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ABSTRACT
This paper describes experimental results on the life cycle of the rotifer Philodina roseola cultured in the 
laboratory. Detailed information on life-cycle parameters of a certain species provides a deep understanding 
and contributes to a better knowledge of the role of the species in the community, besides providing data 
that are basic to other ecological investigations such as secondary production estimates and knowledge for 
applications such as its utilization as test-organism in ecotoxicological studies. The average duration of 
embryonic development of P. roseola was 23.88 h, the age at maturity of primipara was 3.5 days and the 
maximum lifespan was 23 days. The average size of the rotifer neonate was 198.77 μm, the mean size of 
primipara was 395.56 μm and for adults 429.96 μm. The average fecundity was 1.22 eggs per female per 
day and the mean number of eggs produced per female during the entire life was 22.33. The deceleration 
of somatic growth from the start of the reproductive stage represents a trade-off between growth and 
reproduction that is often seen in micrometazoans. The life history of P. roseola follows the strategy of 
other bdelloid species characterized by a rapid pre-reproductive development and canalization of most 
assimilated energy to reproduction after reaching maturity. The differences observed in total fecundity and 
longevity between our P. roseola cultures and those from previous studies were probably due to differences 
of intrinsic adaptation of this species ecotypes to the conditions of their natural environments.
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INTRODUCTION

A detailed knowledge of the life-cycle of Philodina 
roseola, a benthic micro-invertebrate species, is 
particularly valuable as this species displays high 
genetic variability among clones evolving asexually 
and sometimes constituting sympatric complex of 

cryptic species (Birky Jr. et al. 2005). P. roseola has 
been used as a model for several types of studies, 
both biological, ecological and ecotoxicological 
(Schaefer and Pipes 1973, Gladyshev and Meselson 
2008, Allinson et al. 2011).

Studies on population dynamics and the 
functional role of small organisms in natural 
environments will depend greatly on previous 
detailed information on species life cycle traits, and 
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physiological responses of local populations. Such 
information is also essential for its employment as 
test organisms in ecotoxicological bioassays, or 
for environmental quality monitoring (Moreira et 
al. 2015, Forbes et al. 2010), since the response 
can be clone specific (Gabaldón et al. 2013). 
Furthermore, life-cycle research on rotifers can 
provide fundamental data, essential to analyzing the 
rates of processes such as ingestion, assimilation, 
secondary production or nutrient excretion (Santos-
Wisniewski et al. 2006).

The growth, reproduction and survival of the 
micro-invertebrates are infl uenced by a wide range 
of external factors. Among these, food availability 
and temperature are the most important, with 
temperature being especially relevant to the 
duration of the developmental stages and food 
availability to reproductions (Bottrell et al. 1976). 

Life-cycle variables of a given species are 
also crucial to the interpretation of its biological 
and ecological behavior in specifi c habitats and, 
beyond this, to its geographical distribution as a 
whole (Güntzel et al. 2003). Regarding the body 
structure and growth of species of the Phylum 
Rotifera, these invertebrates, despite having an 
alleged segmentation of the body are not really 
segmented because the apparent segments are 
not originated from metamerization. The division 
marks are actually local folds or shrinkage of the 
organism and possess a body cavity filled with 
liquid (pseudocoel), as do all blastocoelomates, 
with complete gut and a syncytial body wall, but 
with a fi xed number of nuclei (eutely). Thus, these 
organisms grow by enlargement of the syncytium, 
without multiplication of nuclei (Ruppert and 
Barnes 1996). 

There are about 460 known species of the 
Subclass Bdelloidea (Segers 2007), found in a 
variety of habitats around the world (Mayr 1963, 
Bell 1982). However, little is recorded about the 
biology and ecology of species in this Subclass. 
Most bdelloid rotifers are free-living, found in 

profusion in freshwater bodies and in permanently 
or periodically damp places (Donner 1965, Ricci 
1987, Wallace and Snell 1991, Wallace et al. 2006).

