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ABSTRACT

In this paper we study topological and analytical conditions on the orbits of a germ of diffeomorphism in

the complex plane in order to obtain periodicity. In particular, we give a simple proof of a finiteness criteria

for groups of analytic diffeomorphisms, stated in Brochero Martínez 2003. As an application, we derive

some consequences about the integrability of complex vector fields in dimension three in a neighborhood

of a singular point.

Key words: Complex germs of diffeomorphims, singular holomorphic foliations, integrability of vector

fields, closed orbits.

1 - INTRODUCTION

The relationship between periodic subgroups of Diff(C, 0) and the integrability of germs of vector fields at

(C2, 0) was established in Mattei and Moussu 1980. There the authors show that the topological condition

of finiteness of the orbits is sufficient to ensure the periodicity of a finitely generated sugbroup at Diff(C, 0).
As a consequence, they obtain that the topological condition of closeness of the orbits of a germ of vector

field X is equivalent to the existence of a first integral, i.e., a germ of map f : (C2, 0) −→ (C, 0) whose
level sets contain the orbits of X . The link between these two objects is obtained in terms of the so called

holonomy group, introduced by Charles Ehresmann.

In this paper we show that for n = 2 a completely distinct phenomena occur. In fact we present and

explicit example (Example 2.1) showing that the finiteness of the orbits of a cyclic subgroup of Diff(C2, 0)

is not enough to ensure its periodicity. From this example we construct a vector fieldX at (C3, 0) (Example

3.1) whose leaves are closed but are not contained in the level sets of a map-germ F : (C3, 0) −→ (C2, 0).

In the sequel we show that the periodicity of a germ of diffeomorphism at (C2, 0) is achieved if we

add one further topological condition, i.e., the finiteness of the orbits together with the Lyapunov stability
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condition. In terms of vector fields this may be translated by saying that X admits a first integral F :

(C3, 0) −→ (C2, 0) if and only if its orbits are closed off the origin and transversely stable (in the sense of

Lyapunov and Reeb) with respect to a distinguished smooth separatrix.

In the final part of the paper we show that these new topological aspects may be reinterpreted in terms of

flags of foliations (Theorem 3.4). Finally wewant to mention that we also present in this paper a simple proof

of a finiteness criteria for groups of analytic diffeomorphisms (Theorem 2.2), stated in Brochero Martínez

2003, since it is one of our main ingredients.

2 - GERMS OF DIFFEOMORPHISMSWITH FINITE ORBITS

2.1 - PRELIMINARIES

Let Diff(Cn, 0) denote the group of germs of diffeomorphisms of Cn fixing the origin. LetG ∈ Diff(C2, 0)

and V be a neighborhood of the origin, where a representative (also denoted byG) of the germG is defined.

Then we denote by

O+
V (G, x) =

{
G◦(n)(x) : G◦(j)(x) ∈ V , j = 0, . . . , n

}
the so-called positive semiorbit of x ∈ V by G. Analogously, the negative semiorbit of x ∈ V by G is the

setO−
V (G, x) := O+

V (G
−1, x). The orbit of x ∈ V byG is the setOV (G, x) = O+

V (G, x)∪O−
V (G, x). The

cardinality of OV (G, x) is denoted by |OV (G, x)|.
A diffeomorphism f ∈ Diff(Cn, 0) is said to be tangent to the identity if it can be expanded in series

of homogeneous polynomials as f = (f1, ..., fn) with fj(z) = zj + fj,νj
(z) + · · · , where fj,νj

6≡ 0 and

ord(fj,k) = k whenever fj,k 6≡ 0. Then one says that ν(f) = min{ν1, ..., νn} is the order of f . The set of

germs of diffeomorphisms tangent to the identity is denoted by Diff1(Cn, 0).

Let f ∈ Diff1(C2, 0), then we say that ϕ : Ω −→ Cn is a parabolic curve for f at the origin if it is an

injective holomorphic map satisfying the following properties:

(1) Ω ⊂ C is a simply connected domain with 0 ∈ ∂Ω;

(2) ϕ is continuous at the origin and ϕ(0) = 0 ∈ Cn;

(3) ϕ(Ω) is invariant under f and (f |ϕ(Ω))
◦(n) → 0 ∈ Cn as n→ ∞.

