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ABSTRACT
Dry tropical forests are a key component in the global carbon cycle and their biomass estimates depend 
almost exclusively of fitted equations for multi-species or individual species data. Therefore, a systematic 
evaluation of statistical models through validation of estimates of aboveground biomass stocks is justifiable. 
In this study was analyzed the capacity of generic and specific equations obtained from different locations 
in Mexico and Brazil, to estimate aboveground biomass at multi-species levels and for four different 
species. Generic equations developed in Mexico and Brazil performed better in estimating tree biomass 
for multi-species data. For Poincianella bracteosa and Mimosa ophthalmocentra, only the Sampaio and 
Silva (2005) generic equation was the most recommended. These equations indicate lower tendency and 
lower bias, and biomass estimates for these equations are similar. For the species Mimosa tenuiflora, 
Aspidosperma pyrifolium and for the genus Croton the specific regional equations are more recommended, 
although the generic equation of Sampaio and Silva (2005) is not discarded for biomass estimates. Models 
considering gender, families, successional groups, climatic variables and wood specific gravity should be 
adjusted, tested and the resulting equations should be validated at both local and regional levels as well as 
on the scales of tropics with dry forest dominance.
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INTRODUCTION

Among the categories of tropical and subtropical 
forests in the world, dry forests comprise just 
under half (Murphy and Lugo 1986, Sabogal 1992, 
Powers et al. 2009). Despite their importance, they 
are among the most threatened and least studied 

forest ecosystems and, as a result, may be at greater 
risk than humid forests (McLaren et al. 2005, Miles 
et al. 2006, Portillo-Quintero and Sánchez-Azofeifa 
2010, Aide et al. 2012, Gillespie et al. 2012).

These forests are a key component of the global 
carbon cycle in face of climate change (Návar-
Cháidez 2014, Chidumayo and Gumbo 2010). 
While guidelines and recommendations from the 
Food and Agriculture Organization of the United 
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Nations (FAO) and IPCC (Intergovernmental Panel 
on Climate Change) generalize information about 
the carbon stock and aboveground biomass to wet 
forests, there is still a lot of uncertainty about the 
quantity and spatial variations in aboveground 
biomass and the existing carbon for dry forests in 
the tropics (Návar-Cháidez 2014).

Several research efforts are underway to fill 
this gap, but all of them ultimately rely almost 
exclusively on destructive biomass measurements 
of individual trees to fit local and/or global models 
(Gibbs et al. 2007, Návar-Cháidez 2014). Or, they 
rely on a combination of images remotely detected 
at different scales to calibrate or validate equations 
(Fayolle et al. 2013).

An allometric equation is the result of adjusting 
a tree biomass statistical model to a set of indicators, 
such as tree diameter and/or height, specific 
wood weight, or forest type (Chave et al. 2005). 
Information on the types of models, allometric 
relationships and applications to different sites 
are extensively documented in Rojas-García et al. 
(2015).

One of the problems to be solved that still 
generates a lot of discussion is about the validation 
of these equations. In multi-species biomass data, 
different dendrometric amplitudes can lead to 
biased predictions at local or global levels (Chave 
et al. 2005). In order to avoid this bias and to 
fill the lack of specific models in the dry forests 
located in Brazil, three large studies (Sampaio and 
Silva 2005, Sampaio et al. 2010, Alves Junior et 
al. 2013), generated generic equations for both 
community (multi-species) and for individual 
specimens, and exceeded those caveats in 
accounting for large datasets in those sites with 
the same morphoclimatic domain (Db> 3 cm). 
However, the statistical validation of global generic 
equations for dry forests (Návar-Cháidez 2009a, 
2009b, 2014) should be verified and compared 
with local equations, as well as to measure errors in 
biomass stock estimates.

Statistical validation is a central aspect for the 
responsible application of equations for scientific 
problems, and its importance is recognized by 
those who develop and/or use for inferences and 
predictive generalizations. However, there is low 
consensus about which is the best way to proceed, 
because there are still confusing affirmations and 
often mutually exclusive in the literature (Rykiel 
1996, Robinson and Froese 2004).

A wide variety of methods have been proposed 
and used in many different fields of study. In many 
cases, the choice of technique is limited by the 
potential uses and tests of the model, the types of 
data that the equation generates, or the availability 
of actual data. Validation techniques can be grouped 
into four main categories, namely: subjective 
assessment, visual techniques (graphics), diversion 
measures and statistical tests (Mayer and Butler 
1993).

