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ABSTRACT

New generators are required to define wider distributions for modeling real data in survival analysis. To

that end we introduce the four-parameter generalized beta-generated Lindley distribution. It has explicit

expressions for the ordinary and incomplete moments, mean deviations, generating and quantile functions.

We propose a maximum likelihood procedure to estimate the model parameters, which is assessed through

a Monte Carlo simulation study. We also derive an additional estimation scheme by means of least square

between percentiles. The usefulness of the proposed distribution to describe remission times of cancer

patients is illustrated by means of an application to real data.

Key words: GBG generator, remission times, Extended Lindley model, quantile function, Lambert

function.

1 - INTRODUCTION

The statistical literature is filled with hundreds of continuous univariate distributions, see Johnson

et al. (1994). Recent procedures for building meaningful distributions (called generators) have been pro-

posed. As important generators, the two-piece approach pioneered by Hansen (1994) and the beta family

defined by Eugene et al. (2002) and Jones (2004) have received prominent positions.

Many papers have applied these techniques to provide more skewness in generalizations of well-known

symmetric distributions. As an example, Aas and Haff (2006) presented an extension for the Student’s t-

distribution.

Using the two-piece method with a view to finance applications, Zhu and Galbraith (2010) argued

that, in addition to Student’s t parameters, three shape parameters are required: one parameter to control

asymmetry in the center of a distribution and two parameters to control the left and right tail behavior.
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This paper addresses similar issues to Zhu and Galbraith using a different approach. We consider the

generalized beta generated (GBG) family of distributions pioneered by Alexander et al. (2012), which has

three shape parameters.

The Lindley (L) distribution was firstly used by Lindley (1958) in order to measure the difference

between Fiducial and posterior distributions related to Bayesian analysis. Its probability density function

(pdf) (for z > 0) with parameter λ > 0, say L(λ), is given by

g(z;λ) =
λ2

1 + λ
(1 + z) e−λz, (1)

where λ > 0 is a scale parameter. Its cumulative distribution function (cdf) is given by

G(z;λ) = 1− e−λz

(
1 +

λz

1 + λ

)
. (2)

Ghitany et al. (2008) discussed and studied various properties of the pdf (1). The L distribution has an

important role in stress-strength reliability modeling and describes well some types of data sets, but it has

lower flexibility in modeling asymmetric and/or heavy tail data. Further, it can accommodate hazard rate

functions (hrfs) that are increasing, decreasing or constant but not unimodal, bathtub and other shapes, which

are desirable in lifetime data analysis. To overcome this, several works proposed new distributions by adding

parameters to the Lindley distribution. For example, Sankaran (2015) used such law as the mixing distri-

bution of a Poisson parameter to generate a discrete model called the Poisson-Lindley distribution. Pararai

et al. (2015) defined the Kumaraswamy Lindley-Poisson distribution and explored some of its properties.

Another extension, named as the generalized Lindley distribution, was studied by Ashour and Eltehiwy

(2015).

A profusion of new classes of distributions has recently proven useful to applied statisticians working

in various areas of scientific investigation. Generalizing existing distributions by adding shape parameters

leads to more flexible models. Let g(x; τ ) and G(x; τ ) be the pdf and cdf of a baseline distribution having

parameter vector τ . Alexander et al. (2012) defined the pdf and cdf of the GBG-G distribution (for x ∈
X ⊆ R) using three additional positive shape parameters a, b and c by

fGBG(x; τ , a, b, c) = cB(a, b)−1 g(x; τ ) G(x; τ )ac−1 [1−G(x; τ )c]b−1 (3)

and

FGBG(x; τ , a, b, c) = I(G(x; τ )c; a, b)

= B (a, b)−1
∫ G(x;τ )c

0
ωa−1(1− ω)b−1dω, (4)

respectively, where I(x; a, b) denotes the incomplete beta function ratio and B(a, b) is the complete beta

function.

In this paper, we propose a new lifetime model called the GBG-Lindley (GBGL) distribution. We also

study some of its structural properties and present the maximum likelihood estimation of the parameters. A

Monte Carlo study is performed in order to assess the proposed estimation procedure.

Further, we present evidence that the new model can (i) compensate the Lindley ability lack as well as

(ii) produce better fits than the following distributions:
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• The Lindley-exponential (LE) model (Bhati and Malik 2015), whose pdf and cdf are, respectively,

given by

fLE(x;α, λ) =
α2 λ e−λx(1− e−λx)α−1[1− log (1− e−λx)]

1 + α
and

FLE(x;α, λ) =
(1− e−λx)α[1+ α− α log (1− e−λx)]

1 + α
;

• the generalized L (GL) model (Nadarajah et al. 2012) whose pdf and cdf are, respectively, given by

fGL(x;λ, c) =
cλ2

1 + λ
(1 + x) e−λx

(
1− 1+ λ+ λx

1+ λ

)c−1

(5)

and

FGL(x, λ, c) =

(
1− 1 + λ+ λx

1 + λ
e−λ

)c

; (6)

• the transmuted Lindley (TL) model (Mansour and Mohamed 2015), whose pdf and cdf are,

respectively, given by

fT L(x;λ, θ, δ, α) =
θ2

θ + 1
(1 + x)e−θx ×{

(1 + λ)δ

[
1− θ + 1 + θx

θ + 1
e−θx

]δ−1

− λα

[
1− θ + 1 + θx

θ + 1
e−θx

]α−1
}

and

FT L(x;λ, θ, δ, α) = (1 + λ)
[
1− θ+1+θx

θ+1 e−θx
]δ

− λ
[
1− θ+1+θx

θ+1 e−θx
]α
.

This comparison is performed in terms of both items under change in stress and the efficiency in describing

remission times (in months) of cancer patients.

This paper is organized as follows. In Section 2, we introduce the GBGL distribution and provide plots

of its density function and hrf. We derive linear representations for the pdf and cdf (Section 3), explicit

expressions for the quantile function (qf) (Section 4), ordinary and incomplete moments, mean deviations,

Bonferroni and Lorenz curves (Section 5) and generating function (Section 6). A procedure for determining

the maximum likelihood estimates (MLEs) of the model parameters is addressed in Section 7. Section 8

presents empirical results for the proposed model. Concluding remarks are offered in Section 9.
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2 - THE GBGLDISTRIBUTION

Applying (1) and (2) in equations (3) and (4), the pdf and cdf of the GBGL distribution (for x ∈ I) are,
respectively, given by

fGBGL(x;λ, a, b, c) =
cλ2(1 + x)

(1 + λ)B(a, b)
e−λx

[
1− e−λx

(
1+

λx

1+ λ

)]ac−1

×{
1−

[
1− e−λx

(
1+

λx

1+ λ

)]c}b−1

(7)

and

FGBGL(x;λ, a, b, c) = I

([
1− e−λx

(
1+

λx

1+ λ

)]c
; a, b

)
. (8)

For simplicity, we denote fGBGL(x;λ, a, b, c) and FGBGL(x;λ, a, b, c) by f(x) and F (x). Hereafter, a

random variable X having density (7) is denoted by X ∼GBGL(λ, a, b, c).
Clearly, the L distribution arises as the basic exemplar by taking a = b = c = 1 in (7). As mentioned

in the introduction, we motivate the paper by comparing the performance of the new distribution with those

of the L, LE and GL models fitted to a real data set.