Bdelloid rotifers possess two remarkable 
features that attract the interest of scientists 
worldwide (Fontaneto et al. 2007). The first is 
their ability to live in any aquatic habitat, even a 
short-lived one, because these rotifers can survive 
desiccation by entering into a dormant state called 
anydrobiosis (Ricci et al. 2001, 2007, Ricci and 
Caprioli 2005). The second is that Bdelloidea, in 
which male organisms are absent, appears to have 
evolved without sexual reproduction. This subclass 
is, in fact, the largest, oldest and most diverse 
multicellular taxon for which there is convincing 
morphological, cytological and molecular evidence 
of long-term asexual evolution (Mark Welch and 
Meselson 2000, Mark Welch et al. 2004).

In the dormant phase, an individual bdelloid 
represents an easily dispersing propagule capable 
of colonizing any suitable new habitat. Any such 
propagule can give rise to a whole new population, 
given that sexual partners are not required (indeed, 
do not exist). Hence, in theory, a given species of 
this group of rotifers may be found in any habitat 
with adequate conditions, anywhere in the world. 
It is normally assumed that species in the subclass 
Bdelloidea are cosmopolitan (Fontaneto et al. 
2006).

Species of the genus Philodina have biologi-
cal characteristics that immediately recommend 
them as environmental test organisms (Buikema 
et al. 1974, Hagen et al. 2009, 2010, Allinson 
et al. 2011). Adult individuals are small, they 
reproduce only by parthenogenesis, have high 
fecundity and the life-cycle is short. Thus, a very 
large number of individuals can be produced for 
bioassays in a short time, with few problems and 
low costs, and by cloning, it is feasible to have 
thousands of genetically identical animals within 
the period of an experiment. Apart from being 
easily generated in large numbers, Philodina spp. 
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are highly representative of aquatic habitats in 
general, being found in a wide variety of freshwater 
bodies including the lakes, ponds, swamp and 
marsh-water, rivers, streams and springs. They 
are also present in mosses, liverworts and lichens, 
bromeliad hearts, roadside puddles and ditches, 
moist organic matter, soil and even in wastewater 
treatment tanks (Wallace and Snell 2010). Although 
the genus Philodina includes species that are 
primarily benthic creeping forms, some species are 
also semi-pelagic thriving in the water column for 
food, heavily relying on its ciliate corona to swim 
freely (Hochberg and Litovaitis 2000).

The purpose of this study was to gather detailed 
information on the life-cycle of Philodina roseola. 
Detailed information on life cycles of rotifers 
may help to differentiate among cryptic species 
in addition to provides a deep understanding and 
contributes to a better knowledge of the role of the 
species in the community, besides providing data 
that are basic to other ecological investigations, 
such as secondary production estimates and 
knowledge applications as its utilization as test-
organism in ecotoxicological studies. A deep 
understanding of species biological and ecological 
requirements is also essential for applications such 
as growing rotifers as aquaculture live-feed, or as 
test-organisms for ecotoxicological studies.

MATERIALS AND METHODS

MAINTENANCE OF ROTIFER STOCK CULTURE

Specimens of Philodina roseola Ehrenberg, 1830 
(Rotifera, Bdelloidea) were collected from glass-
fiber experimental tanks of 10,000 L capacity, 
maintained at the Federal University of São Carlos 
(São Carlos, SP, Brazil) Aquaculture Station. 
Zooplankton samples were collected with a plankton 
net of 68 μm mesh and stored in wide-mouth 
polythene bottles, sorted and identifi ed according 
to Koste and Shiel (1986) and Koste and Terlutter 
(2001), in order to isolate individuals of the species 
P. roseola (see Supplementary Material).

The culture medium consisted of reconstituted 
water prepared as recommended by the Brazilian 
Association of Technical Normalization (ABNT 
2005): 0.03 gL-1CaSO4.2H2O, 0.061 g L-1 
MgSO4.7H2O, 0.048 g L-1 NaHCO3 and 0.002 gL-1 

KCl were dissolved in 1 L distilled water and this 
medium had pH adjusted to 7.0-7.8, hardness to 
40-48 mg CaCO3 L

-1 and electrical conductivity 
to160 μScm-1. 