Despite the interest for biomass accounting 
in the region, few studies compare or validate 
biomass equations in Brazilian dry forests (Pereira 
Junior et al. 2016). Our research is divided into 
two parts. First, it was performed a statistical 
validation and comparison of global and/or local 
equations available for an initial destructive sample 
of 507 trees. Second, it was investigated how these 
equations generalize estimates of aboveground 
biomass stock in different species.

The objective of this work was to provide 
predictions of aboveground biomass for a dry forest 
located in Pernambuco, Brazil, applying generic 
equations. Categorically, this work addresses: (1) 
whether site-specific equations for species and 
multi-species predict biomass better than generic 
equations; (2) if the generic equations of dry forests 
not located in Brazil generate reliable estimates for 
biomass in our sites.
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MATERIALS AND METHODS

STUDY AREA

The study area is located in the Floresta city, a meso-
region of São Francisco in Pernambuco, 433 km 
far from the capital Recife. The study was carried 
out with data from an area submitted to forest 
management for the production of wood destined 
to the steel industry, denominated Itapemirim farm, 
and belongs to Agroindustrial Excelsior S.A. The 
extremes included in the study were 8°30’37”S and 
37°59’07”W (Figure 1).

The average annual rainfall is approximately 
400 to 500 mm, with rainy season from January to 
April, and average annual temperature of 26.1°C. 

The city has an area of 3,643.97 km² and an average 
altitude of 323 m. The soil of the region is classified 
as few deep chromic luvisoil, sandy surface texture 
to medium and superficial. On the valleys strands 
prevails gravel soils, but more fertile (EMBRAPA 
2007). The vegetation is predominantly Caatinga 
- savannah, characterized by shrubby-arboreal 
vegetation, with cactus and herbaceous stratum 
(IBGE 2012).

SAMPLING

In this research, it was used data from 507 trees of 
sixteen different species. All species are native to 
the studied forest and are of economic importance, 
since they are harvested for production of charcoal, 
fence posts, furniture, etc. Species commonly 

Figure 1 - Location of Itapemirim farm in Floresta city, Pernambuco, Brazil.
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found according to the forest inventory are (Abreu 
et al. 2016): Poincianella bracteosa, Mimosa 
ophthalmocentra, Aspidosperma pyrifolium, 
Mimosa tenuiflora, Anadenanthera colubrina, 
Bauhinia cheilanta, Jatropha mollissima, 
Piptadenia stipulacea, Croton rhamnifolius, 
Croton blanchetianus, Cnidoscolus phyllacanthus, 
Manihot glaziovii, Poincianella calycina, Sapium 
lanceolatum, Thiloa glaucocarpaand Commiphora 
leptophloeos. These species are also widely 
distributed in the dry forests of the Brazilian 
northeast (Gariglio et al. 2010).

The biomass data were obtained from 
destructive sampling, which were collected the 
diameter measures at 0.30 m and 1.30m, above the 
ground level (base diameter and diameter at breast 
height), total height, number of branches, diameter 
of the base of the larger branch and weight of the 
green mass. The green mass of trees was obtained 
with a balance adding the weights of the shaft and 
the branches to form the total green weight per tree 
for all species (Abreu et al. 2016).

According to equations found in the literature, 
four database on species level (P. bracteosa, M. 
ophthalmocentra, M. tenuiflora and A. pyrifolium) 
and a database on gender level (Croton) were 
selected to compose the inputs along with all the 
weighed trees in the sample (multi-species) to 
validate the equations.

VALIDATION OF BIOMASS EQUATIONS

Despite the importance of dry forests in terms of 
carbon sequestration and distributed area in the 
tropics, only a few adequate equations were found 
in the literature (Table I). Two studies (Návar-
Cháidez 2009a, 2014) proposed equations for dry 
forests in Mexico. Two others (Sampaio and Silva 
2005, Sampaio et al. 2010) developed equations 
for dry forests located in Brazil, considering both 
multi-species and individual species data. Local 
equations developed by Abreu et al. (2016), 

were also used in the validation of biomass only 
considering data of all species.

In this work, it was not validated equations that 
used as a predictor variable the basic wood density, 
as well as the generic pan-tropical equations 
developed by Brown (1997), updated by Chave 
et al. (2005). These equations do not encompass 
dendrometric amplitude for dry forests, although 
they are recommended by the IPCC guidelines 
(IPCC 2003, 2006) for estimating carbon stocks in 
tropical forests.