Let f(x) = x + fν(x) + O(‖x‖ν+1), where fν(x) = (f1,ν(x), f2,ν(x)) 6≡ 0 with fj,ν being ho-

mogeneous polynomial of degree ν. Then we say that f is dicritical if x2f1,ν(x) − x1f2,ν(x) ≡ 0 and

non-dicritical otherwise. The relationship between parabolic curves and dicritical fixed points is given by

the following result.

Theorem 2.1 (Abate 2001). Let f ∈ Diff1(C2, 0) be a dicritical germ of holomorphic map tangent to the

identity, then f admits infinitely many parabolic curves.

2.2 - INFINITELY MANY INVARIANT SETS

In Brochero Martínez 2003 the following result is announced as Theorem 3.1, but unfortunately its proof

seems to be incomplete.
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Theorem 2.2. Let G ∈ Diff(C2, 0), then the group generated by G is finite if and only if there exists a

neighborhood V of the origin such that |OV (G, x)| < ∞ for all x ∈ V and G preserves infinitely many

analytic invariant curves at 0.

Here we shall present a simple and consistent proof for it. Since the necessary part of Theorem 2.2 is

trivial, then we only prove its sufficient part in the following series of claims. For this sake, we need to recall

some terminology from complex dynamics.

A germ of curve S ⊂ (C2, 0) is a separatrix for f if f(S) = S as germs of curves at the origin. Such a

separatrix is called periodic of period n ∈ N if f◦(n)(x) = x for each x ∈ S. The curve S is not necessarily

irreducible and may have several branches. The map f takes a branch into a branch and may interchange

these branches. Nevertheless, since S has only a finite number of branches, we conclude that for each branch

Sj ⊂ S there is 1 ≤ mj ∈ N such that f◦(mj)(Sj) = Sj . Then clearly we have f◦(m)(Sj) = Sj , for all

j = 1, ..., r, wherem = m1 · · ·mr. Thus, we have:

Claim 1. For each separatrix S of f there is mS ∈ N such that each branch Sj of S is invariant with

respect to f◦(mS).

Remark 2.1. It is well-known that a map germ h ∈ Diff(C, 0) with finite orbits is necessarily periodic

(Mattei and Moussu 1980). Let now S ⊂ (C2, 0) be an irreducible separatrix of f ∈ Diff(C2, 0). Put

h = f |S . We claim that if h has finite orbits then h is periodic. Indeed, in case S is (irreducible and) smooth

this is immediate. In the general (irreducible) case we take a Newton-Puiseux parametrization σ : (C, 0) →
(S, 0). This is a holomorphic injective map so that we may consider the “lift” h : (C, 0) → (C, 0), i.e., the
holomorphic map that satisfies σ◦h = h◦σ. Then h ∈ Diff(C, 0) also has finite orbits and thus, is periodic.
Therefore, the same holds for h.

Combining Claim 1 and Remark 2.1 we promptly obtain:

Claim 2. For any separatrix S of f ∈ Diff(C2, 0) there existsN(S) ∈ N such that f |S is periodic of period

N(S), i.e., (f |S)◦(N(S)) = (f◦(N(S)))
∣∣
S
= Id.

In view of the above result, from now on we suppose that f admits infinitely many periodic separatrices.

We say that a set of separatrices for f is in general position if their first tangent cone intersect the

exceptional divisor in at least three distinct points.

Claim 3. Let f ∈ Diff(C2, 0) and {Sj}∞j=1 be distinct periodic separatrices for f , then after a finite number

of blowing-ups on S there appears a local map-germ f̃ ∈ Diff(C2, 0) admitting an infinite set of irreducible

periodic separatrices in general position.

Proof. It is immediate that after blowing-up S a finite number of times at least three distinct curves will

intersect the exceptional divisor in three distinct points in such a way that one of these points intersects

infinitely many separatrices.

Claim 4. Suppose f ∈ Diff(C2, 0) has a set of irreducible periodic separatrices in general position. Then

there exists n ∈ N such that f◦(n) is tangent to the identity.