Stock cultures of P. roseola were maintained at 
high densities (mean value of 116 ind. mL-1) in 50-
250 mL glass beakers, at controlled temperature of 
25 ± 1ºC, with a photoperiod of 16 h light: 8 h dark. 
To prevent evaporation of the culture medium, 
the beakers were sealed with plastic fi lm. Every 
76 hours, as proposed by Hagen et al. (2009), the 
water and food were renewed. The rotifers were 
fed on a suspension of the alga Raphidocelis 
subcapitata, grown in CHU-12 medium (Müller 
1972), at a density of 1x105 cells mL-1. The life-
cycle study was carried out on individual rotifers, 
each organism being observed in 3.0 mL of the 
culture medium, in a 9-cm diameter watch glass 
kept inside a Petri dish (110 x 15 mm) with a lid to 
prevent evaporation. The animals were observed 
under a stereo microscope at magnifi cation 50x and 
were handled gently with the aid of Pasteur pipettes. 
The culture medium, prepared from reconstituted 
water, was changed every day.

EMBRYONIC DEVELOPMENT

The duration of embryonic development of P. 
roseola was determined by observing the main 
transformations that occurred in the progeny from 
the moment when eggs appeared in the females. In 
addition, the duration (in hours) of each stage of the 
embryonic development was recorded. The basic 
method was as follows:

Sexually immature females were taken from 
the stock culture and kept in culture medium in 
watch-glasses. When they were ready to produce 
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eggs (i.e. just before becoming primiparas), 9 
females were collected and individually placed in 
watch glasses containing 3 mL of culture medium.

POST-EMBRYONIC DEVELOPMENT

Nine neonates were placed on separate 9-cm watch 
glasses, in 3 mL of culture medium, which were 
maintained in Petri dishes (110 x 15 mm) and 
cultured under the same conditions as for the stock 
culture of P. roseola. Measurements were made 
under the stereoscopic microscope equipped with 
a micrometer scale, from head to foot, so that the 
length of the animal was recorded each 3 hours, 
in the fully stretched position. In relation to the 
measurements of the rotifer size, this was performed 
each 3 hours since P. roseola neonate eclosion until 
its fi rst reproduction, which had duration of 3.5 ± 
3.11 days.

The growth curve was fitted to the data by 
the Von Bertalanffy equation, the Ford-Walford 
transformation being used to establish the initial 
parameter L (Sparre and Venema 1998):

Lt = L∞ [1 – e – K ( t – t
0

) ]

Where Lt = length at time t (mm), L = maximum 
length (mm), K = growth rate constant (d-1), e = base 
of natural logarithms, t0 = theoretical time before 
birth when model extrapolates to zero length.

The age at fi rst reproduction was taken as the 
time elapsed between the birth of the recently born 
rotifer and that of its fi rst progeny. Observations 
were recorded every 3 hours.

To determine the fecundity, the number of 
eggs produced daily by each female was counted, 
summing the observations made each 6 hours, 
and the progeny hatched in each of these intervals 
was removed at the time of observation. The 
lifespan (duration of life-cycle) was taken as the 
time elapsed between the birth and death of the 
organism, observations being made initially at 
3-hour intervals and, following the stabilization of 
the growth rate, at 6-hour intervals.

RESULTS

The variation in the size of the individual rotifers 
throughout the life-cycle of is illustrated in Figure 
1, where it can be seen that the body length altered 
substantially during the fi rst few days of life. It is 
noted that, after a period of fast exponential growth, 
the rate slowed perceptibly from around the fourth 
day and the body length continued increasing 
slowly towards the asymptotic maximum. 
However, it should not be forgotten that these data 
represent individuals growing in a medium with 
abundant food (Raphidocelis subcapitata) and an 
ideal controlled temperature of 25 ± 1°C.

The mean period of embryonic development 
lasted for 23.88 ± 3.82 h. The mean body size of 
a female rotifer and the mean total fecundity and 
other variables recorded for the life-cycle of P. 
roseola are presented in Table I. The mean daily 
fecundity for each day covering the lifespan of P. 
roseola is plotted in Figure 2.