The validation analysis consisted in predicting 
the biomass above the soil for all trees and for the 
other cases analyzed based on the coefficients of 
the equations. For this task were computed the 
following statistics recommended by Mayer and 
Butler (1993) and Palahí et al. (2002):
Coefficient of determination:

2 SQRR
SQT

= 	 (1)

Where: R² is the coefficient of determination; SQR 
is the covariance between observed and estimated 
biomass; SQT is the biomass covariance observed. 
R² values indicate the total variation of the data 
explained by the validated equations.
Residual Standard Error (RSE):
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Where: RSE is the residual standard error or the 
standard error of the estimate; Breali is the actual 
individual biomass in kg; Besti  is the individual 
biomass estimated in kg; n is the number of 
sampled trees; and, p is the number of parameters 
in the model. They represent the effective estimate 
of the biomass of a tree. High SRE values indicate 
inaccurate and biased equations in estimating 
biomass.
Bias% or Relative trend:
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Where: Yi is the observed biomass value (Kg) of 
trees per unit area, Ŷi  is the estimated biomass 
value (Kg) of trees per unit area, n is the number of 
observations. This statistic indicates a tendency of 

under or overestimation, being a measure of error 
and quality measure of the validated equations, so 
the lower the error the greater the efficiency in the 
generalizations.
Akaike Information Criteria (AIC):

.ln 2.SSEAIC n p
n

 = +   	 (4)

TABLE I 
Allometric models generic and by species used for dry tropical forests.

Fitted equations Authors Local Models b0 b1 b2 b3 R2

All species

Návar-Cháidez 
(2009a) – (Mexico)

25°00′10″N; 
107°30′10″O Ŷi= β0Db

β1εi 0.0841 2.4100 – – 0.79

Sampaio and Silva 
(2005) – (Brazil)

† 39°22’W; 
11°15’S Ŷi= β0(DbH)β1εi 0.0292 1.6731 – – 0.94

Návar-Cháidez 
(2014) – (Mexico)

*28° 48’ 51” N; 
106° 26′ 22” W ... Ŷi= β0Db

β1εi 0.1028 2.2458 – – 0.65

Abreu et al. 
(2016) – (Brazil)

8°30´37” S; 
37°59´07” W Ŷi= β0Db

β1Hβ2εi 0.6870 0.5854 0.6511 0.78

P. bracteosa

Sampaio and Silva 
(2005) ... Ŷi= β0Db

β1εi 0.2804 1.9274 – – 0.90

Sampaio and Silva 
(2005) – generic ... Ŷi= β0(DbH)β1εi 0.0292 1.6731 – – 0.94

M. 
ophthalmocentra

Sampaio et al. 
(2010) ... Ŷi= β0DAPβ1εi 0.4369 1.8493 – – 0.81

Sampaio and Silva 
(2005) – generic ... Ŷi= β0(DbH)β1εi 0.0292 1.6731 – – 0.94

M. tenuiflora

Sampaio et al. 
(2010) – Serra Talhada city

07°55’46,4”S; 
38°17’20,0”W Ŷi= β0DAPβ1εi 0.3344 1.9648 – – 0.70

Sampaio et al. 
(2010) – Sertânia city

08°04’02,7”S; 
37°12’33,1”W Ŷi= β0DAPβ1εi 0.4138 1.7718 – – 0.64

Sampaio and Silva 
(2005) – generic ... Ŷi= β0(DbH)β1ε 0.0292 1.6731 – – 0.94

A. pyrifolium

Sampaio and Silva 
(2005) ... Ŷi= β0Db

β1εi 0.2455 1.7726 – – 0.93

Sampaio and Silva 
(2005) – generic ... Ŷi= β0(DbH)β1ε 0.0292 1.6731 – – 0.94

C. 
rhamnifolius/C. 
blanchetianus

Sampaio et al. 
(2010) ... Ŷi= β0DAPβ1εi 0.4171 1.5601 – – 0.62

Sampaio and Silva 
(2005) ... Ŷi= β0Db

β1εi 0.1482 1.8741 – – 0.83

Sampaio and Silva 
(2005) – generic Ŷi= β0(DbH)β1εi 0.0292 1.6731 – – 0.94

†: inventory data from two different sites, one in Pernambuco and the other in Bahia; i = biomass (kg) aboveground; Db = base 
diameter in centimeters (0.30 m above ground level); DAP = Diameter at breast height in centimeters (1.30 m above ground 
level); H = Height; βi = parameters of the models; bi = coefficients obtained after the model adjustments; and R2 = coefficient of 
determination.
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Where: SSE is the sum of squares of the errors; P 
and n were already defined. This criterion penalizes 
the addition of parameters in the analyzed functions. 
The best validated model minimizes the AIC value.