The qf is useful for determining various mathematical properties of a distribution. For a positive random

variable X ∼ F , the qf of X is defined from the generalized inverse of its cdf for a fixed probability u,

namely

QX(u) = inf{x ∈ R+ : u ≤ F (x)}, u ∈ (0, 1).

Then, the qf of the GBGL model can be determined by inverting (8) as

QGBGL(u) = QL

([
Qβ(a,b)(u)

]1/c)
, (9)

where Qβ(a,b)(u) = I−1(u; a, b) is the beta qf and QL(u) is the qf of the L distribution with parameter λ.

Consider the Lambert W-function as the principal solution for w = W (z) in z = w ew. We have the

power series expansion forW (z) = ProductLog[z] using the software Mathematica

W (z) =

∞∑
i=1

(−1)i+1ii−2zi

(i− 1)!
.

Then, we obtain

W (z) = z − z2 +
3z3

2
− 8z4

3
+

125z5

24
− 54z6

5
+

16807z7

720
+O

(
z8
)
.

The qf of X can be expressed in terms of the Lambert function as

QGBGL(u) = QL(Qβ(a,b)(u)
1/c)

= −1 − 1

λ
− 1

λ
W

(
[1 + λ]

e1+λ
[Qβ(a,b)(u)

1/c − 1]

)
,

where the last identity holds based on a result given by Jodrá (2010).
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In Figure 1(c), we present one case of generation at (λ, a, b, c) = (2, 2, 2, 2) based on QGBGL(p) by

evaluating the uniform distribution outcomes in its argument. In Figure 1, we display possible shapes of the

pdf and hrf of the GBGL model for some parameter values. The hrf can take the most four common forms

for applications to real data: increasing, decreasing, bathtub and unimodal shapes, which is an important

characteristic of the new lifetime model.
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Figure 1 - The GBGL pdf and hrf.

The skewness (B) and kurtosis (K) coefficients are two important tools to understand a distribution. Easy

procedures to quantifyB andK were proposed by Bowley (1920) and Moors (1984) given by, respectively:

In particular, for our proposal,

B =
QGBGL(3/4) + QGBGL(1/4) − 2QGBGL(1/4)

QGBGL(3/4) − QGBGL(1/4)

and

K =
[QGBGL(7/8) − QGBGL(5/8) ] + [QGBGL(3/8) − QGBGL(1/8) ]

QGBGL(6/8) − QGBGL(2/8)
.

Figures 2(a)–2(c) and 2(d)–2(f) display GBGL skewness and kurtosis measures for some parametric points,

respectively. It is known that former quantity points out how symmetrical is the model, while the second

measures whether the shape of under study model is related to that due to the Gaussian law. These plots

indicate that one may define symmetrical and non-symmetrical laws from our model. It is easer to specify

curves with long tail to the right. Densities curves distinct from the Gaussian one are obtained.

3 - LINEAR REPRESENTATIONS

In this section, we present linear representations for (7) and (8) in order to obtain explicit expressions for

some type-moment quantities of the GBGLmodel. We prove that the expansions – in the form of Theorem 1

and Corollary 1 – can depend only on the GL distribution (Nadarajah et al. 2012).

Theorem 1. The cdf of X ∼ GBGL(λ, a, b, c) can be expressed by the linear combination

f(x) =

∞∑
l=0

ζl gl(x),
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Figure 2 - GBGL skewness and kurtosis curve plots for some parametric points.

where gl(x) denotes the GL density with scale and shape parameters λ and (a+ l)c, respectively, and

ζl =
(−1)l

(a+ l)B(a, b)

(
b− 1

l

)
.

The proof of this theorem is given in Appendix A.

Corollary 1. The cdf of X is given by

F (x) =

∞∑
l=0

ζlGl(x),

where Gl(x) denotes the GL cdf with parameters λ and (a+ l)c.

The following results indicate that type-moment quantities of the GLmodel can be obtained from those

corresponding quantities of the gamma distribution.

Theorem 2. The cdf of Z ∼ GL(λ, c) can be expressed as

G(z) =

∞∑
i=0

i+1∑
k=0

wi,kHi,k(z), (10)
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where Hi,k(z) denotes the gamma cdf with shape parameter (k + 1) and scale parameter (i + 1)λ,

respectively,

wi,k =
(−1)i vi,k

(1 + λ)i+2 (1 + i)k+1

(
c− 1

i

)
(11)

and

vi,k =

i∑
j=δk

λj−k+1 k!

(
i

j

)(
j + 1

k

)
.

The proof of this theorem is given in Appendix B.

Corollary 2. The pdf of Z ∼ GL(λ, c) is given by

f(z) =

∞∑
i=0

i+1∑
k=0

wi,k hi,k(z), (12)

where hi,k(z) denotes the gamma density with shape parameter (k + 1) and scale parameter (i+ 1)λ.

Finally, the main result of this section provides a simple way for obtaining the properties of the new

model by means of the classical gamma model.

Theorem 3. As consequences of Theorem 1 and Corollary 2, we can write the density of X as

f(x) =

∞∑
i=0

i+1∑
k=0

τi,k hi,k(x),

where

τi,k =

∞∑
l=0

ζl wi,k(l), wi,k(l) =
(−1)ivi,k

(1 + λ)i+2 (1 + i)k+1

(
(a+ l)c− 1

i

)
,

and vi,k and hi,k(x) are defined in Theorem 2 and Corollary 2, respectively.

The proof of this theorem is given in Appendix C.

4 - QUANTILE FUNCTION

For some models, it is possible to invert the cdf. However, for some other distributions, this inverse function

of cannot be obtained in closed-form. We shall resort to power series methods for the GBLG model. They

are at the heart of many solutions in applied mathematics and statistics. First, based on equation (2), we have

the following theorem for the qf of the L model.