DISCUSSION

Philodina roseola can be described as a fast-deve-
loping micrometazoon, on the basis of its high 
growth-rate and the short time taken to reach its 
maximum size. The slowing of its somatic growth, 
coincident with the start of reproduction suggests 
a trade-off between growth and reproduction that 

Figure 1 - Growth curve for individual Philodina roseola 
cultured at 25 ± 1°C and fed on the chlorophycean microalga 
Raphidocelis subcapitata at a density of 1x105 cells mL-1. The 
data points show the observed values for 9 replicate animals.
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micrometazoans often make. In this case, species 
invest the available energy in body growth until 
reaching the fi rst reproduction and from that time 
onwards it allocates all the energy into reproduction 
(Snell and King 1977).

In the case of other group of freshwater 
invertebrates, the Cladocera, Dumont (1987) 
reported that some species invest energy in growth 
throughout their life and consequently have low 
rates of reproduction, while others allocate most 
of their energy to reproduction and thus have short 
lifespans. In the present study, it was found that 
the growth of the rotifer under study is fast until 

the third day of its life (age of fi rst reproduction). 
Although it continues to grow after the fi rst brood, 
P. roseola then invests more energy in reproduction 
than in body growth and the growth rate falls 
considerably, around day 5.

Lebedeva and Gerasimova (1985) stated that 
the effects of temperature on the duration of the 
reproductive period and the total egg production per 
female P. roseola are clearly evident. Those authors 
also followed the daily fecundity throughout the 
life-cycle of this species and concluded that it differs 
completely between high and low temperatures. 
Thus, at 26 °C, there was a fast rise in fecundity 
around day 5, while at 14 °C low fecundity was 
observed without any pronounced period of peak 
egg production, whereas reproduction was inhibited 
at 32 ºC. The authors concluded that, while P. 
roseola tolerates a wide range of temperatures, 
growth being possible from 14 ºC to 32 ºC and that 
the interval between 20 ºC and 26 ºC is the ideal 
range for growth and reproduction of this species.

The results of this study for longevity, fecundity, 
age and best culture temperature are compared in 
Table II with the published data on various rotifer 
species of the Subclass Bdelloidea. The age at 
first reproduction for P. roseola coincided with 
that of Adineta vaga, Habrotrocha constricta and 
Macrotrachela inermis, cultured at 24 ºC - 25 ºC.

TABLE I 
Life-cycle variables (mean ± standard deviation: n = 9) of the rotifer 

Philodina roseola cultured in the laboratory at 25±1°C, under a 
photoperiod of 16 h light: 8 h dark, and fed on a suspension of 

Raphidocelis subcapitata at 105 cells mL-1.
Life cycle parameters Variable
Length of adult (μm) 429.96 ± 28.12
Length of newborn (μm) 198.77 ± 25.88
Length at fi rst reproduction (μm) 395.56 ± 19.44
Minimum length at fi rst reproduction (μm) 360.00
Total fecundity (eggs per female in whole life) 22.33 ± 2.29
Mean fecundity (eggs per female per brood) 1.22 ± 0.44
Maximum longevity (days) 23.00
Mean longevity (days) 19.33 ± 2.06
Duration of embryonic development (hours) 23.88 ± 3. 82
Age at fi rst reproduction (days) 3.5 ± 3.11

Figure 2 - Daily fecundity (mean ± 
standard deviation) of P. roseola during 
its life-cycle, when cultured at 25±1°C 
with abundant live algae as food. Data 
points represent mean values for 9 isolated 
individuals.
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For laboratory cultured rotifers of the subclass 
Bdelloidea, the life-cycle lasted approximately 30 
days, during which they produced, on average, 
around 20-35 eggs (Ricci 1983), although they 
were fed on different foods (Escherichia coli, some 
species of yeast, particulate organic matter). High 
food concentrations and supplementing algal diet 
with bacteria as in the latter study may improve 
rotifer nutrition, thus increasing fecundity and 
longevity. This could be the reason for the lower 
fecundity found for P. roseola in our study as 
compared to the same species performance in the 
study of Ricci (1983).

In another study Ricci (1984) tested different 
methods for culturing some bdelloid rotifers. This 
author found that by adding a variety of food sources 
to the culture medium was an effi cient strategy, and 
that bacteria and yeast are usually adequate foods 
for bdelloid rotifers, having optimized growth of 
the tested species. Nevertheless, she calls attention 
to the fact that these results cannot be generalized 
g that two clones of the same species, although 
morphologically identical can have different 
requirements and preferences, especially when 
coming from environments with different climates, 
as pointed out by Erman (1956), Pourriot (1977) 
and Stemberger (1981).