The paired t-test was also used at the 99% 
confidence level (α = 0.01) to test the hypothesis 
that the observed biomass (actual weight) and the 
obtained biomass by the validated equations are 
statistically similar.

All computations and analyzes were carried 
out using R statistical software (R Core Team 
2015).

RESULTS

Figure 2 shows descriptive information about 
the base diameter and the biomass for the 
analyzed cases. Discrepant data were observed 
for the diameters, especially when considering all 
analyzed species. In relation to the biomass, there 
is for M. tenuiflora the greater variation found 
among the species and for the Croton genus the 
smaller dispersion. The average of aboveground 
biomass considering all species was 12.77 kg, with 
an average standard error of 1.95 kg. The lowest 

biomass found was 0.15 kg and the highest was 
559.5 kg. From a total of 507 weighted trees, 75% 
of the observations concentrated values around 9.0 
kg, indicating the presence of discrepant data also 
for biomass (outliers not shown in the figure).

As for the estimates of aboveground biomass 
(Figure 3), it was observed that the validation was 
consistent when using the equations of Návar-
Cháidez (2009a) and the local equation of Sampaio 
and Silva (2005) for all species. The equation 
of Abreu et al. (2016), although local, was not 
indicated to validate the biomass estimates. For 
the species P. bracteosa and M. ophthalmocentra, 
the specific equations of Sampaio and Silva 
(2005) and Sampaio et al. (2010), were biased 
and overestimated the biomass of these species. 
However, the general equation of Sampaio and 
Silva (2005) indicates reliable estimates as well as 
for the A. pyrifolium species, in other words, the 
parameters estimates of this equation are included 
in the 95% confidence interval of the local biomass 
estimates.

For the Croton genus, species-level equations 
were more reliable in estimating biomass. The 
general equation of Sampaio and Silva (2005) 

Figure 2 - Box-plot for the base diameter and the biomass above ground. The boxes represent the 25th and 75th percentiles; the 
dashed margins represent the 10th and 90th percentiles. The line represents the median and the points indicate the presence of 
discrepant data (outliers).



An Acad Bras Cienc (2017) 89 (3)

	  PREDICTION OF BIOMASS IN DRY FOREST	 1821

Figure 3 - Relation between biomass (kg) above the soil and the base diameter of the trees (Db cm). Each point corresponds to an 
individual weighted tree. The dashed lines correspond to the validation of the generic and local equations for the entire database, 
for the four species. Croton blanchetianus (1) and Croton rhamnifolius (2) correspond to the database for the Croton genus. Note. 
Abreviations: Nch (2009) -Equation of Návar-Chaidez (2009); SS (2005) - Generic equation and species of Sampaio and Silva 
(2005); Nv (2014) - Equation of Návar-Cháidez (2014); Ab et al. (2016) - Equation of Abreu et al. (2016); S et al (2010) - Equation 
of species of Sampaio et al. (2010): ST (Serra Talhada area); SE (Sertânea area); SSilva (2005) - Equation of species of Sampaio 
and Silva (2005).
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estimates with precision the biomass for trees 
with diameters up to 5 cm and it has a tendency to 
overestimate trees with a diameter above 6 cm.

In five analyzed cases, both the diameters (at 
0.30 m and 1.30 m above the soil) and the height 
of the trees (combined variable general equation 
of Sampaio and Silva (2005) were important 

predictors of aboveground biomass. Species-
specific equations derive from a simple nonlinear 
model (which does not include tree height and/
or wood base density as a predictor) and end up 
providing biased adjustments, as can be observed 
in the overestimation of biomass to P. Bracteosa 
and M. ophthalmocentra (Figure 3).

TABLE II
Errors, trends, qualities and paired t-test for aboveground biomass estimates of validated equations for multi-species and 

individual species data.

