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ABSTRACT
Planktonic models represent a powerful tool for creating hypotheses and making predictions about the 
functioning of marine ecosystems. Their complexity varies according to the number of state variables and 
the choice of functional forms. We evaluated plankton models during the last 15 years (n =145) with the 
aims of understanding why they differ in complexity, evaluating model robustness, and describing studies 
of plankton modelling around the globe. We classified models into four groups: Nutrient-Phytoplankton-
Zooplankton (NPZ), Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD), Size-Structured (SS) and 
Plankton-Functional-Type (PFT). Our results revealed that the number of state variables varied according 
to the question being addressed: NPZ models were more frequently applied in physical-biological studies, 
while PFT models were more applied for investigating biogeochemical cycles. Most models were based 
on simple functional forms which neglect important feedback related to control of plankton dynamics. 
Modelling studies sometimes failed to describe sensitivity analysis, calibration and validation. The 
importance of testing different functional forms was commonly overlooked, and the lack of empirical data 
affected the verification of model robustness. Lastly, we highlight the need to develop modelling studies 
in the Southern Hemisphere, including Brazil, in order to provide predictions that assist the management 
of marine ecosystems.
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INTRODUCTION

Mathematical models enable researchers to synthesize knowledge, test hypotheses, and make predictions 
using differential equations that simulate properties over time (Franks 2002). In oceanography and marine 
ecology, numerical modelling allows for investigation of the effects of physical, chemical, and biological 
processes, separately or in combination, thus reducing the complexity of marine systems. Models can be 
a powerful tool for the management of marine ecosystems, which relies on understanding how the flow of 
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nutrients, especially carbon, and the energy transfer along marine food webs may be altered by pollution, 
eutrophication of coastal waters, ocean acidification, and climate change (Blackford et al. 2010). 

Over the past 25 years, marine plankton models have been used as a platform for investigating from 
plankton physiology to oceanography (e.g., Fasham et al. 1990, Painting et al. 1993, Dadou et al. 1996, 
Allen et al. 2004, Baird and Suthers 2007, Arhonditsis et al. 2008, Anderson et al. 2010, Banas 2011, Doron 
et al. 2013, Yool et al. 2013, Mitra et al. 2014a). Eco-physiological models which account for plankton 
stoichiometry have been described in the literature and can be used for several purposes, such as explore the 
effect of gut satiation and prey quality on zooplankton growth (Mitra and Flynn 2006, Merico et al. 2009). 
Regarding oceanography, models are used to address the effects of upwelling and the action of river plumes 
on plankton dynamics and key ecological/biogeochemical questions related to the efficiency of carbon 
transfer along planktonic food webs and the impact of ocean acidification on plankton (e.g., Edwards et al. 
2000, Banas et al. 2009, Yool et al. 2013, Mitra et al. 2014a). 

Plankton models differ in structure and complexity according to the number of state variables, as 
well as the functional forms used to configure the equations. They may be simple, comprising a small 
number of state variables, as with the class of models called NPZ (Nutrient-Phytoplankton-Zooplankton), 
or more complex, featuring up to 15 state variables, as with PFT (Plankton-Functional-Type) models 
(Gregg et al. 2003, Moore et al. 2004, Le Quéré et al. 2005). The choice of functional forms is crucial to 
model performance and can be characterized from simple Michaelis-Menten or Holling-type functions to 
complex mechanistic (or semi-mechanistic) approaches, as seen in eco-physiological models (Flynn 2001, 
Bonachela et al. 2011). The emergence of more complex models was made possible by computational 
advances combined with the increased availability in the literature of information required for model 
parameterization. Given the large variation in model complexity, we asked whether NPZ models are overly 
simplistic, and whether more complex models (e.g., PFT) may provide more realistic predictions. 

The aim of this review was to evaluate marine plankton model studies from the last 15 years, in order 
to assess model complexity. We have chosen the 15 years cutoff according to previous reviews regarding 
plankton and biogeochemical modelling (Franks 2002, Arhonditsis and Brett 2004). We give particular 
attention to the robustness of models that consider a high number of state variables but retain simple 
functional forms, ignoring important aspects of plankton physiology and ecology. In evaluating existing 
studies, we demonstrate that many models fail to accomplish all of the steps required in modelling, discussing 
the reasons for and consequences of such shortcomings. Finally, we examine the global distribution of 
plankton modelling studies and identify some geographic areas (e.g., Brazil) where such research is lacking. 
In synthesizing information regarding planktonic modelling and assessing existing studies, this review 
may enlighten those who intend to model planktonic systems, providing guidance regarding the choice of 
functional forms and the costs and benefits of making simple versus complex models. Prior to assessing the 
use of different models within the literature, we define the different types of plankton models and introduce 
their key components, the state variables and the approaches used to describe functional forms. 

DESCRIPTION OF PLANKTON MODELS

Planktonic trophic models aim to predict how particular state variables vary over the time. These variables 
describe quantities as nutrients, number of individuals, and/or biomass (in terms of carbon or other chemical 
elements). As with the choice of state variables, the performance of any model is influenced by the choice 
of functional forms. Functional forms are the mathematical functions used to represent the processes that 
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affect a certain state variable over time, such as nutrient uptake by phytoplankton. The state variables 
within a given model are linked by ‘transfer functions’ that are characterized by particular functional forms. 
Below, we introduce the different types of plankton models, as characterized by the type and number of 
state variables and discuss three ‘transfer functions’ common to all planktonic trophic models.