Theorem 4. The L qf can be expressed as a power series

QL(u) =

∞∑
n=0

tn u
n,

where tn =
∑∞

k=n+1(−1)k−n
(
k
n

)
πk. The quantity πk and the proof of this theorem are given in Appendix

D.
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In the following, we use an equation of Gradshteyn and Ryzhik (2000) for a power series raised to a

positive integer j ( ∞∑
i=0

ai x
i

)j

=

∞∑
i=0

cj,i x
i, (13)

where the coefficients cj,i (for i = 1, 2, . . .) are determined from the recurrence equation (for i ≥ 1)

cj,i = (i a0)
−1

i∑
m=1

[m(j + 1)− i] am cj,i−m (14)

and cj,0 = aj0. The coefficient cj,i follows from cj,0, . . . , cj,i−1 and then from the quantities a0, . . . , ai.

Corollary 3. The GBGL qf can be expanded as

QGBGL(u) =

∞∑
j=0

ej u
j/a, (15)

where ej =
∑∞

i,r=0 ti sr(i/c) ηr,j , ηr,j = (jθ0)
−1
∑j

m=1[m(r + 1) − j] θm ηr,j−m and θi is given in

Appendix D.

5 - MOMENTS

Henceforth, let Yi,k ∼ Gamma(k + 1, (i + 1)λ). Next, we obtain the ordinary and incomplete moments of

X from the corresponding moments of Yi,k. Based on Theorem 3, we can write

µ′n = E(Xn) =

∞∑
i=0

i+1∑
k=0

τi,k E(Y n
i,k).

We have the following corollary from the moments of Yi,k.

Corollary 4. Suppose that µ′n = E(Xn) exists. Then,

µ′n = E(Xn) =

∞∑
i=0

i+1∑
k=0

τi,k [(i+ 1)λ]n (k + 1)[n], (16)

where k[n] = k(k + 1) . . . (k + n− 1), n ∈ N.

Further, we can express µ′n in terms of QL(u) as

µ′n =

∞∑
i=0

i+1∑
k=0

τi,k

∫ 1

0
QL(u)

n ua(i+c)−1du.

Thus, an alternative expansion for µ′n can be obtained from Theorem 4 in the following corollary.

Corollary 5. Suppose that µ′n = E(Xn) exists. Then,

µ′n =

∞∑
i,j=0

i+1∑
k=0

τi,k fn,j
[a(i+ 1) + j]

, (17)
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where the quantities fn,j are determined from (13)-(14) as

en,j = (i t0)
−1

j∑
m=1

[m(n+ 1)− j] tm en,j−m

for j ≥ 1, fn,0 = tn0 , tm =
∑∞

l=m+1 (−1)l−m
(
l
m

)
πl and the quantity πl is defined in Appendix D.

Next, we obtain the incomplete moments of X .

Corollary 6. Suppose that the nth incomplete moment of X , say Tn(y) =
∫ y
0 x

n f(x)dx, exists. Then,

Tn(y) =

∫ y

0
xn

∞∑
i=0

i+1∑
k=0

wi,k
(λ+ λi)

k!
[(k + 1)x]λ+λi−1

exp [−(λ+ λi)x] dx

=

∞∑
i=0

εi y
λ+λi+n [(λ+ λi)y]−(λ+λi+n)

× [Γ(λ+ λi+ n)− Γ(λ+ λi+ n, (λ+ λi)y)] , (18)

where the quantity wi,k is defined in (11) and εi =
∑i+1

k=0wi,k
λ(1+i)

k! (k + 1)λ(1+i)−1.

Equations (16), (17) and (18) are the main results of this section.

The amount of scatter in a population is evidently measured to some extent by the totality of deviations

from the mean and median given by δ1 = E(|X − µ′1|) and δ2 = E(|X −M |), respectively. They can be
expressed in terms of the first incomplete moment by δ1 = 2µ′1 F (µ

′
1)− 2T1(µ

′
1) and δ2 = µ′1 − 2T1(M),

respectively, where F (µ′1) follows from (8) and T1(·) is the first incomplete moment given by (18) with

n = 1.

Another important application of the first incomplete moment refers to the Bonferroni and Lorenz

curves defined (for a given probability p) by L(p) = T1(xp)/µ
′
1 and B(p) = T (xp)/(pµ

′
1), respectively,

where xp can be evaluated numerically by (9) with u = p. These curves are very useful in economics,

demography, insurance, engineering and medicine.

Figure 3 displays plots of the Bonferroni and Lorenz curves for selected parameter values.
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Figure 3 - Bonferroni and Lorenz curves.
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The nth moment of the residual life, say vn(t) = E[(X − t)n | X > t] (for n = 1, 2, . . .) uniquely

determines F (x). It is given by vn(t) = 1
R(t)

∫∞
t (x − t)n f(x) dx, which is easily obtained from (18). A

special case is the mean residual life (MRL) function at age t given by v1(t) = E [(X − t) | X > t], which

represents the expected additional life length for a unit which is alive at age t.

The nth moment of the reversed residual life given byMn(t) =
1

F (t)

∫ t
0 (t−x)

nf(x) dx, (for t > 0 and

n = 1, 2, . . .) uniquely determines F (x) and follows from vn(t).

6 - GENERATING FUNCTION

A first representation for the moment generating function (mgf)M(s) of X can be based on the L qf. We

can write

M(s) =

∫ 1

0
exp [sQGL(u)] du.

Expanding the exponential function, and after some algebra using (15), we have the following corollary.

Corollary 7. The mgf of X can be expressed as

M(s) = cB(a, b+ 1)−1
∞∑
i=0

(−1)i
(
b

i

)
ρ(s, a [i+ c]− 1), (19)

where

ρ(s, a [i+ c]− 1) =

∫ 1

0
exp[sQL(u)]u

a (i+c)−1du =

∞∑
j,k=0

sk dk,j
[a(i+ c) + j]k!

,

dk,j = (jt0)
−1
∑j

m=1[m(k + 1)− j] tm dk,j−m (for j ≥ 1), dk,0 = tk0 and the coefficients t′js are defined

in Theorem 4.1.

A second representation forM(s) comes from the gamma generating function. We can write

M(s) =

∞∑
i=0

i+1∑
k=0

wi,kMi,k(s),

where wi,k is defined by (11) andMi,k(s) is the mgf of Yi,k given by

Mi,k(s) =
1

[1− λs(1 + i)]k+1
, s < λ−1. (20)

Equations (19) and (20) are the main results of this section.