Equations Reference
Validation

R2 Df RSE AIC Bias (%) Statistic p–value

All species

Návar-Cháidez 
(2009a) 0.90 506 16.7 2855.5 1.3 0.0699 0.9443

Sampaio and Silva 
(2005) 0.86 506 22.4 3155.9 20.9 0.9779 0.3284

Návar-Cháidez 
(2014) 0.95 506 28.0 3381.2 112.4 3.2193 0.0013

Abreu et al. 
(2016) 0.58 506 43.0 3817.7 203.0 4.3811 0.0144

Poincianella 
bracteosa

Sampaio and Silva 
(2005) 0.65 201 8.2 850.5 –37.8 –5.3499 1.54E–

07
Sampaio and Silva 
(2005) – generic 0.74 201 4.2 584.9 –2.7 2.9440 0.0394

Mimosa 
ophthalmocentra

Sampaio et al. 
(2010) 0.82 80 5.3 272.3 –55.7 –7.4421 1.00E–

08
Sampaio and Silva 
(2005) – generic 0.80 80 1.4 56.8 –5.2 –0.4484 0.6545

Mimosa tenuiflora

Sampaio et al. 
(2010) – Serra Talhada city 0.80 21 17.1 126.9 –15.5 –0.4975 0.6215

Sampaio et al. 
(2010) – Sertânia city 0.78 21 20.0 133.6 11.0 0.3040 0.7630

Sampaio and Silva 
(2005) – generic 0.82 21 15.6 122.7 20.4 0.0474 0.9625

Aspidosperma 
pyrifolium

Sampaio and Silva 
(2005) 0.68 44 7.1 178.1 16.9 0.6664 0.5076

Sampaio and Silva 
(2005) – generic 0.73 44 6.4 169.1 22.6 0.8172 0.4166

C. rhamnifolius/C. 
blanchetianus

Sampaio et al. 
(2010) 0.81 67 0.9 –14.0 –9.7 –0.5038 0.6153

Sampaio and Silva 
(2005) 0.82 67 0.9 –6.6 14.1 0.1724 0.8635

Sampaio and Silva 
(2005) – generic 0.83 67 1.9 89.5 –28.4 –1.1781 0.2414

Where: R2: is the coefficient of determination; Df: is the degree of freedom; RSE: is the standard error of the estimate; AIC: is 
Akaike’s Information Criterion; Bias (%): is the relative trend; Statistic and p-value: are paired t-test results between observed and 
estimated biomass values.
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The results of the validation test show that the 
lowest values of Bias (%) are found in single entry 
equations for four cases Návar-Cháidez (2009a) 
– all species; Sampaio et al. (2010) – Sertânia 
– M. Tenuiflora; Sampaio and Silva (2005) – A. 
pyrifolium; Sampaio et al. (2010) – Croton) (Table 
II).

Neither the estimates of the local equation 
developed by Abreu et al. (2016), both for all 
species in this study, tend to show a non-significant 
tendency, in other words, a non-significant 
tendency of underestimation. These higher values 
of Bias (tendency) corroborate the high values 
of the Akaike information criterion (AIC) and 
residual standard error (RSE), as well as values not 
significant for p-value (t-test paired with a = 0.01). 
The estimations obtained by the equations of Návar-
Cháidez (2009a) and Sampaio and Silva (2005) did 
not show a significant difference when compared 
to the observed values of biomass for all species, in 
addition the validation of these equations explains 
more than 86% of the data.

Within species, the differences between the 
values ​​observed and estimated by the specific 
equations were extremely high for P. bracteosa and 
M. ophthalmocentra (Bias (%) = -37.7 and -55.7, 
respectively), evidencing overestimates by these 
equations. In this case, the values ​​of AIC and RSE 
are lower for the general equation of Sampaio and 
Silva (2005), in which the paired t-test indicates 
that the compared biomass values ​​ are similar from 
the statistical point of view.