NPZ Models “Nutrient-Phytoplankton-Zooplankton”

NPZ models, which emerged from the pioneering studies of Riley (1946) and Steele (1958), consist of 
three differential equations and, therefore, three state variables: phytoplankton, zooplankton and nutrients 
(Fig. 1a). Notably, NPZ models do not account for the size of organisms. A general model can be described 
by Equations 1, 2, and 3 for phytoplankton (P), zooplankton (Z), and nutrients (N), respectively. The 
state variables are linked via the uptake of nutrients by phytoplankton ( ( )A N ), phytoplankton grazing by 
zooplankton ( ( )G P ), and the loss terms of phyto- ( ( )L P ) and zooplankton ( ( )L Z ) due to death (including 
excretion and predation by higher trophic levels in the case of zooplankton). The non-assimilated food 
consumed by zooplankton ((1 - e)G(P)) and the dead material is ultimately recycled and return to the 
nitrogen pool. 

	
( ) ( ) ( ) ( )dP A N P G P Z L P P                                               1

dt
= − −

	
(1)

	
( ) ( ) ( )dZ e G P Z L Z Z                                                              2      

dt
= −

	
(2)

	
( ) ( ) ( ) ( ) ( ) ( )dN A N P 1 e G P Z L P P L Z Z             3

dt
= − + − + +

	
(3)

NPZD Models “Nutrient-Phytoplankton-Zooplankton-Detritus”

NPZD models are composed at least by 4 state variables. The simplest configuration results from the 
addition of detritus to the NPZ model, allowing for the description of the organic matter pool (Dadou et al. 
1996, Stickney et al. 2000, Fennel 2010). In this case, rather than returning directly to the N pool, the dead 
phyto- and zooplankton and the not-assimilated fraction of grazing by zooplankton are accumulated in the 
detritus (D) compartment. The detritus can be consumed by zooplankton ( ( )G D ), and is ultimately recycled 
again into the N pool ( ( )R D ). The NPZD model is described by Equations 4, 5, 6, and 7 for phytoplankton, 
zooplankton, nutrients, and detritus, respectively. Differences compared to the corresponding equations 
used for the NPZ model are highlighted in bold. 

	
( ) ( ) ( ) ( )dP A N P G P Z L P P                                                                               4

dt
= − −

	
(4)

	
( ) ( )( ) ( ) ( )dZ e Z G P L Z Z                                                                           5      

dt
= + −G D

	
(5)

	
( ) ( ) ( )dN A N P                                                                                           6

dt
= − + R D D

	
(6)



An Acad Bras Cienc (2016) 88 (3 Suppl.)

1974	 Suzana G. Leles, Jean L. Valentin and Gisela M. Figueiredo

	
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )dD L P P L Z Z 1 e Z G P G D  G D Z R D D           7         

dt
= + + − + − −

	
(7)

More complex NPZD models include not only detritus but also bacteria and different forms of nitrogen 
(nitrate, ammonium and dissolved organic nitrogen) as state variables (Fasham et al. 1990, Druon and 
Le Fèvre 1999, Jackson 2001, Cropp and Norbury 2007) (Fig. 1b). The inclusion of bacteria modifies 
the above NPZD model equations (except the phytoplankton equation, Eq. 8), as illustrated in Equations 
9–12 (changes in bold). In this new configuration, the bacteria compartment ( )B  grows through the uptake 
of nutrients ( ( )A N ), also contributing to the recycling of the nutrient pool ( ( )R B ) and ultimately being 
consumed by zooplankton ( ( )G B ).

	
( ) ( ) ( ) ( )dP A N P G P Z L P P                                                                         8

dt
= − −

	
(8)

	
( ) ( ) ( )( ) ( ) ( )dZ e Z G P G D L Z Z                                                      9

dt
= + + −G B

	
(9)

	
( ) ( ) ( ) ( ) ( )dN A N P R D D                                                 10

dt
= − − + +A N B E B B

	
(10)

	
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )dD L P P L Z Z 1 e Z G P G D  G D Z R D D                                                                                     11      

dt
= + + − + + − −G B

	
(11)

	
( ) ( ) ( ) ( )dB A N B G B Z R B B                                                                       12    

dt
= − −

	
(12)

SS Models “Size-Structured”

As the name implies, Size-Structured (SS) models consider different size classes of plankton (Fig. 1c). This 
category includes two types of models, the first of which subdivides phyto- and zooplankton compartments 
into two or more compartments according to cell/individual size, thus increasing the number of state variables 
(Painting et al. 1993, Gin et al. 1998, Ji et al. 2006, Hinckley et al. 2009). The second type uses allometric 
relationships (physiological responses according to changes in cell/individual size) to define the parameters, 
thereby preserving the number of state variables (typically, there are three: nutrient, phytoplankton, and 
zooplankton). This strategy enables simulation of n size classes of phyto- and zooplankton compartments 
without changing the number of equations and reducing the number of parameters (Baird and Suthers 
2007, Banas 2011, Ward et al. 2012). For example, in the three-compartment model by Banas (2011), the 
parameter that defines maximum zooplankton ingestion j

0(I , where j represents predator size) is defined 
based on the prey size (x) that is accessible for the predator of size j ( )jx , as proposed by Hansen et al. 
(1997): 

I0
j = (26 day−1)( xj

1 µm

−0.4
    (
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PFT Models “Plankton-Functional-Type”

According to the number of state variables, PFT models are the most complex models found in the literature, 
with up to 15 state variables (Allen et al. 2004, Blackford et al. 2004, Le Quéré et al. 2005, Aydin et al. 2005, 
Megrey et al. 2007, Yool et al. 2013). With the breadth of information related to the biology of planktonic 
groups that is available in the literature, models that specify different plankton functional groups can be 
developed to investigate topics such as ocean biogeochemistry (Le Quéré et al. 2005). In this type of model, 
functional groups have no phylogenetic meaning; rather, they group species on the basis of biogeochemical 
and/or ecological functions (Le Quéré et al. 2005, Xu and Hood 2006). Such functional groups include 
picoheterotrophs, phytoplankton calcifiers (e.g., coccolithophorids), nitrogen-fixers organisms (e.g., 
Trichodesmium), producers of dimethylsulphoniopropionate (DMSP) (e.g., Phaeocystis), phytoplankton 
silicifiers (diatoms), protozooplankton, and mesozooplankton (Fig. 1d). 