Proof. Let Sj , j = 1, 2, 3, be three distinct periodic separatrices in general position of orders respectively

nj . Let n = n1n2n3, then g := f◦n has three distinct irreducible separatrices in general position. Now, let
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Figure 1 - Blowing-up infinitely many separatrices.

g̃ be the strict transform of g by a blow-up π : M −→ D. If D = π−1(0) is the exceptional divisor of this

blow-up, then it follows immediately from the hypothesis that g̃|D = Id. Let us prove that the first jet of g

is given by a diagonal matrix. Let g = (g1, g2), where J
1gj(x, y) = αjx + βjy. After one blowing-up we

have

g̃(t, x) =

(
g2(x, tx)

g1(x, tx)
, g1(x, tx)

)
=

(
α2 + β2t

α1 + β1t
+ x(· · · ), g1(x, tx)

)
.

Since g̃|D = Id, then α2 = β1 = 0 and α := α1 = β2 ∈ C∗. Therefore, J1g(x, y) = (αx, αy). Now,

suppose the three irreducible invariant curves are smooth (or resolved after one blowing-up), then we may

suppose without loss of generality that S : (y = 0) is an invariant periodic curve for g. In particular, its

strict transform S̃ : (t = 0) is periodic with respect to g̃. Since g̃|D (0, x) = (0, g1(x, 0)) = (0, αx+ · · · ),
then α = exp(2nπim ) is a root of unity. The result then follows. On the other hand, suppose S is a singular

irreducible curve invariant by g (not necessarily periodic) and recall Remark 2.1. Let σ(s) = (sm, µsn+· · · )
be the Newton-Puiseux parametrization for S̃ and g ∈ (C, 0) be given by σ ◦ g(s) = g̃ ◦ σ(s). If g(s) =

λs+ · · · , then

(λmsm + · · · , µλnsn + · · · ) = g̃(sm, µsn + · · · ) = (sm + · · · , αµsn + · · · ),

thus λm = 1 and α = λn; i.e., α = exp(2knπim ) is a root of unity. The result then follows.

Claim 5. Suppose g ∈ Diff1(C2, 0) admits an infinite number of separatrices, then along its resolution

π : (M, D) −→ (C2, 0) there appears a dicritical map-germ g̃ ∈ (M, p) tangent to the identity in a

neighborhood of p ∈ D.

Proof. Let g̃ be the strict transform of g by a resolution π : M −→ (C2, 0), then to each invariant curve S

there corresponds a fixed point for g̃ along M. Therefore, at least one of the projective spaces composing

the exceptional divisor D = π−1(0) admits infinitely many separatrices for g transversal to it. The result

then follows.

Therefore, in order to prove Theorem 2.2 we just have to combine the above claims with Abate’s

theorem.

2.3 - INVARIANT FUNCTIONS

A finitely generated subgroup G ⊂ Diff(C, 0) is finite provided that it has finite pseudo-orbits (Mattei and

Moussu 1980). Contrasting with the one dimensional case, in greater dimensions the finiteness of the orbits

is not enough to ensure the periodicity of the group.

Example 2.1. Consider the map G(x, y) = (x + y2, y). The orbits of G are confined in the level sets of

f(x, y) = y and are clearly finite. Notice that #OV (G, (x, y)) → ∞ as y → 0, thus G is not periodic nor

linearizable. Furthermore, the orbits OV (G, (x, y)) are far from being stable, since in each line (y = c) the

map G acts as a translation.
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Blowing up this diffeomorphism (cf. Abate 2001) G = (g1, g2) = (x+ y2, y) at the origin one has

G̃(t, x) =

(
g2(x, tx)

g1(x, tx)
, g1(x, tx)

)
=

(
t

1 + t2x
, x+ t2x2

)
= (t(1− t2x2 + t4x4 − t6x6 + · · · ), x(1 + t2x))

= (t− t3x2 + t5x4 − t7x6 + · · · , x+ t2x2)

whose orbits are finite and confined in the level sets of f̃(t, x) = tx. Further, G acts in these level sets of f̃

in some sort of translation whose orbits increase in cardinality as f̃(t, x) → 0.

Therefore in order to obtain periodicity we need to ask some further conditions. We say that two germs

of holomorphic functions f, g ∈ O2 are generically transverse if df ∧ dg is not identically zero.