Although for M. tenuiflora, A. pyrifolium 
and species of the Croton genus all validated 
equations were significant by the paired t-test, the 
highest AIC and RSE values ​​are still shown by the 
specific equations mainly for M. tenuiflora and A. 
pyrifolium, although this does not invalidate the 
use of these equations, since the values ​​of Bias (%) 
were inferior to those of the general equation of 
Sampaio and Silva (2005). For M. tenuiflora, the 
equations of both Serra Talhada and Sertânia cities 

(Sampaio et al. 2010), present similar values ​​of 
linear and angular coefficients, indicating that the 
dendrometric characteristics of this species do not 
differ of the species of this study at local scale. For 
A. pyrifolium, lower trend was found in the specific 
equation of Sampaio and Silva (2005), (Bias (%) 
= 16.8), being slightly inferior than that obtained 
by the general equation of Sampaio and Silva 
(2005). For the Croton genus the specific equation 
of Sampaio et al. (2010) shows a lower tendency 
of overestimation (Bias (%) = -9.6). However, the 
values ​​of AIC and RSE do not invalidate the use of 
the general equation of Sampaio and Silva (2005) 
for these species.

In relation to the biomass distribution by 
diameter class (Figure 4), it can be seen from the 
confidence interval that the general equation of 
Sampaio and Silva (2005) was more efficient in 
most cases. Considering all species, from the class 
of 18.5 cm in diameter, it was noticed a difference 
between the values ​​of biomass observed and 
estimated by the equations. This result is due to the 
presence of discrepant data (outliers), where the 
biomass variability is higher than in the previous 
diameter classes. The validated equations were 
statistically satisfactory up to the diameter of 15.5 
cm where the highest homogeneity of the data 
occurs. The exception was the Abreu et al. (2016) 
equation, which showed a difference in all classes 
for all analyzed cases.

For P. bracteosa and M. ophthalmocentra, 
in all diameter classes the general equation of 
Sampaio and Silva (2005) generalized the estimates 
more efficiently, except in the latter class for both 
species. The specific equations overestimated in all 
classes, corroborating with the validation results 
found, presenting statistical differences by the 
confidence intervals.

For M. tenuiflora, the efficiency of the 
general equation of Sampaio and Silva (2005) in 
the estimates is highlighted, because all diameter 
classes of the species do not show differences by 
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the confidence interval. The specific equations 
presented good performance except the Sampaio 
et al. (2010) – Serra Talhada equation for the class 
of 13.05 cm and Sampaio et al. (2010) – Sertânia 
equation for the class 16.05 cm. A. pyrifolium and 
Croton genus species report good estimates for 
the validated equations up to the third diameter 
class, the other classes indicate greater variability 
resulting in differences by the confidence interval.

DISCUSSION

In order to reach accurate estimates of plant 
biomass stock, biomass validated equations to local, 
regional and global circumstances are mandatory 
(IPCC 2006, Sato et al. 2015). Although some 

studies estimate aboveground biomass locally for 
the Floresta city (Abreu et al. 2016), the validated 
equations of other sites generalize with lower bias 
biomass values. For example, the Návar-Cháidez 
(2009a) equation explains ≥ 79% of the variation in 
aboveground biomass in a dry forest eco-region in 
Mexico, in the validation with dry forest biomass 
data in Brazil, the explained variation is higher 
than 90%. The general equation of Sampaio and 
Silva (2005) explains ≥ 94% for dry forests of 
Pernambuco and Bahia, for the biomass variation 
of this study, the equation explains 86% of the 
data variation. This total explained suggests that 
the ecological patterns of growth, development 
and establishment of the species are similar on a 
regional scale (Ceccon et al. 2006, Chidumayo and 

Figure 4 - Comparison of biomass stocks observed and validated by generic and specific equations by diameter class. The bars 
indicate the confidence interval (mean ± standard error) at 95% of probability.



An Acad Bras Cienc (2017) 89 (3)

	  PREDICTION OF BIOMASS IN DRY FOREST	 1825

Gumbo 2010). Thus, both the equation developed 
in Mexico and that developed in Brazil using local 
data sets may reduce the uncertainty in biomass 
estimation in the Floresta city.

These results confirm that the aboveground 
biomass of a tree can be obtained considering both 
the diameter and the product of the diameter with the 
height. In addition, the estimates of the parameters 
of local models by Sampaio and Silva (2005) for 
all species were not significantly different from 
the estimates of the parameters of the equations of 
Mexico. Models that include tree height improve 
biomass estimation in many tropical forests (Chave 
et al. 2005, Rutishauser et al. 2013).