In response to disturbance (e.g. evaporation of 
available water), bdelloids can enter the dormant 
state of anhydrobiosis, returning to the active state 
when the conditions in the surroundings become 
suitable again.

The recovery rate of these organisms depends 
on the species (Ricci 1998), on the duration of the 
phase of desiccation (Caprioli et al. 2004) and on 
the age of the rotifers at the start of dormancy. In 
any case, the dormant period represents a “blank” 
phase in the life of bdelloids, in the sense that they 
return to the life-cycle at the point where they left it, 
without refl ecting the time they remained dormant.

The quality and quantity of food are control-
ling factors for secondary production in aquatic 
ecosystems (Santos et al. 2010, Rajendiran and 
Subramanian 2007, Snell 2014) and an increase 
in the amount of food available leads to a rise in 
egg production (Santos et al. 2006, Strojsová et 
al. 2009). According to Sarma et al. (2005), the 
greater availability of food and higher tempera-
tures in tropical, than in temperate regions favor 
the Rotifera, which are found in the majority of 
freshwater habitats and are often the group of 
zooplankton with the highest secondary production, 
by virtue of their short generation time and nume-
rical dominance (Starkweather 1987, Walz 1997, 

TABLE II
Comparison between lifespan (days), total fecundity, age at fi rst reproduction and culture temperature of Philodina 

roseola, observed in this study, and variables taken from the literature for 19 rotifer species.

Species Lifespan Total 
fecundity

Age at fi rst 
reproduction Temperature (oC) Source

Adineta vaga 17 14 3 24 Ricci 1983
Embata laticeps 27 20 4 24 Ricci 1983
Habrotrocha constricta 38 21 3 24 Ricci 1983
Habrotrocha elusa vegeta 32 22 2 24 Ricci 1983
Habrotrocha sylvestris 40 26 4 24 Ricci 1983
Macrotrachela inermis 31 24 3 24 Ricci 1983
Macrotrachela insolita 76 22 9 24 Ricci 1983
Otostephanos torquatus 45 10 7-8 24 Ricci 1983
Philodina roseola 20 23 3 25 Present study
Philodina roseola 27 35 3 24 Ricci 1983
Philodina vorax 22 13 6 22 Ricci and Fascio 1995
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Wallace 2002, Wallace and Snell 2010, Snell 2014), 
in spite of their small biomass at any given moment 
(Ruttner-Kolisko 1972).

In a recent study Gabaldón et al. (2013) 
aiming to understand the mechanisms that could 
explain the coexistence of cryptic species obtained 
results that challenge the conventional theory of 
niche differentiation. The authors cultured two 
cryptic rotifer species, Brachionus plicatilis and 
B. manjavacas, focusing at three fundamental 
ecological characteristics: (1) a functional 
response represented by the fi ltering rate, (2) the 
tolerance to starvation assessed by growth and 
reproduction performance and (3) vulnerability 
to predation. The authors concluded that there 
were no large differences between B. plicatilis 
and B. manjavacas in relation to these traits, thus 
evidencing the existence of considerable niche 
overlap among these two species. Considering 
the frequent occurrence of cryptic species among 
bdelloid rotifers, and that most of what is known 
about the biology and ecology of rotifers is based 
on the research of planktonic rotifers in temperate 
zones (Ricci 2001), it is believed that even species 
described as cosmopolitan, such as P. roseola, may 
have very different strategies and life-histories in 
tropical conditions. 

Therefore, the study of the biology of rotifer 
species should go outside the laboratory, into their 
natural habitats, particularly into tropical water 
bodies, where they are very often dominant among 
macro-invertebrates.