Figure 1 - Types of planktonic trophic models in order of increasing complexity. a) NPZ model; b) NPZD model by Fasham et al. 
(1990); c) SS model by Banas (2011); d) PFT model by Gregg et al. (2003). N-nutrient; P-phytoplankton; Z-zooplankton; DON-
dissolved organic nitrogen; B-bacteria; D-detritus; P1–n: phytoplankton of different sizes; Z1–n: zooplankton of different sizes; OD-
organic detritus; Chloro-chlorophycean; Cyano-cyanophycean; Cocco-coccolithophorid.

TRANSFER FUNCTIONS

There are three transfer functions that are common to any planktonic trophic model: nutrient uptake by 
phytoplankton, zooplankton grazing, and zooplankton mortality (commonly referenced in the literature as 
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‘closure term’). They can be built with simple functional forms (e.g., Michaelis-Menten and Holling types) 
or with more complex ones (e.g., as observed on eco-physiological models) (Table I).

TABLE I 
Functional forms most commonly used in the literature and more complex alternatives to describe three transfer 

functions: phytoplankton nutrient uptake, zooplankton grazing, and zooplankton mortality (closure term).
Transfer Function Functional Form* Description Reference
Phytoplankton Nutrient 
Uptake  maxV N

k N
⋅

+

Monod / Michaelis-Menten; 
hyperbolic

Monod 1942

1

1

min

max
min

max

Q
Q

Q
Q

µ
−

−

Quota Curve; hyperbolic Droop 1968

( ) 
min

max
min

Q Q
Q Q K

µ −
− +

Quota Curve; rectangular-
hyperbolic

Caperon and 
Meyer 1972

( ) ( )
( ) ( ) 

1 min
max

min max min

KQ Q Q
Q Q KQ Q Q

µ
+ ⋅ −

− + ⋅ −

Normalized Quota equation; 
rectangular-hyperbolic

Flynn 2002

Zooplankton Grazing  a P⋅ Type I; quadratic Holling 1959

 
1

a P
a h P

⋅
+ ⋅ ⋅

Type II; hyperbolic Holling 1959

1

maxI P
k P

⋅
+

Monod / Michaelis-Menten; 
hyperbolic

Monod 1942

2

21
a P
a h P

⋅
+ ⋅ ⋅

Type III; sigmoidal Holling 1959

2

2 2
1

maxI P
k P

⋅
⋅

Monod or Michaelis-Menten; 
sigmoidal

Monod 1942

1

,
1

i i
n

r r r

a P
a h P+

⋅

⋅ ⋅∑
where  is prey numbern

Type II; hyperbolic; multiple prey 
items

Gentleman et 
al. 2003

1
,

 

max pi

pi

pi ri i

I C
k C

whereC C P
+ ∑

= ⋅

∑⋅ Monod; hyperbolic; prey 
selectivity

Mitra and 
Flynn 2006
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Nutrient uptake by phytoplankton is typically described using Monod (Monod 1942) or Michaelis-
Menten equations (both present the same functional form), which can be used to describe phytoplankton 
growth in relation to the concentration of a limiting nutrient. A common, more flexible alternative is the 
Quota model (Droop 1968), which describes phytoplankton growth as a function of the internal nutrient 
concentration. The Quota model may be represented in various ways, ranging from linear to hyperbolic 
behaviors. 

In general, models that account for multi-nutrient limitation, such as modified versions of the Quota 
model, and for acclimation-related processes have more predictive power (Flynn 2001, Cherif and Loreau 
2010, Bonachela et al. 2011). Such models adjust the kinetic parameters (e.g., maximum uptake rate 
and half-saturation constant) according to factors such as the cell response to light/dark cycles and other 
environmental changes (Flynn 2001, Cherif and Loreau 2010, Bonachela et al. 2011). Such approaches are 
known as eco-physiological models (e.g., mechanistic approaches) and differ from the simpler functional 
forms because they are based on the current biological understanding of the individual or functional groups 
included in the models. As a result, eco-physiological models typically feature an increased number of 
parameters that are not found in the literature or easily obtained experimentally. Complex experiments, 
such as those investigating the effect of multiple variables on nutrient uptake, may help to determine such 
parameters.  

The functional response of zooplankton (ingestion as a function of prey density) is usually represented 
by simple functional forms, as described by Holling (1959): Type I (linear function), which does not 
account for satiation; Type II (rectangular hyperbolic function), such as Monod type, which accounts for 
satiation; and Type III, which accounts not only for satiation but also for learning time and prey switching at 
low prey density (sigmoidal function). Model output varies greatly according to the functional form used to 
describe grazing: Type II has a destabilizing effect on model output, inducing high oscillations of the state 

Transfer Function Functional Form* Description Reference
Zooplankton mortality 
(closure term) m Z⋅ Quadratic Mitra 2009

2

m Z
k Z

⋅
+

Hyperbolic Mitra 2009

2

2 2
2

m Z
k Z

⋅
+

Sigmoidal Mitra 2009

2

m Z c
k Z c

⋅ ⋅
+ ⋅

Hypebolic; intraguild predation Mitra 2009

*Vmax = maximum nutrient uptake rate; N = nutrient availability; k = half-saturation constant for nutrient uptake; µmax = maximum 
growth rate; Qmin = minimum nutrient quota; Q = nutrient quota; Qmax = maximum nutrient quota; K = half-saturation constant 
for quota curve; KQ = dimensionless half-saturation constant for the normalized quota curve; a = attack rate; P = phytoplankton 
availability; h = handling time; Imax = maximum ingestion rate; k1 = half-saturation constant for ingestion; i = subscript for prey 
type; r = subscript relative to prey type weight; Cpi = potential capture rate; Cri = capture rate; m = zooplankton mortality rate; Z = 
zooplankton availability; k2 = half-saturation constant for zooplankton closure term; c = fraction of zooplankton on which closure 
term acts.