Theorem 2.3. Let f, g ∈ O2 be generically transverse germs andG ∈ Diff(C2, 0) be a complex map germ

having finite orbits and preserving the level sets of both f and g. Then G is periodic.

Proof. The idea of the proof is the following: Since f and g are generically transverse, then one can find

a pure meromorphic function ho = fo/go whose level sets are preserved by G. Hence, the infinitely many

curves fo(x, y) − c · go(x, y) = 0, with c ∈ C, intersect the origin and are invariant by G. Thus Theorem

2.2 ensures that G is periodic. Now let us construct ho. If f/g is already pure meromorphic, then it is

enough to pick ho := f/g. Otherwise one has f = h · gk, where k ∈ Z+, and h is a germ of holomorphic

function not divisible by g. Clearly, h is G-invariant, thus if it has an irreducible component distinct from

the irreducible components of g, then h/g must be a G-invariant pure meromorphic function. Suppose that

the decomposition in irreducible components of g and h are of the form g = gp1

1 · · · gpn
n and h = gq11 · · · gqnn .

Since h is not divisible by g, then there must be j0 ∈ {1, · · · , n} such that qj0 < pj0 . If there is also

j1 ∈ {1, · · · , n} such that qj1 > pj1 , then h/g is a pure meromorphic G-invariant function. From now

on we suppose that qj ≤ pj for all j = 1, . . . , n with at least one j0 ∈ {1, · · · , n} such that qj0 < pj0 .

If there is j1 ∈ {1, · · · , n} such that qj1 = pj1 , then after reordering the indexes (if necessary) we may

suppose that: (i) qi < pi for all i = 1, . . . , n0; (ii) qi = pi for all i = n0 + 1, · · · , n; for some n0 ∈
{1, · · · , n−1}. Then h := g/h = gp1−q1

1 · · · gpn0
−qn0

n0 is aG-invariant germ of holomorphic function. Now,

let s1 := [p1/(p1 − q1)]+1 (where [x] denotes the integer part of x ∈ R), then a straightforward calculation
shows that g/h

s1
is a pure meromorphic function. Hereafter we suppose that qj < pj for all j = 1, . . . , n.

Recall that the Euclid’s algorithm of a pair of positive integers (p, q), p > q, is the sequence of pairs of

positive integers {(pj , qj)}n+1
j=1 given by: (1) (p1, q1) := (p, q); (2) pj = qj · rj + sj , where rj := [p/q]

and sj < qj ; (3) (pj+1, qj+1) := (qj , rj); and (4) sn > 0 and sn+1 = 0. This is called the Euclid’s

sequence of the pair (p, q). For simplicity, suppose that g and h have only two irreducible components, say

g = fp(f)p and h = f q(f)q, and let {(pj , qj)}n+1
j=1 and {(pj , qj)}n+1

j=1 be the Euclid’s sequence of (p, q) and

(p, q), respectively. If r1 = [p1/q1] < [p1/q1] = r1, then p1 − (r1 + 1)q1 < 0 and p1 − (r1 + 1)q1 ≥ 0.

If p1 − (r1 + 1)q1 6= 0, then g/hr1+1 is a G-invariant germ of pure meromorphic function, otherwise

g/hr1+1 = 1/f (r1+1)q1−p1 and g ·(g/hr1+1)p1 is aG-invariant germ of pure meromorphic function.Arguing

inductively along the Euclid’s sequences of (p, q) and (p, q) one can always construct a G-invariant pure

meromorphic function unless rj = rj for all j = 1, · · · , n + 1. But this means that (p, q) = (αsn, βsn)

and (p, q) = (αsn, βsn) for some α, β ∈ Z+. Therefore, g, h, and f are powers of the same holomorphic

function fsn(f)sn , thus f and g cannot be generically transverse. A contradiction! The reasoning in the case

of many irreducible factors is analogous, being in fact a consequence of the above reasoning.
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Figure 2 - A dicritical component of F̃ .

In particular, Theorem 2.3 ensures that the map G defined in Example 2.1 does not preserve the level

sets of a couple of generically transverse functions f, g ∈ O2.