Individually, for the species P. bracteosa 
and M. ophthalmocentra these affirmations are 
corroborated, since better biomass estimates are 
obtained by the generic equation of Sampaio 
and Silva (2005), even considering the diametric 
distribution. The results of this work may suggest 
two considerations: (1) indicate that these species 
tend to present differences in ecological patterns of 
development, although the studied areas are from 
the same region but from different sites; or (2) the 
models were adjusted to estimate the biomass in 
trees with different dendrometric amplitudes (van 
Breugel et al. 2011), so the resulting equations tend 
to overestimate the biomass for these species in this 
study when considering only the diameter variable.

Although the height is an important variable in 
estimating the biomass for the studied dry forest, 
some studies show that estimates at individual 
or multi-species scales are more efficient when 
considering the basic density of wood (Deans et 
al. 1996, Baker et al. 2004, Chave et al. 2005, 
Vieilledent et al. 2012). This suggests a necessity 
for a revision of the IPCC guidelines (Aalde et 
al. 2006), since these guidelines recommend 
that allometric equations only depend of the tree 
diameter (Fayolle et al. 2013).

In regard to biomass estimates for M. tenuiflora, 
A. pyrifolium and Croton genus, specific regional 

equations are best indicated for the statistical 
validation test. This shows a similarity pattern 
between the biomass stocks of these species and the 
Croton genus on a regional scale. Although these 
results are contrary to those obtained by equations 
validated for all species together with P. bracteosa 
and M. ophthalmocentra, only the diameter variable 
is sufficient to estimate aboveground biomass, even 
at the level of diametric distribution.

There is a gap to be filled about the validity of 
equations globally (pan-tropical) validated across 
the tropics for dry forests, although some significant 
biases are reported by Kale (2004), Brandeis et al. 
(2006), Návar-Cháidez (2014), Sato et al. (2015) 
and Memiaghe et al. (2016). In tropical rainforests, 
the development of global models already provide 
significant evidence for estimates and global 
validations of biomass and carbon stock above the 
ground (Chave et al. 2005), although other studies 
suggest the correction of errors and the addition of 
variables in the models through different databases 
(Djomo et al. 2010, Henry et al. 2010, van Breugel 
et al. 2011, Vieilledent et al. 2012, Alvarez et al. 
2012, Nogueira Lima et al. 2012).

The issue currently under discussion that is 
reported in this paper is if elsewhere in the tropics 
with dry forest dominance, where no equation of 
biomass of species or specific area is available, it 
would be better to use the generic equations or to 
develop local equations. Although the choice of the 
equation is an important source of uncertainty in 
biomass estimates (Chave et al. 2004, Fayolle et 
al. 2013), there is a lack of clear guidelines for the 
selection of existing models.

On the one hand, Basuki et al. (2009) discuss 
the applicability of generic equations to the diverse 
structure and composition of tropical forests. Gibbs 
et al. (2007) in their review of methods to estimate 
the biomass of tropical forests argued that the effort 
required to develop biomass equations of specific 
species or sites (hotspots) would not normally 
improve the accuracy of biomass estimates. In this 
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study, it can be observed that the specific equations 
for some species are not necessarily better than the 
generic equation (multi-species), which includes 
the total height of the tree as a predictive variable.

Contrary to the results of Basuki et al. (2009), 
the results of this work suggest the use of generic or 
site-specific equations with similar characteristics 
instead of the adjustment of models even 
considering only at the genus level (Croton). This 
recommendation is indicated due to the fact that 
the similarities of sites in tree biomass estimates 
are almost entirely driven by similarity in height 
and diameter patterns as observed in Sampaio and 
Silva (2005), in this way, not only the diameter, but 
the tree height is an important factor that needs to 
be considered in order to improve forest biomass 
estimates (Feldpausch et al. 2011). Thus, it can 
be discarded the possibility of thinning trees to 
compose a significant sample to fit biomass generic 
and specific models.

The validation of generic equations, however, 
should be tested under particular environmental 
conditions, for example in dry forests in water 
stress situations or at different precipitation scales, 
which may restrict the allometric relationship 
between height and diameter (Nath et al. 2006).

In addition, in order to avoid extrapolations 
above or below the confidence intervals, it should 
be also considered a compatible dendrometric 
amplitude of the data. A possible alternative 
to integrate biomass estimates based on forest 
inventory measurements would be the use of satellite 
images or even LiDAR technology (Estornell et al. 
2011, 2012, Almeida et al. 2014). Biomass models 
considering genus, families, successional groups, 
climatic variables and specific density of wood 
should be adjusted, tested at both local and regional 
levels, as well as on tropics scales with dry forest 
dominance.
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