TABLE I (continuation)
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variables over time; Type III stabilizes the system, such that the steady state is easily achieved; and Type I 
has no influence on model stability. Such behaviors are assumed to be related to the density-dependence of 
clearance rates rather than depending on satiation or non-satiation conditions (for details, see Gentleman 
and Neuheimer 2008).

With respect to ingestion, the description of assimilation efficiency is usually oversimplified, considered 
a fixed proportion of the ingested material. More complex configurations (e.g., eco-physiological models) 
that take into account the effect of prey selectivity and quality, and gut satiation on ingestion, as well as 
assimilation efficiency, better represent the zooplankton compartment (Mitra and Flynn 2006, Mitra et 
al. 2007, Montagnes and Fenton 2012) (Table I). In addition, zooplankton grazing also varies according 
to temperature, turbulence, and prey size (Saiz 1994, Seel et al. 2001, Viherluoto and Viitasalo 2001, 
Richardson 2008); these factors should be considered when modelling zooplankton dynamics.

Plankton models are also highly sensitive to the closure term, which relates to the predation on 
zooplankton by organisms not included in the model. For example, if described by a linear function, there 
would be oscillations in the predator-prey cycle, while stabilization of the system would be achieved via 
quadratic function (Steele and Henderson 1992).The closure term is typically related to higher trophic 
levels (i.e., fish) that are not explicitly included on the model; nonetheless, most zooplankton losses are 
related to predation by other zooplankton species, cannibalism, and intraguild predation. For example, 
copepods are the preferential prey for chaetognaths and siphonophores (Saito and Kiørboe 2001, Hirst et al. 
2007), and research indicates that cannibalism is an alternative when preferential food is scarce (Stuart and 
Verheye 1991, Gismervik and Andersen 1997). Despite being a major contributor to zooplankton losses, 
intraguild predation, the predation between potentially competing species such as microzooplankton and 
copepods (Ptacnik et al. 2004), is usually neglected on plankton models (Mitra 2009).

After important aspects of plankton modelling have been clarified, we address plankton model studies 
from the literature. In doing so, we focus on whether model complexity has increased over the 15 years and 
the degree to which the level of complexity relates to research area. We also assess the steps used for testing 
model performance and the degree to which that relates to model complexity. 

MATERIALS AND METHODS

For the literature review, two electronic databases (ISI Web of Science and ‘ScienceDirect’) were used to 
access all studies employing plankton models published in indexed journals between 2000 and May 2014. 
The following keywords were used: “NPZ model”, “NPZD model”, “PFT model”, “plankton model”, and 
“marine size resolved model”. Ecosystem models were not included in this review because such models 
focus on higher trophic levels. In total, 137 articles comprising 145 models were selected for analysis (see 
Table SI - Supplementary Material). Models were classified into NPZ (nutrients, phytoplankton and zoo-
plankton), NPZD (NPZ + bacteria, detritus and/or different forms of nitrogen), SS (based on plankton size) 
and PFT (multiple functional groups) based on the type and number of state variables, as detailed below.

Based on this classification, we evaluated model application (theoretical, heuristic or predictive), 
model approach (biological, physical-biological or biogeochemical), model robustness (sensitivity analysis, 
calibration and validation), and global application of planktonic trophic models (with focus on the current 
situation in Brazil).

We evaluated the contexts in which models were applied, according to the classification of Franks 
(2002): theoretical, heuristic, or predictive. Theoretical models are used from a mathematical point of view 
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(e.g., to analyze model behavior due to changes in parameter values and functional forms) and as a tool for 
hypothesis testing. Heuristic models reproduce in situ observations in order to investigate system dynamics, 
and, in general, have previously been investigated theoretically. As their name implies, predictive models 
aim to predict biological dynamics. Predictions are only possible after theoretical exploration of the model 
and validation (see validation below). 

Models were also evaluated according to their approach. One approach, biological, is interested in 
biological and ecological interactions within the plankton. The physical-biological approach adds to the 
biological approach an investigation of the influences of physical processes on plankton dynamics. The 
third approach, biogeochemical, focuses on biogeochemical cycles. 

In theory, all models should undergo three critical analyses: sensitivity analysis, calibration, and 
validation (Jorgensen 1994). In practice, however, these analyses are not always conducted. To assess the 
robustness of planktonic trophic models, the presence or absence of each step was evaluated in modelling 
studies that compared model output with observed data (a total of 84 models). 

Sensitivity analysis, recommended as the first step in building a model, involves testing different 
values for the parameters and state variables, and testing different functional forms to assess their influence 
on model output. On this manner, it is possible to identify the parameters that exert the greatest influence 
on model output (and therefore must be accurately estimated) and those that do not exert greater influence 
on the model (and therefore may be not essential descriptors). For the present analysis of sensitivity, we 
evaluated the models based on two categories: partial sensitivity (only some elements of the model undergo 
analysis) and total sensitivity (all elements of the model undergo analysis).

Calibration, considered the second modelling step, interacts with sensitivity analysis. Before conducting 
the sensitivity analysis, the range of values that a parameter can be assigned must be obtained from the 
literature; this is already part of model calibration. It is vitally important that realistic values are used 
for the simulations otherwise the underlying processes may be misinterpreted. After defining the set of 
parameter values, the sensitivity analysis is conducted. The most sensible parameters can be recalibrated 
by modifying their values; for models with a large number of parameters, optimization techniques can be 
used. Optimization techniques are based on the assimilation of empirical data into the model in order to 
determine the parameter values that provide the best fit between model output and observed data (e.g., 
Garcia-Gorriz et al. 2003). Then, a new sensitivity analysis can be conducted, and the process is repeated 
as many times as necessary. In this study, calibration took into account the use of realistic parameter values 
(rather than arbitrary values) and the use of optimization techniques.