7 - ESTIMATION

Several approaches for parameter estimation were proposed in the statistical literature but the maximum

likelihood method is the most commonly employed. The MLEs enjoy desirable properties for constructing

confidence intervals. In this section, we investigate the estimation of the parameters of theGBGLdistribution

by maximum likelihood for complete data sets. Alternatively, we propose other estimation procedure that

rely on squared distance between theoretical and empirical GBGL quantiles. Both estimation methods will

be compared in the next section of numerical results.
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7.1 - MAXIMUM LIKELIHOOD ESTIMATION

Consider a random variable X ∼GBGL(a, b, c, λ) and let θ = (a, b, c, λ)T be the parameter vector. Thus,

the associated log-likelihood function for one observation x is

`(θ;x) = log(c) + 2 log(λ) + log(1 + x)− log(1− λ)− n log[B(a, b)]− λx

+ (ac− 1) log

[
1− e−λx

(
1+

λx

1+ λ

)]
+ (b− 1) log

{
1−

[
1− e−λx

(
1+

λx

1+ λ

)]c}
. (21)

The MLE of θ is determined by maximizing ln(θ) =
∑n

i=1 `(θ;xi) for a given data set x1, . . . , xn.

Equation (21) can be maximized either directly by using the R (optim function), SAS (PROC NLMIXED), Ox
program (sub-routine MaxBFGS) or by solving the nonlinear likelihood equations obtained by differentiating
this equation.

Based on equation (21), the components of the unit score function

U(θ) = (Ua, Ub, Uc, Uλ) =

(
∂ `(θ;x)

∂a
,
∂ `(θ;x)

∂b
,
∂ `(θ;x)

∂c
,
∂ `(θ;x)

∂λ

)
are given by

Ua = Ua(θ) = −ψ(a) + ψ(a+ b) + c log

{
1− e−λx

[
1+

λx

1+ λ

]}
,

Ub = Ub(θ) = −ψ(b) + ψ(a+ b) + log

{
1−

{
1− e−λx

[
1+

λx

1+ λ

]}c}
,

Uc = Uc(θ) =
1

c
+ a log

[
1− e−λx

(
1+

λx

1+ λ

)]

−
(b− 1)

[
1− e−λx

(
1+ λx

1+λ

)]c
log
[
1− e−λx

(
1+ λx

1+λ

)]
1−

[
1− e−λx

(
1+ λx

1+λ

)]c
and

Uλ = Uλ(θ) =
2

λ
− 1

1 + λ
− x

+
(ac− 1)

{
xe−λx

(
1+ λx

1+λ

)
− e−λx

[
x

1+λ − λx
(1+λ)2

]}
1− e−λx

(
1+ λx

1+λ

)
−

c(b− 1)
{
xe−λx

(
1+ λx

1+λ

)
− e−λx

[
x

1+λ − λx
(1+λ)2

]}
1−

[
1− e−λx

(
1+ λx

1+λ

)]c
×

[
1− e−λx

(
1+

λx

1+ λ

)]c−1

,
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where ψ(·) is the digamma function.
Although these equations cannot be solved analytically, a numerical solution can be determined by

using computing packages. Iterative techniques such as Newton-Raphson type algorithms can be adopted

to obtain the MLEs.

For interval estimation and hypothesis tests on the model parameters, we require the observed

information matrix. The 4× 4 unit observed information matrix,

J = J(θ) ≡



Jaa Jab Jac Jaλ

Jba Jbb Jbc Jbλ

Jca Jcb Jcc Jcλ

Jλa Jλb Jλc Jλλ


,

where Jrs = −∂2 `(θ;x)/∂θr∂θs, is given in Appendix E. Likelihood ratio tests can be performed for the
new distribution in the usual way.

7.2 - LEAST SQUARE ESTIMATION

An alternative estimation to the maximum likelihood method is the least square estimation discussed by

Ashour and Eltehiwy (2015). For the GBGLmodel, the least square estimates (LSEs), â, b̂, ĉ and λ̂ of a, b, c

and λ are defined as those arguments that minimize the objective function:

Q(a, b, c, λ) =

n∑
i=1

{
I

([
1− e−λx(i)

(
1+

λx(i)

1+ λ

)]c
; a, b

)
− i

n+ 1

}2

,

where x(i) is a possible outcome of the ith order statistic based on a n-points random sample obtained from

X ∼ GBGL(a, b, c, λ).

The minimum point (â, b̂, ĉ, λ̂) can also be given as a solution of the following system of non-linear

equations:

∂Q(a, b, c, λ)

∂a
=
∂Q(a, b, c, λ)

∂b
=
∂Q(a, b, c, λ)

∂c
=
∂Q(a, b, c, λ)

∂λ
= 0,

where the ith components in the sums are

∂Qi(a, b, c, λ)

∂a
=2

{
I

([
1− e−λx(i)

(
1+

λx(i)

1+ λ

)]c
; a, b

)
− i

n+ 1

}
×

{
− B(a)(a, b)

B(a, b)
I

([
1− e−λx(i)

(
1+

λx(i)

1+ λ

)]c
; a, b

)

+
1

B(a, b)

∫ {
1−e

−λx(i)

[
1+

λx(i)

1+λ

]}c

0
log(w)ωa−1(1− ω)b−1dω

}
,
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∂Qi(a, b, c, λ)

∂b
=2

{
I

([
1− e−λx(i)

(
1+

λx(i)

1+ λ

)]c
; a, b

)
− i

n+ 1

}
×

{
− B(b)(a, b)

B(a, b)
I

([
1− e−λx(i)

(
1+

λx(i)

1+ λ

)]c
; a, b

)

+
1

B(a, b)

∫ {
1−e

−λx(i)

[
1+

λx(i)

1+λ

]}c

0
log(1− w)ωa−1(1− ω)b−1dω

}
,

∂Qi(a, b, c, λ)

∂c
=2

{
I

([
1− e−λx(i)

(
1+

λx(i)

1+ λ

)]c
; a, b

)
− i

n+ 1

}
×

{
1

B(a, b)

[
1− e−λx(i)

(
1+

λx(i)

1+ λ

)]c(a−1)

{
1−

[
1− e−λx(i)

(
1+

λx(i)

1+ λ

)]c}b−1

[
1− e−λx(i)

(
1+

λx(i)

1+ λ

)]c
log

[
1− e−λx(i)

(
1+

λx(i)

1+ λ

)]}
and

∂Qi(a, b, c, λ)

∂λ
=2

{
I

([
1− e−λx(i)

(
1+

λx(i)

1+ λ

)]c
; a, b

)
− i

n+ 1

}
×

{
c

B(a, b)

[
1− e−λx(i)

(
1+

λx(i)

1+ λ

)]ac−1

{
1−

[
1− e−λx(i)

(
1+

λx(i)

1+ λ

)]c}b−1

{
x e−λ x

[
1+

λ x

1+ λ
− 1

(1+ λ)

]
− λ e−λ x

(1+ λ)2

}}
.

