due 
to a deeper system, which allowed them to explore 
more effectively the resources in the water column.

The high biomass of the benthic diatom 
Diploneis didyma and Surirella sp. 2 coinciding 

with the highest mean wind velocity (winter and 
spring) may be attributable to sediment suspension 
(Wong et al. 2007).  The highest phytoplankton 
richness, specific diversity and silicate value 
observed in winter, probably resulted from this 
suspension. The presence of benthic microalgae in 
the plankton was also observed in other shallow 
lakes (Cardoso and Motta Marques 2003, 2004a, 
Colak Sabanci 2014, Bergesch et al. 1995, Bonilla 
et al. 2005, Brito 2012, Ramdani et al. 2009, 
Padisák 1993).

In the Peixe lagoon, the lowest specifi c richness 
values in summer were associated with highest 
salinity. On the other hand, the highest specific 
richness at Ruivo lagoon can be explained mainly 
by the presence of a large number of freshwater 
species related to low salinity in this water body, 
which receives water from a wetland with an 
extensive macrophyte bank. Similar conditions 
were reported by Ramdani et al. (2009) and Kruk 
et al. (2009) for subtropical shallow lakes.

Cyanobacteria had the highest density, 
followed by diatoms, these groups were also 
the most important in the Tramandaí-Armazém 
lagoons (Callegaro et al. 1981) and Patos lagoon 
(Torgan 1997), except for the Patos lagoon estuary, 
where Nanofl agellates overlapped to these groups 
(Fujita and Odebrecht 2007).   In other coastal 
lagoons with similar salinity level, diatoms and 
dinofl agellates are usually the main phytoplankton 
components (Acri et al. 2004, Armi et al. 
2010, Bonilla et al. 2005, Colak Sabanci 2014, 
Fanuko and Valčić 2009, Melo and Suzuki 1998, 
Ramdani et al. 2009, Varona-Cordero et al. 2010). 
Euglenoids presented the highest biomass, which 
is also unusual compared to other lagoonal system 
(Bonilla et al. 2005). Diatoms predominated in 
terms of specifi c richness, and seem to have the 
ability to attain relevant density at a wide range of 
salinity, but with a transition between freshwaters 
and marine species, as observed by Hamilton et al. 
(2000). The most representative genus in number of 
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species was Nitzschia, as observed in the Moroccan 
lagoon Merja Zerga (Ramdani et al. 2009). 

In several temperate lagoons, seasonal 
distribution of phytoplankton groups was more 
strongly correlated with temperature than with 
salinity (Armi et al. 2010, Pachés et al. 2014). Our 
results resembled those of Melo et al. (2007) for 
the tropical zone, where fluctuations in salinity 
and nutrient availability were the main drivers of 
phytoplankton community structure. The Mexican 
tropical lagoons resemble the Peixe lagoon with 
respect to community dynamics. Distribution, 
composition and abundance of the algal community 
were infl uenced, both spatially and seasonally, by 
salinity and DO (Varona-Cordero et al. 2010). 

Phytoplankton density in the Peixe lagoon was 
similar to the tropical lagoon of Imboassica in Rio 
de Janeiro, which showed a maximum value of 
70,000 cel.mL-1 (Melo and Suzuki 1998). However, 
density in the Peixe lagoon was higher than in other 
subtropical lagoons in South America (Callegaro 
et al. 1981, Conde et al. 2003, Torgan 1997). 
Abundance and dominance of taxa differed when 
obtained from either biomass or density due to the 
high number of small cells (e.g. Chlorophyceae), 
or low number of large cells (e.g. Dinofl agellates). 
This is exemplifi ed by our observations at Px-C, 
density and biomass were the lowest, except in 
fall, when a high biomass value (24.1 mg.L-1) was 
recorded despite low density (2,689 ind.mL-

 

1). 
At this time, the dominant taxon was Euglena 
sp., which has a high cell volume. According 
to Bonilla et al. (2005), the connection between 
the lagoon and the sea regulates phytoplankton 
biomass. The fl ow of the water from the lagoon 
to the sea prevents eutrophication, and possibly 
caused lower density at Px-C, and reduced biomass 
in winter, after the opening of the channel. The 
large size of zooplankton (e.g. of several larval 
stages, ichthyoplankton, etc.) may have exerted a 
topdown control on phytoplankton at Px-C, while 
at the other sampling sites, microzooplankton was 

more prevalent than macrozooplankton. Predators, 
such as planktivorous fi sh and macroinvertebrates, 
are an important factor in brackish systems. Their 
presence is related to the salinity gradient and also 
highly affected by temperature. Hence, a rise in 
temperature will increase predation pressure on the 
zooplankton community, modifying its composition 
and diversity (Anton-Pardo and Armengol 2012) 
with a cascade effect on phytoplankton and 
bacterioplankton. 