2.4 - INVARIANT FOLIATIONS

Let ω be a germ of holomorphic 1-form at 0 ∈ C2. Assume that Sing(ω) = {0} and let Fω be the germ of

foliation at 0 ∈ C2 given by the Pfaff equation ω = 0. We denote by Aut(Fω) the subgroup of Diff(C2, 0)

given by those φ ∈ Diff(C2, 0) preserving Fω, i.e., such that φ
∗ω ∧ ω = 0.

Given a map φ ∈ Diff1(C2, 0), we have φ(x, y) = exp[1]X̂(x, y) for a (unique) formal vector field X̂

of order at least two (cf. Brochero Martínez et al. 2008, Câmara and Scárdua 2012) called the infinitesimal

generator of φ. Let F be a germ of foliation at 0 ∈ C2 having a dicritical component (i.e., admitting

infinitely many separatrices through the origin). We shall say that F is adapted to φ if there is a resolution

π : (M, D) −→ (C2, 0) of X̂ such that π∗(F) has infinitely many curves transverse to D (this happens

precisely when we blow-up a dicritical component of F along the resolution of X̂).

Lemma 2.4. Let Fω be a germ of foliation at (C2, 0) having a dicritical component and adapted to φ ∈
Diff1 (C2, 0). Then φ ∈ Aut(Fω) having finite orbits if and only if φ is the identity.

Proof. For simplicity we shall write F = Fω. Let π : (M, D) → (C2, 0) be the resolution of φ introduced

in Abate M. 2001, F̃ := π∗F the strict transform of F via π, and φ̃ the lifting of φ. Since φ ∈ Diff1(C2, 0),

then φ̃|D = Id|D. If F̃j ⊂ F̃ is a dicritical component of F̃ defined in a neighborhood of the irreducible

component Dj ⊂ D, then it is given in appropriate coordinate systems by a fibration transversal to Dj , up

to a finite number of singular leaves or smooth leaves tangent to Dj . More precisely, there is an open set

Uj := Dj\{p1, · · · , pr} such that φ̃|Uj
can be seen as a family of germs of automorphisms of (C, 0) with

parameters in Uj ⊂ Dj ' CP1 (see Figure 1). Let φ̃t ∈ (C, 0) be given by φ̃t(x) := φ̃(t, x) for some

t ∈ Uj , then the classical Leau-Fatou flower theorem (Bracci 2004) says that φ̃t has a parabolic fixed point

at the origin, unless it is the identity. The result then follows by analytic continuation.

2.5 - STABILITY

A germ of mapG ∈ Diff(C2, 0) is said to be positively semistable if for any representativeG : U −→ G(U),

where U is an open neighborhood of the origin, and any open set V ⊂ U there is an open subsetW ⊂ V

such that G◦(n)(W ) ⊂ V for all n ∈ Z+, i.e., all positive iterates of G starting inW remain in V . Notice

that any hyperbolic attractor satisfy the previous condition, but if we add the hypothesis of finiteness of the

positive orbits, then the map must be periodic.
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Lemma 2.5. Let G ∈ Diff(C2, 0) be represented by the map G : U −→ V , where U, V ⊂ C2 are open

neighborhoods of the origin with compact closure. Suppose that:

1. G is positively semistable.

2. G has finite orbits.

Then G is periodic, i.e., there is p ∈ Z+ such that G◦p = Id.

Proof. By the positive semistability, there areW and V as above withW ⊂ V and satisfyingG◦(n)(x) ⊂ V

for all x ∈ W and n ∈ Z+. Now consider the analytic set Cq := {x ∈ W : G◦q = x}, where q ∈ Z+.

Then Cq is a closed set without interior points. Since the orbits ofG are all periodic we haveW =
⋃∞

q=1Cq.

From Baire’s category theorem, some Cq must have an interior point and therefore by the Identity Principle

G is periodic.

3 - APPLICATIONS TO FOLIATIONS

3.1 - INTEGRABILITY, FIRST INTEGRALS, AND CLOSED ORBITS

The problem of deciding whether a vector field or, more generally, an ordinary differential equation can

be integrated by studying its number of non-transcendent solutions goes back to H. Poincaré, Dulac (cf.