Here,B(a)(a, b) = ∂B(a, b)/∂a = B(a, b)[ψ(a)−ψ(a+ b)],B(b)(a, b) = ∂B(a, b)/∂a = B(a, b)[ψ(b)−
ψ(a+ b)] and (obtained by Mathematica)∫ [

1−e
−λx(i)

(
1+

λx(i)

1+λ

)]c
0

log(w)wa−1 (1− w)b−1dw =

−
[
1− e−λx(i)

(
1+

λx(i)

1+ λ

)]c
Γ(a)2

× pHq

(
{a, a, 1− b}, {1 + a, 1 + a},

[
1− e−λx(i)

(
1+

λx(i)

1+ λ

)]c)
+ c I

([
1− e−λx(i)

(
1+

λx(i)

1+ λ

)]c
; a, b

)
log

[
1− e−λx(i)

(
1+

λx(i)

1+ λ

)]
and pHq({·, ·, ·}, {·, ·, ·}, ·) represents the hypergeometric function.
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8 - NUMERICALRESULTS

8.1 - SIMULATION STUDY

Weperform aMonte Carlo simulation study (with 1,000 replications) to quantify some asymptotic properties

of both MLEs and LSEs of GBGL parameters. We also measure both the effects of the MLEs and LSEs for

the additional parameters, (â, b̂, ĉ)>, over the corresponding estimators of the baseline parameter, λ̂, and

reciprocally.

To that end, we consider λ ∈ {0.5, 1, 2, 3, 4}, a = b = c ∈ {2, 5} and sample size n ∈ {50, 100, 150}.
Additionally, as figures of merits, we consider the average estimates due to MLEs and LSEs and their mean

square errors (MSEs). The simulation results are given in Table I and II.

As expected, the MSEs and biases for the two proposed procedures tend to decrease when the sample

size increases. Additionally, increasing the additional parameters implies that the MLE and LSE of λ will

have smaller MSEs and biases. Real scenarios having higher additional parameters will conduct to more

biased MLEs. Moreover, for approximately 83% of cases, MLEs outperform LSEs in terms of MSEs.

8.2 - APPLICATIONS TO REAL DATA

In this section, we perform two applications to real data sets. Initially, we consider data obtained from

accelerated life testing of 40 items with change in stress from 100 to 150 at an time instant (Murthy et al.

2004, p. 236, Dataset 12.2). In this first study, we aim to compare Lindley and GBGLmodels and, for such

end, we use the likelihood ratio statistic to test the hypothesis H0 : a = b = c = 1 ⇔ H0 : GBGL ≡
Lindley. Table III and Figure 4 display associated main results. One can note that baseline and proposed

models are statistically distinct for any nominal level higher than 4%. Fits with respect both empirical density

and cumulative distribution function confirm that our model describe data better than the Lindley model.

Second, our aim is also to explain remission times (in months) of a random sample of 128 bladder cancer

patients (Lee and Wang 2003). To that end, we consider the GBGL distribution, the Lindley baseline, and

other three extended Lindley models, namely the LE, GL and TE distributions described in Section 1. Table

IV lists the MLEs and their standard errors (SEs) for each fitted model. One can note that all estimates are

statistically significant. The plots in Figure 5 display the empirical pdf and cdf and the fitted versions for

the three best models according to the subsequent discussion.

Both GBGL and LE models describe well the empirical density of the remission times, but only our

proposed model fits well the empirical cdf.

In order to compare quantitatively the competitive models, we adopt two criteria: the Akaike Informa-

tion Criterion (AIC) and Kolmogorov-Smirnov (KS) statistic. These statistics are widely used to determine

how closely a specific cdf fits the associated empirical distribution for a given data set. The smaller these

statistics are, the better the fit is.

Table V presents the values of these statistics for some models. The GBGL model provides the best fit

to these data among the current models. Thus, our proposal can be a competitive distribution compared with

other extended Lindley models: L, L exponential (Bhati and Malik 2015) and GL.
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TABLE I

Simulation results for MLEs.

θ n
MLEs MSEs

a b c λ a b c λ

(2,2,2,0.5) 50 2.018 2.031 2.014 0.502 0.060 0.061 0.045 0.001

100 2.023 2.002 2.019 0.500 0.029 0.026 0.021 0.000

150 2.012 2.002 2.010 0.500 0.019 0.019 0.014 0.000

(5,5,5,0.5) 50 5.011 5.042 5.007 0.501 0.177 0.183 0.107 0.000

100 5.008 5.014 5.006 0.500 0.078 0.077 0.047 0.000

150 5.006 5.013 5.004 0.500 0.060 0.059 0.036 0.000

(2,2,2,1) 50 2.030 2.023 2.024 1.002 0.061 0.062 0.046 0.003

100 2.015 2.008 2.013 1.001 0.027 0.026 0.020 0.001

150 2.014 2.000 2.012 0.999 0.019 0.019 0.014 0.001

(5,5,5,1) 50 5.011 5.040 5.007 1.001 0.171 0.174 0.103 0.001

100 5.001 5.024 5.000 1.001 0.085 0.088 0.052 0.000

150 5.010 5.009 5.007 1.000 0.060 0.058 0.036 0.000

(2,2,2,2) 50 2.040 2.015 2.034 2.001 0.060 0.062 0.045 0.014

100 2.010 2.017 2.008 2.005 0.030 0.030 0.023 0.007

150 2.002 2.015 2.001 2.006 0.019 0.020 0.014 0.005

(5,5,5,2) 50 5.016 5.027 5.012 2.001 0.172 0.168 0.104 0.002

100 5.004 5.017 5.002 2.001 0.086 0.088 0.052 0.001

150 5.002 5.018 5.001 2.001 0.057 0.057 0.034 0.001

(2,2,2,3) 50 2.018 2.032 2.014 3.017 0.061 0.058 0.045 0.034

100 2.016 2.008 2.013 3.002 0.030 0.027 0.022 0.016

150 2.018 1.998 2.015 2.996 0.019 0.018 0.014 0.011

(5,5,5,3) 50 4.986 5.066 4.987 3.009 0.171 0.176 0.103 0.006

100 5.013 5.019 5.009 3.001 0.087 0.087 0.053 0.003

150 5.000 5.020 5.000 3.003 0.059 0.058 0.035 0.002

(2,2,2,4) 50 2.020 2.027 2.016 4.017 0.056 0.059 0.042 0.062

100 2.006 2.018 2.004 4.015 0.027 0.029 0.020 0.031

150 2.009 2.008 2.008 4.005 0.019 0.019 0.014 0.021

(5,5,5,4) 50 5.016 5.044 5.010 4.006 0.169 0.179 0.102 0.011

100 5.017 5.016 5.012 4.001 0.094 0.090 0.057 0.006

150 5.019 4.994 5.014 3.997 0.060 0.059 0.036 0.004

9 - CONCLUSIONS

In this paper, we propose a new four-parameter distribution called the generalized beta-generated Lindley

(GBGL) model. Some of its structural properties (such as the moments and generating function) have been

derived from a linear representation for the GBGLdensity function.We propose a procedure for determining

the maximum likelihood estimates (MLEs) of the model parameters. A simulation study is performed to

validate theMLEs.We also have indicated an additional estimation process based on the least square method

between percentiles. Finally, two applications to real data sets provide evidence that the proposed model
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TABLE II

Simulation results for LSEs.