Validation, the third step, serves to verify the accuracy of the model testing whether it is satisfactory 
(Jorgensen 1994). The most common method for validating a model is to test it against independent data 
that is different from the data used to calibrate the model and preferentially represents different conditions 
of the system. For appropriate validation, it is also recommended to test model predictions in regions similar 
to the original model, to verify whether the biological rates provided by the model are realistic compared 
to values found in the literature, and to apply statistical measures (e.g., calculation of the mean absolute 
error and use of statistical tests such as the t-test and regression analysis) in order to assess the fit between 
simulated and observed data (Stow et al. 2009). In this survey of the literature, plankton models that used 
only independent data in the validation process were considered to have performed partial validation; 
models that used addition validation methods were classified as having conducted total validation.
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RESULTS AND DISCUSSION

Model Complexity Over Time

Of the 145 models published from 2000 to 2014, 34% were classified as PFT, 32% as NPZ, 23% as NPZD, 
and 11% as SS models. Articles published from 2000 to 2006 comprised mostly NPZ and NPZD models 
(Fig. 2). The first SS models parameterized by allometric relationships appeared in 2005. The number of 
PFT models surpassed that of NPZD models in 2009 and remained higher, even surpassing the number of 
NPZ models in 2013 (Fig. 2).

As expected, the results presented here indicate that more complex models (PFT) are becoming 
as common in the literature as NPZ models. It is likely that SS models were not as common as PFT 
models not only because they constitute a more recent approach but also because PFT models accomplish 
what characterizes SS models; that is, PFT models may consider plankton size when defining planktonic 
functional groups. Considering the interest in understanding oceans in the context of climate change, 
PFT models have been developed to enable investigation of biogeochemical questions (e.g., Gregg et 
al. 2003, Follows et al. 2007, Moore et al. 2004, Le Quéré et al. 2005, Anderson et al. 2010); as a result, 
application of these models has increased over time. The increased use of PFT models may be also due 
to the acknowledgment of the physiological and ecological complexity of planktonic cells/organisms, 
supporting separation into more than two functional groups.  

However, models with fewer state variables continue to be used (Garcia-Gorriz et al. 2003, Lewis 2005, 
Macías et al. 2007, Hernández-Carrasco et al. 2014), especially when more than one field is approached 
(e.g., biological + physical oceanography). Such models are most commonly used to investigate plankton 
response to factors such as upwelling systems driven by wind (Edwards et al. 2000), Langmuir circulation 

Figure 2 - Cumulative number of articles about planktonic trophic models 
published from 2000 to May 2014 for each type of model (NPZ, NPZD, SS, and 
PFT). Figure preparation was carried out using R software (R Core Team 2016).
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in a turbulent mixing layer (Lewis 2005), and high-frequency internal waves (Lai et al. 2010). In addition, 
the use of simpler models serves as an alternative when there is little information available on the system 
being investigated (e.g., a lack of empirical data such as rates and plankton biomass). Efforts to increase the 
amount of information about plankton species can provide the basis for the increased use of models with 
more compartments or state variables. 

Regarding the functional forms used to build the planktonic trophic models, we found that 43% of the 
models were based on simple functional forms, while 11% were based on mechanistic approaches (and, 
therefore, more complex functional forms). The remaining 46% of the models were considered ‘semi-
mechanistic’ because each featured a mix of simpler and more complex functions. Mechanistic approaches 
were found across all model types, but were more frequent in SS models (NPZ = 10%; NPZD = 6%; SS = 
18%; PFT = 12%); simple functions occurred most frequently in NPZ models (NPZ = 71%; NPZD = 58%; 
SS = 23%; PFT = 23%). PFT was the model type that most commonly appeared in the ‘semi-mechanistic’ 
category (NPZ = 19%; NPZD = 36%; SS = 59%; PFT = 65%). 

Several trends were evident within the above data. First, Michaelis-Menten kinetics for nutrient 
uptake by phytoplankton was the most common, appearing in nearly 50% of plankton models despite the 
fundamental issues related to it (Franks 2009). The remainder of the plankton models could be categorized 
as ‘semi-mechanistic’, since they keep certain descriptions simple and others more complex, based on the 
current biological understanding of the process (e.g., Baird and Suthers 2007). As plankton food webs are 
quite complex, it is difficult to use a faithful mechanistic approach when modelling (Flynn et al. 2015), such 
that mixed approaches were more common. 

Second, the investment in model complexity was greater in the nutrient–phytoplankton coupling, 
despite the reasonable number of mechanistic models developed for zooplankton in the last 10 years (Mitra 
et al. 2014a). As a consequence, the zooplankton compartment often ends up being “sacrificed” in favor of 
other model variables. A possible solution to avoid such unbalanced levels of complexity across variables is 
to develop a complex model and then carefully reduce its complexity through the identification of processes 
that do not significantly affect model output. This process should be conducted in accordance with the 
objective of the model (i.e., the scientific question being addressed).

Third, we observed that many models achieved complexity by increasing the number of state variables 
(i.e., using PFT type) and using complex functions (40 models out of 52 PFT models); in contrast, most 
of the models that considered few state variables (i.e., NPZ type) also used simple functional forms (29 
models out of 41 NPZ models). Both model types (NPZ and PFT) should aim to increase the complexity of 
functional forms. Indeed, due to the reduced complexity in the number of state variables, NPZ models pro-
vide a friendlier platform to incorporate feedback processes and, therefore, more complex functional forms. 

The selection of functional form is very important for model performance. In particular, modelers must 
bear in mind that the choice of state variables and functional forms are determined, to a great degree, by the 
question that the model intends to answer, rather than merely providing maximal simplicity and/or lowest 
computational costs.