Regarding zooplankton community structure, 
the largest number of species in spring, the higher 
specifi c richness of rotifers and the abundance of 
protists and rotifers agree with observations in the 
Tramandaí lagoon, another subtropical system that 
has a permanent connection to the sea (Cardoso and 
Motta Marques 2006). Seasonally, an increasing 
gradient of specifi c richness from fall to spring was 
also reported. However, the relationship between 
specific richness and salinity differed from our 
system: in the Tramandaí lagoon, specifi c richness 
was the greatest at a higher salinity, while we 
observed the greatest specifi c richness in the Ruivo 
lagoon, where salinity was lower.

A survey of existing studies in inland saline 
waters (listed by Horváth et al. 2013) showed 
that zooplankton diversity and specifi c richness 
generally decline with salinity. Rotifera was the 
only group that decreased in density with increasing 
conductivity, but this relationship was not signifi cant 
(Horváth et al. 2013). However, in the Peixe lagoon, 
density of Rotifera was negatively correlated to 
conductivity (-0.51), as was total specifi c richness 
of zooplankton (-0.79). Salinity is known as a 
strong determinant of aquatic communities in 
brackish systems (lagoons, estuaries), causing the 
death of species that cannot tolerate the increase 
of salt concentration. Some studies that focused on 
this variable (Anton-Pardo and Armengol 2012) 
showed that a rise in salinity leads to a decrease in 
species richness and diversity in the zooplankton 
community. This causes important shifts: the 
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dominance of large-sized cladocerans at low 
salinities is replaced by the dominance of copepods 
(mainly calanoids) at high salinities (Anton-Pardo 
and Armengol 2012). Indeed, copepods (mainly 
juvenile instars of Acartia tonsa) were dominant 
in the Peixe lagoon in summer, when salinity was 
high. However, cladocerans (Chydorus sphaericus) 
never dominated the community at low salinities, 
while rotifers and protists did. Acartia tonsa 
dominated the zooplankton community in areas 
with saltwater intrusion, such as the central basin of 
Vistula lagoon (Paturej et al. 2012) and the estuary 
of Patos lagoon (Muxagata et al. 2012).

Horizontal flow of water (exchange with 
adjacent systems) is the predominant factor 
governing plankton in lakes and coastal lagoons, 
and is even more intense in estuaries (Margalef 
1983). The process of water circulation in 
estuaries disfavors the formation of spatiality in 
these environments, while seasonality plays a 
more important role in distribution patterns and 
composition. In contrast to this, the morphology 
of lagoonal systems provides less circulation 
with adjacent systems, allowing some planktonic 
communities to be more stable. According to 
Bonilla et al. (2005), the phytoplankton community 
of Rocha lagoon primarily refl ects the hydrological 
state, and secondarily, the nutrient status of the 
environment. Permanent mixing of the water 
column, sediment resuspension, and bidirectional 
horizontal fl ow are physical conditions that impact 
the species presence. The seasonal variations 
observed in our study were characteristic of 
subtropical weather, associated for example with 
rainfall or cold fronts (Fontes and Abreu 2012, 
Hennemann and Petrucio 2011). The spatial and 
seasonal changes of the plankton community in the 
Peixe and Ruivo lagoons were strongly infl uenced 
by the channel opening which allowed the exchange 
of continental and coastal water, changing salinity. 
In addition, the wind action besides promoting 
the entry of ocean water permitted the inflow 
of dissolved oxygen into the water as well as 

resuspended sediment. High precipitation in winter 
was also an important factor for the variations in 
salinity in the lagoons. Further studies in short- and 
long-term would give us more accurate information 
into the plankton community dynamics. 
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RESUMO

As variações da comunidade planctônica em um 
sistema lagunar raso subtropical e sua relação com as 
condições ambientais foram investigadas durante um 
ciclo anual, a fi m de fornecer informações sobre o seu 
padrão de variação espacial e sazonal. O estudo foi 
realizado em quatro locais, três na Lagoa do Peixe e um 
na Lagoa do Ruivo, localizados no Parque Nacional da 
Lagoa do Peixe, sul do Brasil. O sistema comunica-se 
temporariamente com o Oceano Atlântico por um estreito 
canal. A densidade fi toplanctônica foi mais elevada na 
Lagoa do Peixe, enquanto que a maior riqueza específi ca 
ocorreu na Lagoa do Ruivo, local que apresentou menor 
salinidade. A biomassa fi toplanctônica próximo ao canal 
apresentou variação sazonal, com valor mais elevado no 
outono e menor no inverno. A riqueza do zooplâncton 
foi inversamente correlacionada com a salinidade, tendo 
valores mais elevados na Lagoa do Ruivo. A análise 
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de ordenação indicou padrões sazonais e espaciais 
na comunidade planctônica deste sistema lagunar, 
relacionados com a variação da salinidade. Além disso, a 
ação do vento e a precipitação foram fatores importantes 
para as mudanças espaciais e sazonais de salinidade na 
lagoa, com infl uência direta na dinâmica da comunidade 
planctônica.
Palavras-chave: laguna costeira, microalgas, sítio Ramsar, 
sul do Brasil.
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