θ n
LSEs MSEs

a b c λ a b c λ

(2,2,2,0.5) 50 1.972 1.996 1.969 0.491 0.049 0.011 0.061 0.003

100 1.992 1.995 1.991 0.498 0.021 0.009 0.026 0.001

150 1.987 1.982 1.983 0.498 0.017 0.008 0.020 0.001

(5,5,5,0.5) 50 5.011 5.011 5.013 0.501 0.046 0.032 0.063 0.000

100 5.041 5.036 5.048 0.502 0.060 0.040 0.083 0.000

150 4.936 4.945 4.923 0.497 0.030 0.021 0.042 0.000

(2,2,2,1) 50 2.002 1.999 2.002 0.994 0.066 0.032 0.081 0.013

100 1.998 1.998 1.999 1.000 0.034 0.035 0.041 0.008

150 1.996 2.004 1.997 0.998 0.021 0.008 0.026 0.004

(5,5,5,1) 50 4.998 5.007 4.998 0.999 0.114 0.077 0.156 0.002

100 5.037 5.026 5.043 1.003 0.116 0.079 0.157 0.001

150 4.990 4.993 4.988 0.999 0.023 0.014 0.032 0.000

(2,2,2,2) 50 1.986 2.025 2.000 1.980 0.069 0.061 0.082 0.045

100 2.001 1.993 2.004 2.004 0.031 0.040 0.038 0.024

150 1.998 2.002 2.002 1.993 0.021 0.021 0.025 0.016

(5,5,5,2) 50 4.950 4.972 4.940 1.989 0.196 0.120 0.274 0.011

100 4.942 4.955 4.929 1.986 0.130 0.081 0.181 0.008

150 4.980 4.986 4.975 1.996 0.053 0.030 0.074 0.003

(2,2,2,3) 50 1.993 2.000 2.003 2.993 0.068 0.087 0.077 0.078

100 2.005 1.968 2.004 3.063 0.037 0.107 0.036 0.122

150 1.998 1.994 2.002 3.008 0.019 0.043 0.023 0.031

(5,5,5,3) 50 4.893 4.910 4.867 2.960 0.287 0.190 0.403 0.039

100 5.010 5.014 5.011 2.998 0.132 0.085 0.183 0.016

150 4.940 4.951 4.927 2.976 0.074 0.051 0.106 0.009

(2,2,2,4) 50 2.004 1.995 2.007 4.018 0.062 0.120 0.074 0.072

100 1.983 2.011 2.004 4.001 0.039 0.096 0.037 0.109

150 1.997 1.998 1.999 4.001 0.019 0.040 0.023 0.024

(5,5,5,4) 50 4.949 4.949 4.933 3.967 0.323 0.257 0.454 0.060

100 5.004 5.012 5.004 3.992 0.169 0.123 0.234 0.033

150 4.944 4.943 4.930 3.972 0.118 0.089 0.165 0.025

can be better than the Lindley model and some of its extensions, namely the exponentiated Lindley and

generalized Lindley distributions.
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TABLE III

MLEs of fitted models to Stress data and likelihood ratio statistics.

Model
MLEs (SEs)

a b c λ H0 : GBGL × L(a = b = c = 1)

GBG-L
0.096

(0.014)

0.065

(0.020)

47.284

(1.383)

10.859

(0.384)
8.311 (α̂ = 0.040)

L
0.177

(0.007)
- - -
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Figure 4 - Histogram and fitted pdfs and cdfs for L and GBGLmodels at first application (see the colors in the online version).
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Figure 5 - Histogram and fitted pdfs and cdfs for several models at second application (For the interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article).
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TABLE IV

MLEs of the fitted models to the current data.

Model MLEs (SEs)

L λ̂ = 0.19 (0.0123)

LE α̂ = 1.55 (0.1647), λ̂ = 0.11 (0.0136)

GL α̂ = 0.73 (0.0917), λ̂ = 0.16 (0.0165)

GBGL λ̂ = 0.24 (0.0335), â = 0.03 (0.0077),

b̂ = 0.31 (0.0807), ĉ = 34.95 (6.8937)

TL λ̂ = −0.38 (0.1494), θ̂ = 0.03 (0.0028),

δ̂ = 0.73 (0.1347), α̂ = 0.73 (0.1833)

TABLE V

Goodness-of-fit measures.

Model
Dependent on the pdf Dependent on the cdf

AIC KS p-value

L 814.3574 0.1075 0.1163

LE 802.3400 0.0575 0.8105

GL 809.6681 0.1982 1.273× 10−4

GBGL 801.9561 0.0282 0.9999

TL 813.6681 0.088731 0.2875
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APPENDIXA: PROOFOFTHEOREM 1

In this section, we prove that both the GBGL density and cdf, say f(x) and F (x), respectively, can be

represented as linear combinations of GL densities and cdfs.

From equation (7), we have

f(x) =
c λ2 (1 + x)

(1 + λ)B(a, b)
e−λx

[
1− e−λx

(
1+

λx

1+ λ

)]ac−1

A(x;λ, b, c),

where

A(x;λ, b, c) =

{
1−

[
1− e−λx

(
1+

λx

1+ λ

)]c}b−1

.

Using the power series, we obtain

A(x;λ, b, c) =

∞∑
n=0

(−1)n
(
b− 1

n

) [
1− e−λx

(
1+

λx

1+ λ

)]n c

.

Then, we can write

f(x;λ, a, b, c) =
c λ2 (1 + x)

(1 + λ)B(a, b)
e−λx

[
1− e−λx

(
1+

λx

1+ λ

)]ac−1

×

×
∞∑
n=0

(−1)n
(
b− 1

n

) [
1− e−λx

(
1+

λx

1+ λ

)]nc
=

∞∑
n=0

ζn gn(x),

where

ζn =
(−1)l

(a+ n)B(a, b)

(
b− 1

n

)
and gn(x) denotes the GL density with parameters λ and (a+ n)c.

Thus, the corresponding cdf is given by

F (x;λ, a, b, c) =

∞∑
n=0

ζnGn(x).
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APPENDIX B: PROOFOFTHEOREM 2

Let

J(x; c, λ) =

∫ x

0
(1 + s) e−λs

[
1− 1+ λ+ λs

1+ λ
e−λs

]c−1

ds.