Model Application and Approach 

Most plankton models comprised theoretical (45.5%) or heuristic (49%) approaches; only 5.5% of the 
models were predictive (Fig. 3). Theoretical models comprised statistical studies to improve the sensitivity 
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analysis of parameter values (e.g., Arhonditsis et al. 2008, Chu et al. 2007, Roy et al. 2012), studies 
that evaluated the sensitivity of model output to different functional forms (e.g., Bonachela et al. 2011, 
Gentleman et al. 2003, Mitra 2009), and hypothesis-driven studies (e.g., Stickney et al. 2000). Heuristic 
models performed qualitative comparisons between observed and simulated data, as well as quantitative 
comparisons verifying biomass values, biological rates, and other parameters. Examples include the NPZ 
model used by Botsford et al. (2003) in order to clarify the influence of wind on primary productivity in an 
upwelling system, and the PFT model by Moore et al. (2004) that investigated plankton influence on the 
iron cycle. Only eight predictive models were found in the literature (NPZ = 3, PFT = 3, NPZD = 1, SS = 
1); and more complex, PFT models were applied for predictions. In keeping with the scenario of climate 
change in the oceans, model predictions mainly relate to the impact of climate change on plankton (e.g., 
the effect of ocean acidification; Pierce 2004, Yool et al. 2013) and its consequences at higher trophic levels 
(Megrey et al. 2007, Steele and Gifford 2010).

Most PFT and SS models were theoretical, whereas most NPZ and NPZD models were heuristic (Fig. 
3). This finding may relate to the fact that the accuracy of PFT and SS models remain to be demonstrated 
fully (Aber 1997), whereas NPZ and NPZD models have been well established in the literature since the 
1990s. In addition, there is a better availability of empirical data to meet the requirements of NPZ models 
compared with SS and PFT models. In the review by Franks (2002), no NPZ model with predictive 
application had been found, and over a decade later, this scenario does not seem to have changed much, 
as only three predictive NPZ models were found in this review. Predictive models play an important role 
in decisions related to ecosystem management, particularly those concerning rapid changes in the marine 
systems. Despite their importance, as well as the apparent availability of empirical data, predictive models 
remain rare in the literature. 

More than half of the models analyzed were classified as biological (Fig. 3b); given that physical 
and chemical aspects often occur as additions to biological models, it is expected that models are most 
often explored initially at the biological level. NPZ models comprised most of the models classified as 
physical-biological (46%), probably because NPZ models provide such robust results for oceanographic 
research (Franks 2002). Indeed, it is not always worthwhile to increase model complexity by coupling 
the physical model to PFT or SS configurations if the NPZ configuration satisfies model requirements, 

Figure 3 - Purpose of planktonic trophic models (NPZ, NPZD, SS, and PFT): a) model application: theoretical, heuristic, or 
predictive; b) model approach: biological only, physical-biological (Phy-Bio), or biogeochemical (Biogeoch). Figure preparation 
was carried out using R software (R Core Team 2016).
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especially considering that the physical model already carries a large number of parameters and a substantial 
computational cost. For the biogeochemical approach, PFT models were most common (77%), as it is 
necessary to describe the different plankton functional types according to their roles within biogeochemical 
cycles.

The choice between simple and complex models depends primarily on the scientific question to be 
answered. NPZ models and simple functional forms have been successfully used to determine primary 
productivity as a function of light, nutrient availability, and predation (e.g., Dube and Jayaraman 2008, 
Brandt and Wirtz 2010) and to investigate the influence of physical processes on plankton dynamics 
(e.g., Botsford et al. 2003, Banas et al. 2009, Lai et al. 2010). Because it has few state variables and 
parameters, the NPZ model is more easily analyzed and coupled to a physical model. However, biological 
or physical-biological models can lack information. Further, grouping all planktonic species into the 
phyto- and zooplankton compartments may not be appropriate for certain approaches, such as modelling 
biogeochemical cycles, which are usually based on PFT models. In these models, phyto- and zooplankton 
are subdivided according to plankton size and biogeochemical role (e.g., coccolithophorids, diatoms, 
nitrogen fixers, microzooplankton, mesozooplankton) (Gregg et al. 2003, Moore et al. 2004, Le Quéré et al. 
2005) and more complex functional forms are usually implemented, as discussed above (e.g., Follows et al. 
2007, Perhar et al. 2013, Mitra et al. 2014a).

Although modelers agree that there is a need to increase model complexity (Blackford et al. 2010), 
there is debate over how the accuracy of models varies with complexity (Anderson 2005, Flynn 2005, 
Le Quéré 2006). Greater complexity comes at the cost of increasing the number of state variables and 
parameters. However, knowledge concerning different functional groups is not yet sufficient to fit all model 
parameters, making it difficult to test model accuracy and bringing to mind the notion that we are “running 
before we can walk” (Anderson 2005). In the next section, we evaluated the effort of modelling studies to 
test model performance, and how that relates to model complexity.

How Robust are the Marine Planktonic Trophic Models?

For each of the four models, over 75% of studies conducted sensitivity analysis. However, only 17 - 38% 
conducted total sensitivity analysis, depending on model type; the occurrence of total sensitivity analysis 
was particularly high for PFT models (Fig. 4a). The task of identifying the parameters to which the model 
is sensitive is most difficult for PFT models due to the high number of parameters, and thus, it is even 
more necessary. Almost all plankton models (77 out of 84) obtained parameter values from the literature. 
Optimization techniques were most often used in NPZD models with more than 5 state variables (~40% of 
such models) and in PFT models (~20%), reflecting that models with a high number of parameters simply 
do not work well if not previously calibrated (Fig. 4b). In contrast, SS models had a lower incidence of 
calibration, probably because many of these models were parameterized via allometric relationships that 
reduced the total number of parameters. The results regarding validation were similar for all groups, with 
less than 20% of models totally validated (Fig. 4c).