Whereas most toxicity testes with rotifers utilize 
species of the genus Brachionus (Monogononta) 
as test-organisms, the reason why in our study we 
suggest the species Philodina roseola (Digononta, 
Bdelloidea) as a test organism is because we 
believe that ecotoxicological studies with rotifers 
must include and standardize procedures for many 
species considering that the response to toxicants 
are species-specifi c (Dahms et al. 2011, Moreira et 

al. 2015). Taking into account that a toxicological 
evaluation in aquatic ecosystems requires a set of 
species representative of a variety of ecological 
niches, the use of P. roseola, a benthic species 
will be relevant since most used rotifer species 
belong to the plankton, as mentioned before. Also, 
species of the genus Philodina fullfi l the biological 
characteristics recommended for a test organism 
(Buikema et al. 1974, Hagen et al. 2009, 2010, 
Allinson et al. 2011), besides occurring in a variety 
of freshwater environments (Wallace and Snell 
2010, Sharma and Sharma 2012). In freshwater 
reservoirs of Southern Brazil, for example they 
are frequent, developing large populations (Souza-
Soares et al. 2011, Garraffoni and Lourenço 2012).

The life history of Philodina roseola 
follows the general strategy of other bdelloid 
species characterized by a rapid pre-reproductive 
development and canalization of most assimilated 
energy to reproduction after reaching maturity. 
The differences observed in total fecundity and 
longevity between our P. roseola cultures and 
those from previous studies were probably due 
to differences in the nutrition of the laboratory 
cultures and to differences of intrinsic adaptation 
of the species ecotypes to the conditions of their 
original natural environments. P. roseola laboratory 
populations fulfi lled the necessary requirements as 
a test-organism as: high survival rate, fast growth 
and high fecundity. 
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RESUMO

Este artigo descreve os resultados experimentais do 
ciclo de vida do rotífero Philodina roseola, cultivado 
em laboratório. Informações detalhadas sobre os 
parâmetros do ciclo de vida de uma dada espécie 
permitem um entendimento aprofundado e contribuem 
para uma melhor compreensão do papel dessa espécie 
na comunidade, além de fornecer dados que são básicos 
para outras investigações ecológicas como, por exemplo, 
a estimativa da produção secundária, e aplicações 
como sua utilização como organismo-teste em estudos 
ecotoxicológicos. A duração média do desenvolvimento 
embrionário de P. roseola foi 23,88 horas, a idade de 
maturação das primíparas foi de 3,5 dias e a longevidade 
máxima foi de 23 dias. O tamanho médio de rotíferos 
recém-nascidos foi de 198,77 μm, o tamanho médio de 
primípara foi 395,56 μm e dos adultos de 429,96 μm. 
A fecundidade média foi de 1,22 ovos por fêmea por 
dia e o número médio de ovos produzidos por fêmea 
durante a vida inteira foi 22,33. A desaceleração do 
crescimento somático, desde o início da fase reprodutiva 
representa um trade-off entre crescimento e reprodução 
que é visto frequentemente em micrometazoários. A 
história de vida de P. roseola segue a estratégia de outras 
espécies de bdeloídeos, caracterizada por um rápido 
desenvolvimento pré-reprodutivo e canalização de mais 
energia assimilada para a reprodução após atingirem a 
maturidade. As diferenças observadas na fecundidade 
total e longevidade entre nossas culturas de P. roseola 
e as de estudos anteriores foram, provavelmente, devido 
a diferenças de adaptação intrínseca de ecótipos desta 
espécie para as condições de seus ambientes naturais.

Palavras-chave: rotífero, desenvolvimento embrioná-
rio, crescimento, fecundidade, tempo de vida.
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 SUPPLEMENTARY MATERIAL

As stated in the manuscript Philodina roseola was 
identifi ed based on the descriptions of Koste and 
Terlutter (2001) and descriptions and taxonomical 
key of Koste and Schiel, 1986, using morphologi-
cal characteristics only. Nevertheless, because we 
succeeded maintaining it in laboratory cultures we 
could repeatedly check its morphological charac-
teristics, as shown in the fi gures bellow: trophi (1a 
and 1b),  trophi lateral (1c), presence of two eyes,  
the eyes are reddish ranging to reddish brown  (2a  
and 2b), 1 pair of spurs (3), as number of feet (2 
pairs of feet) (4), number of caudal segments (fi ve) 
(5) and  head and neck clearly separated from the 
trunk (6) that leaded us up to this species.