Using the power series expansion, we obtain

J(x; c, λ) =

∞∑
i=0

(−1)i
(
c−1
i

)
(1 + λ)i

∫ x

0
(1 + s)(1 + λ+ λs)i exp(−λis− λs)ds

=

∞∑
i=0

(−1)i
(
c−1
i

)
(1 + λ)i

i∑
j=0

(
i

j

)
λj
∫ x

0
(1 + s)j+1 exp[−λs(1 + i)]ds

=

∞∑
i=0

i∑
j=0

j+1∑
k=0

(−1)i λj
(
c−1
i

) (
i
j

)
(1 + λ)i

∫ x

0
s(k+1)−1 exp[−(1 + i)λs]ds.

Further,

F (x) =
cλ2

1 + λ
J(x; c, λ) =

∞∑
i=0

i∑
j=0

j+1∑
k=0

(−1)iλj−k+1 k!

(1 + λ)i+2 (1 + i)k+1

×
(
c− 1

i

)(
i

j

)(
j + 1

k

)
Hi,k(x),

where Hi,k(x) denotes the gamma cdf with shape parameter (k + 1) and scale parameter (i+ 1)λ.

We can change
∑i

j=0

∑j+1
k=0 by

∑i+1
k=0

∑i
j=δk

, where δ0 = 0 for k = 1, 2 and δk = k − 1 for k ≥ 2,

which is very easy to prove by a cartesian plot of k versus j. Then, we have

F (x) =

∞∑
i=0

i+1∑
k=0

i∑
j=δk

(−1)iλj−k+1 k!

(1 + λ)i+2 (1 + i)k+1

(
c− 1

i

)
Hi,k(x)

and rearranging terms, we obtain

F (x) =

∞∑
i=0

i+1∑
k=0

(−1)i vi,k
(1 + λ)i+2 (1 + i)k+1

(
c− 1

i

)
Hi,k(x),

where

vi,k =

i∑
j=δk

λj−k+1 k!

(
i

j

)(
j + 1

k

)
.

Setting

wi,k =
(−1)i vi,k

(1 + λ)i+2 (1 + i)k+1

(
c− 1

i

)
,

the new cdf follows as a double linear combination of gamma cdfs

F (x) =

∞∑
i=0

i+1∑
k=0

wi,kHi,k(x).
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By differentiating the last equation, we obtain

f(x) =

∞∑
i=0

i+1∑
k=0

wi,k hi,k(x),

where hi,k(x) denotes the gamma density with parameters (k + 1) and (i+ 1)λ.

APPENDIX C: PROOFOFTHEOREM 3

We can write from equations (10) and (12)

f(x) =

∞∑
l,i=0

i+1∑
k=0

ζl wi,k(l)hi,k(x)

∞∑
i=0

i+1∑
k=0

τi,k hi,k(x),

where

τi,k =

∞∑
l=0

ζl wi,k(l), wi,k(l) =
(−1)ivi,k

(1 + λ)i+2 (1 + i)k+1

(
(a+ l)c− 1

i

)
and vi,k is defined in Theorem 1.

APPENDIX D: QUANTILE FUNCTION

We derive a power series forQGL(u) following the steps. First, we use a power series forQ
−1(a, 1−u).

Second, we obtain a power series for the argument 1−exp[−Q−1(a, 1−u)]. Third, we derive a power series
for the L qf using the Lagrange theorem in order to obtain a power series for QGL(u).

We introduce the following quantities defined by Cordeiro and Lemonte (2011). Let Q−1(a, z) be the

inverse function of

Q(a, z) = 1− γ(a, z)

Γ(a)
=

Γ(a, z)

Γ(a)
= u.

A power series for Q−1(a, 1− u) is given in the Wolfram website 1 as

Q−1(a, 1− u) = w +
w2

a+ 1
+

(3a+ 5)w3

2(a+ 1)2(a+ 2)
+

[a(8a+ 33) + 31]w4

3(a+ 1)3(a+ 2)(a+ 3)

+
{a(a[a(125a+ 1179) + 3971] + 5661) + 2888}w5

24(a+ 1)4(a+ 2)2(a+ 3)(a+ 4)
+ O(w6),

where w = [uΓ(a+ 1)]1/a. We can write the last equation as

z = Q−1(a, 1− u) =

∞∑
r=0

δr u
r/a,

1http://functions.wolfram.com/GammaBetaErf/InverseGammaRegularized/06/01/03/
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where δi = bi Γ(a+ 1)i/a. Here, b0 = 0, b1 = 1 and any coefficient bi+1 (for i ≥ 1) can be obtained from

the cubic recurrence equation

bi+1 =
1

i(a+ i)

{ i∑
r=1

i−s+1∑
s=1

brbsbi−r−s+2 s (i− r − s+ 2)

×
i∑

r=2

brbi−r+2 r [r − a− (1− a)(i+ 2− r)]

}
.

We have b2 = 1/(a + 1), b3 = (3a + 5)/[2(a + 1)2(a + 2)], etc. Next, we present some algebraic details

for the GL qf, say QGL(u). The cdf of X is given by (8). By inverting F (x) = u, we obtain (9). We can

determine the L qf using the Lagrange theorem. We consider that the power series expansion holds

x = G(u) = x0 +

∞∑
k=1

fk (u− u0)
k, f1 = G′(u) 6= 0,

where G(u) is analytic at a point u0 that gives a simple x0-point.

Then, the inverse functionG−1(x) exists and is single-valued in the neighborhood of the point x = x0.

The inverse power series x = QL(u) is given by

x = QL(u) = u0 +

∞∑
k=1

πk (u− u0),

where

πk =
1

k!

dk−1

dxk−1

{
[ψ(x)]k

} ∣∣∣∣
x=x0

and ψ(x) =
x− x0

G(x)− u0
.

Then, we can write the GL qf as follows

G(x) = 1 −
(
1 +

λx

1 + λ

)
e−λx = u0 + x

∞∑
i=0

fi x
i,

where u0 = 1 and fi = (−λ)i+1
[

1
(i+1)! −

1
(1−λ)i!

]
for i ≥ 0.

Further, we have

ψ(x) =
x− x0

G(x)− u0
=

1∑∞
i=0 fi x

i

=
1

λ
(
−1 + 1

1+λ

) ∞∑
i=0

%i x
i =

(
1 + λ

λ2

) ∞∑
i=0

%i x
i, (22)

where %0 = −1, %i = −%i, %0 = 1 and %i =
1
f0

∑∞
j=1 fj %i−j .

Thus, we obtain from equation (22)

dk−1

dxk−1

{
[ψ(x)]k

} ∣∣∣∣
x=x0

=
νk,k−1 (1 + λ)k (k − 1)!