Although sensitivity analysis should be a recurrent measure of model robustness, many studies (~25%) 
ignored it. In addition, most sensitivity analyses relied only on the parameter values, rather than also 
analyzing the choice of the functional forms, which may drastically alter model output (as discussed in 
the section “Transfer Functions”). Most models checked the parameter values in the literature, and more 
than 40% applied optimization techniques. Evans (2003) demonstrated that these techniques can have a 
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large influence on model output in biogeochemical models and should therefore be performed carefully, 
especially considering that the data set is only a snapshot of the system to be modeled and may differ from 
other conditions (Evans 2003, Chu et al. 2007, Zhao and Lu 2008, Roy et al. 2012). Modelers should also 
be careful if unrealistic parameter values are assigned after conducting optimization techniques, possibly 
resulting in a good fit for the wrong reasons (Anderson 2005, Ward et al. 2010). Instead of looking only 
for the best fit (e.g., Zhao and Lu 2008, Roy et al. 2012), statistical investigations aiming to identify and 
quantify model uncertainties may be more appropriate and increase the robustness of models (Arhonditsis 
et al. 2008). Overall, there is a clear need for more experiments that empirically describe the parameter 
values needed for building plankton models. It seems that there is a disconnect between experimental and 
modelling research: “we do not model what we measure, and we do not measure what we model” (Franks 
2009). This is also true for validation, since it is based on existing and independent data sets which, when 
available, are not always adequate for model validation. To address this issue, there is a need to improve the 
dialogue among field researchers, experimental researchers, and modelers (Flynn 2005).

Planktonic Trophic Models Around the Globe 

Most plankton models were applied in locations within the Northern Hemisphere (74 models in the Northern 
Hemisphere compared to only nine in the Southern Hemisphere), with most occurring on the west and east 
coast of the United States, the North Sea, Baltic Sea, and the Mediterranean Sea. NPZ and NPZD models 
(coupled with physical representation) were the ones most commonly applied on the American coasts, 
whereas biogeochemical models (i.e., PFT models) were most common on the European coast. Some 
models have also been applied in the Arabian Sea (PFT models) and in China and Japan (mainly NPZ and 
NPZD) (Fig. 5). 

Two regional models were observed in the Southern Hemisphere: one was located on the west coast 
of Africa and investigated the influence of Benguela Current on plankton dynamics, while the other was 
used on the Antarctic Peninsula in order to understand the role of light and grazing in both sequestration of 
atmospheric CO2 and food availability to larval krill. Six models were applied in the Southern Hemisphere 
at the ocean-basin scale and one in the high-nutrient-low-chlorophyll (HNLC) regions in Antarctic. No 
plankton model was applied in the Brazilian coast during the last 15 years. 

There is a lack of experimental and modelling studies in planktonic food webs in the Southern 
Hemisphere, including Brazil (Fig. 5). In the pre-2000 literature, there is only a single record of a trophic 

Figure 4 - Proportion of planktonic trophic models that: a) performed sensitivity analysis (partial-applied to some model elements; 
total-all model elements undergo analysis); b) used optimization techniques for calibration; and c) conducted validation (partial-
compared simulated data with observed data; total-partial plus: applied the model to other regions and/or verified if the simulated 
biological rates were realistic and/or used statistical metrics to assess the fit between simulated and observed data). Only models 
that compared simulated and observed data were included on this analysis (NPZ, n = 23; NPZD, n = 25; SS, n = 6; and PFT, n = 
40). Figure preparation was carried out using R software (R Core Team 2016).
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model being applied in Brazil, a physical-biological NPZ model that simulated the phytoplankton bloom 
in the Cabo Frio (Rio de Janeiro) upwelling system (Carbonel and Valentin 1999). When all planktonic 
models, and not exclusively trophic models, were included in the search for Brazil, only one model applied 
in the marine system was found (Valentin and Coutinho 1990), while ten models applied in lakes and 
reservoirs were found (e.g., Araújo et al. 2008, Fragoso et al. 2008, Fernández et al. 2012, Deus et al. 2013). 
Deus et al. (2013), for example, investigated spatial and temporal phytoplankton patterns in the Tucuruí 
reservoir (Pará) using a robust NPZD platform coupled with a 3D physical model and performing all three 
of the modelling steps described above (i.e., sensitivity analysis, calibration and validation).

There are several factors that may explain why more models were found for freshwater systems than 
for marine systems in Brazilian studies. First, the development of models for freshwater systems requires 
less complexity because lakes and reservoirs are spatially bounded systems (i.e., closed systems), which 
makes it easier to understand how the system functions. Second, concern for the water quality in Brazilian 
reservoirs has led to an increased effort to develop models that represent multiple nutrient and specific 
phytoplankton functional groups. In addition, the costs associated with sampling programs in freshwater 
systems are lower than those associated with marine areas.  

Compared to plankton models, ecosystem modelling (end-to-end models) has been more frequently 
applied in Brazil (e.g., Angelini and Petrere 2000, Wolff et al. 2000, Angelini et al. 2006, Rocha et al. 2007, 
Freire et al. 2008, Fulton 2010). The ECOPATH software (based on Polovina 1984), which is generally 
used to build these models, is a static model that estimates biomass and the consumption of different 
components of an aquatic ecosystem based on network theory, and may be extended into a dynamic and/
or spatial model. Because ECOPATH initially focused on simulating fish stocks, it features a lower level of 
detail for planktonic compartments compared to the planktonic trophic models discussed throughout this 
review. The importance of better detailing the planktonic system (especially zooplankton) within end-to-

Figure 5 - Spatial distribution of planktonic trophic models. Isolated symbols represent regional scale models and dashed lines 
correspond to ocean-basin scale models. Number of global scale models is as: NPZ = 0; NPZD = 3; SS = 0; and PFT = 11. Figure 
preparation was carried out using the R package maps (R Core Team 2016).
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end models has been discussed in the literature but remains underappreciated (Mitra et al. 2014b).Thus, 
there is a need to incorporate greater detail, as provided by planktonic trophic models, into ECOPATH and 
other ecosystem models.  