λ2k
, (23)
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where νk,i = (k%0)
−1
∑k

m=1[m(i+ 1)− k] %m νk,i−m and νk,0 = %i0 = 1.

From equations (22) and (23), the quantity πk is given by

πk =
1

k!

dk−1

dxk−1

{
[ψ(x)]k

} ∣∣∣∣
x=x0

=
νk,k−1 (1 + λ)k

kλ2k
.

Hence, the Lindley qf reduces to

QL(u) =

∞∑
k=1

νk,k−1 (1 + λ)k

kλ2k
(u− 1)n.

An alternative expression for QL(x) is given by

QL(u) =

∞∑
n=0

tn u
n,

where tn =
∑∞

k=n+1(−1)k−n
(
k
n

)
πk.

Thus, we can obtain

QGBGL(u) =

∞∑
k=0

tk
[
Qβ(a,b)(u)

]i/c
,

where tn =
∑∞

k=n+1(−1)k−n
(
k
n

)
πk, πk = νk,k−1 (1+λ)k

kλ2k , νk,i = (k%0)
−1
∑k

m=1[m(i+ 1)− k] %m νk,i−m

and νk,0 = %i0 = 1, %0 = −1, %i = −%i, %0 = 1 and %i =
1
f0

∑∞
j=1 fj %i−j and

fi = (−λ)i+1
[

1
(i+1)! −

1
(1−λ)i!

]
.

The beta qf reduces to

Qβ(a,b)(u) =

∞∑
j=0

θj u
j/a,

where the transformed variable is v = [aβ(a, b)u]1/a, θj = θj [aβ(a, b)u]
1/a,

θj =



0, if j = 0

1, if j = 1

γj if j ≥ 2

and

γj =
1

[j2 + (a− 2)j + 1− a]

{
(1− δj,2)

i−1∑
r=2

γrγj+1−r[r(1− a)(j − r)

− r(r − 1)] +

j−1∑
r=1

j−r∑
s=1

γrγsγj+i−r−s[r(r − a) + s(a+ b− 2)(j + 1− r − s)]
}
,
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where δj,2 = 1 if i = 2 and δj,2 = 0 if i 6= 2. The first quantities are γ2 = b−1
a−1 , γ3 = (b−1)(3ab+5b−4)

2(a+1)2(a+2) ,

γ4 = (b−1)[a+(6b−1)a+(b+2)(8b−5)a+(33b2−30b+4)a+b(31b−47)+18]/[3(a+1)3(a+2)(a+3)], . . .

For z ∈ (0, 1) and any real non-integer α, we have

zα =

∞∑
r=0

sr(α) z
r,

where

sr(α) =

∞∑
l=r

(−1)r+l

(
α

l

)(
l

r

)
.

Finally, using (13), we obtain

QGBGL(u) =

∞∑
j=0

ej u
j/a,

where ej =
∑∞

i,r=0 ti sr(i/c) ηr,j ,ηr,j = (jθ0)
−1
∑j

m=1[m(r + 1)− j] θm ηr,j−m and θi is given before.

APPENDIX E: INFORMATION MATRIX

The elements of the unit observed information matrix J(θ) for the parameters (a, b, c, λ) are given by:

Jaa = − [ψ
′
(a) − ψ

′
(a+ b)], Jab = ψ

′
(a+ b),

Jac = log

[
1 − e

−λx

(
1 +

λx

1 + λ

)]
,

Jaλ =

{
xe−λx

(
1 + λx

1+λ

)
− e−λx

[
x

1+λ − λx

(1+λ)2

]}
1 − e−λx

(
1 + λx

1+λ

) ,

Jbb = −[ψ
′
(b) − ψ

′
(a+ b)],

Jbc =

[
1 − e−λx

(
1 + λx

1+λ

)]c
log

[
1 − e−λx

(
1 + λx

1+λ

)]
1 −

[
1 − e−λx

(
1 + λx

1+λ

)]c ,

Jbλ = −
c
[
xe−λx

(
1 + λx

1+λ

)
− e−λx

(
x

1+λ − λx

(1+λ)2

)]
1 −

[
1 − e−λx

(
1 + λx

1+λ

)]c
×

[
1 − e

−λx

(
1 +

λx

1 + λ

)]c−1

,

Jcc = −
(b− 1)

[
1 − e

−λx
(

λx
λ+1

+1
)]c [

1 − e−λx
(

λx
λ+1

+ 1
)]c

{
1 −

[
1 − e

−λx
(

λx
λ+1

+1
)]c}2

× log
2

[
1 − e

−λx
(

λx
λ+1

+1
)]

−
(b− 1)

[
1 − e−λx

(
λx

λ+1
+ 1

)]c
log

[
1 − e

−λx
(

λx
λ+1

+1
)]

1 −
[
1 − e

−λx
(

λx
λ+1

+1
)]c

× log

[
1 − e

−λx

(
λx

λ+ 1
+ 1

)]
−

1

c2
,

An Acad Bras Cienc (2017) 89 (3)



MODEL FOR DESCRIBING REMISSION TIMES 1367

Jcλ = −
ae

−λx
(

λx
λ+1

+1
) [

−λx
(

x
λ+1

− λx

(λ+1)2

)
− x

(
λx

λ+1
+ 1

)]
1 − e

−λx
(

λx
λ+1

+1
)

+
(b− 1)e

−λx
(

λx
λ+1

+1
) [

−λx
(

x
λ+1

− λx

(λ+1)2

)
− x

(
λx

λ+1
+ 1

)]
[
1 − e

−λx
(

λx
λ+1

+1
)]{

1 −
[
1 − e

−λx
(

λx
λ+1

+1
)]c}

×
[
1 − e

−λx

(
λx

λ+ 1
+ 1

)]c

+
c (b− 1) e

−λx
(

λx
λ+1

+1
) [

−λx
(

x
λ+1

− λx

(λ+1)2

)
− x

(
λx

λ+1
+ 1

)]
{
1 −

[
1 − e

−λx
(

λx
λ+1

+1
)]c}2

×
[
1 − e

−λx

(
λx

λ+ 1
+ 1

)]c [
1 − e

−λx
(

λx
λ+1

+1
)]c−1

log

[
1 − e

−λx
(

λx
λ+1

+1
)]

−
(b− 1)c

[
xe−λx

(
λx

λ+1
+ 1

)
− e−λx

(
x

λ+1
− λx

(λ+1)2

)]
1 −

[
1 − e

−λx
(

λx
λ+1

+1
)]c

×
[
1 − e

−λx

(
λx

λ+ 1
+ 1

)]c−1

log

[
1 − e

−λx
(

λx
λ+1

+1
)]
.
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