To better understand ecosystem functioning and make ecological predictions, it is important to 
understand the base of the food web, which is made up of plankton. Although there have been a reasonable 
number of field studies on plankton within Brazil, they have been restricted to examining only planktonic 
diversity and density. In comparison, studies addressing planktonic biomass and biological rates, whether 
experimental or in the field, remain rare, reflecting the lack of development in plankton modelling. There is 
an urgent need for studies that estimate biological rates (e.g., nutrient uptake and ingestion rates), quantify 
the biomass of different planktonic compartments (including the mixotrophs and their trophic function), 
identify new interactions (e.g., viruses as infectious), and examine known interactions (e.g., intraguild 
predation between copepods and microzooplankton). In light of marine ecosystems changes related to 
eutrophication, acidification, pollution, and warming, more effort should be made to develop research 
programs on modelling planktonic systems in Brazil, an essential tool for the management plans for coastal 
ecosystems. 

CONCLUSIONS

This study aimed to address the question of whether NPZ models are too simplistic, and if more complex 
models (e.g., PFT) may provide more realistic predictions. There may be no definitive answer to this 
question, simply because model complexity depends so heavily on the nature of the scientific question at 
hand. Nonetheless, we consider that our analysis has revealed some trends related to model complexity that 
may help researchers to understand how to best apply simple and complex models.

First, analysis revealed an urgent need to open the compartments of phytoplankton and zooplankton, 
particularly when dealing with biogeochemical cycles and plankton food web dynamics. In fact, more 
PFT models than NPZ and NPZD models were used for such studies during the period assessed. On the 
other hand, NPZ and NPZD models are considered satisfactory when the focus of the model is physical 
oceanography. Although the number of state variables depends on the question being asked, studies should 
always aim to include more complex functional forms; otherwise, insufficient description of important 
aspects of phyto- and zooplankton physiology can lead to misinterpretation of model results. However, half 
of the models analyzed here were based on simple functional forms, particularly NPZ models. We suggest 
that mechanistic approaches (e.g., eco-physiological models), which have been employed by some studies, 
represent the best way forward for modelling plankton dynamics.

Importantly, we observed that many studies did not accomplish all of the steps suggested for modelling. 
There are several possible reasons for this shortcoming, including a failure to recognize the importance of 
testing different functional forms when modelling plankton dynamics. Other possible contributors include 
a lack of empirical data, particularly experimental studies that measure biological rates, and a lack of 
dialogue between field and modeler researchers, resulting in poor data sets for use in model validation. As 
a consequence, it is difficult to demonstrate the robustness of existing models; new techniques, such as the 
optimization of parameter values that are not known in the literature, are being developed to overcome this 
problem. Although such techniques are useful, they should be used with caution; the best solution to this 
problem is an increased effort to obtain the right type of data. 
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Finally, we indicated which regions of the globe need to develop studies in plankton modelling urgently. 
While plankton models are used throughout the Northern Hemisphere, they are scarce in the Southern 
Hemisphere, including Brazil. Without doubt, a major contributor to this lack of modelling studies is a 
lack of empirical data (e.g., biological rates, plankton biomass in terms of carbon), especially in marine 
systems. We determined that the best route to improve plankton modelling in Brazil and around the globe is 
through multidisciplinary research and the implementation of more complex models, especially regarding 
the description of plankton physiology.
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RESUMO

Os modelos planctônicos compreendem uma ferramenta valiosa para criar hipóteses e realizar predições quanto 
ao funcionamento dos ecossistemas marinhos. A complexidade destes modelos varia de acordo com o número de 
variáveis de estado e com a escolha de formas funcionais utilizadas. Nós avaliamos os modelos planctônicos durante 
os últimos 15 anos (n = 145) a fim de compreender porque eles variam em complexidade, avaliando a robustez dos 
modelos e descrevendo os estudos de modelagem do plâncton ao redor do globo. Nós classificamos os modelos em 
quatro grupos: Nutriente-Fitoplâncton-Zooplâncton (NPZ), Nutriente-Fitoplâncton-Zooplâncton-Detritos (NPZD), 
Estruturado pelo tamanho (SS) e Tipo Funcional Planctônico (PFT). Nossos resultados revelaram que o número 
de variáveis de estado variou de acordo com a pergunta do modelo; modelos NPZ foram mais frequentemente 
aplicados em estudos físico-biológicos enquanto que modelos PFT foram os mais utilizados para investigar ciclos 
biogeoquímicos. A maioria dos modelos se baseou em formas funcionais simples que omitiram ‘feedbacks’ importantes 
relacionados à dinâmica de controle populacional do plâncton. Algumas vezes, estudos de modelagem falharam em 
descrever a análise de sensibilidade, calibração e validação. A importância de testar diferentes formas funcionais foi 
comumente negligenciada e a falta de dados empíricos influenciou a verificação da robustez dos modelos. Por último, 
nós destacamos a necessidade de desenvolver estudos de modelagem no Hemisfério Sul, incluindo o Brasil, para 
promover predições que assistam no manejo dos ecossistemas marinhos.

Palavras-chave: modelagem ecológica, plâncton marinho, complexidade de modelos, trofodinâmica.
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SUPPLEMENTARY MATERIAL

TABLE SI - Summary of the models used in this study showing publication year, model type (NPZ, NPZD, SS, and/or 
PFT), application (T = theoretical; H = heuristic; P = predictive), approach (B = biological; PB = physical-biological; BQ = 
biogeochemical), and the performance or not of conventional modeling procedures, i.e. sensitivity analysis, calibration, and 
validation (par = partial and tot = total).