Dulac 1912) and other authors. The classical theorem of G. Darboux (cf. Jouanolou 1979) states that a

polynomial vector field in the complex plane admits a rational first integral provided that it admits infinitely

many algebraic solutions. Our natural framework is the class of analytic equations. With the arrival of the

Theory of Foliations the use of geometrical/topological methods has given an important contribution to the

comprehension of the problem as well as some important results. Indeed, a holomorphic vector field X

defined in a neighborhood U ⊂ Cn, n ≥ 2, of the origin 0 ∈ Cn, with an isolated singularity at the origin,

defines a germ of one-dimensional holomorphic foliation (with a singularity at the origin), and vice-versa.

In dimension two (or codimension one) a classical result (cf. Mattei and Moussu 1980) states that a

germ of holomorphic vector field at the origin of C2 admits a holomorphic first integral if and only if : (i)

the leaves are closed off the origin; (ii) only finitely many of them are separatrices, i.e., adhere to the origin.

Condition (ii) is usually known as non-dicriticalness of the (germ of) foliation induced by the (germ

of) vector field (cf. Camacho and Sad 1982). A foliation germ admitting a pure meromorphic first integral is

necessarily dicritical. An example of Suzuki shows that there is no such topological criteria for existence of

a meromorphic first integral (cf. Suzuki 1977, Klughertz 1992).Also interesting is the point of view adopted

in Alexander and Verjovsky 1988, where the authors prove the existence of a holomorphic first integral for

a germ of singular holomorphic vector field in dimension n ≥ 2, under the hypothesis of existence of a

uniform bound for the volume of the orbits of the vector field and some additional condition that restricts

the “dicritical case”.

Our goal is to investigate topological conditions assuring the existence of holomorphic first integrals

for vector field germs in dimension 3. This is done in Theorem 3.4. In few words, our result shows, for a

generic class of singularities, an equivalence between the existence of a holomorphic first integral and the

fact that the orbits are closed off the origin, plus the existence of a suitable stable separatrix, or the existence

of a suitable flag, i.e., a codimension one foliation containing the orbits of the vector field. Our result may

be seen as a kind of Reeb stability theorem for singularities of complex vector fields.
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Let us introduce the notation we use, already used in Câmara and Scárdua 2009. Denote the ring of

germs of holomorphic functions at (Cn, 0) by On and its maximal ideal by Mn. By X(Cn, 0) we denote

the On-module of germs at the origin 0 ∈ Cn of holomorphic vector fields. Given a germ X ∈ X(Cn, 0),

we denote by FX the germ of one-dimensional holomorphic foliation at (Cn, 0) induced byX . Let us make

clear the notions we use:

Definition 3.1 (holomorphic first integral). Let FX be a germ of one-dimensional holomorphic foliation at

0 ∈ Cn, n ≥ 2. A germ of holomorphic map F : (Cn, 0) → (Cn−1, 0) is a holomorphic first integral for FX

if:

(a) F is a submersion off a codimension ≥ 1 analytic subset.

(b) The leaves of FX are contained in the level curves of F .

A meromorphic function germ f ∈ Mn at 0 ∈ Cn is called FX -invariant if the leaves of FX are

contained in the level sets of f . This can be written as iX(df) = X(f) ≡ 0.

3.2 - NON-DEGENERATE GENERIC VECTOR FIELD GERMS

Nextwe describe the class of vector field germswe shall workwith.A germX ∈ X(Cn, 0) is non-degenerate

if its linear part DX(0) ∈ Lin(Cn) is non-singular. Generically (in terms of the Krull topology for the

coefficients of X) the map DX(0) ∈ Lin(Cn) has n distinct eigenvalues, is diagonalizable, and X has an

isolated singularity at the origin. From Poincaré-Dulac, Siegel, and Brjuno linearization theorems and from

Camacho, Kuiper, and Palis 1978, generically (i.e., for a full measure subset of the set of the set of germs of

holomorphic vector fields), up to a change of coordinates, the vector fieldX leaves invariant the coordinate

hyperplanes x1 · · ·xn = 0. We then introduce the following definition:

Definition 3.2 (Non-degenerate generic vector field germs). We shall say thatX is non-degenerate generic

ifDX(0) is non-singular, diagonalizable and, after some suitable change of coordinates,X leaves invariant

the coordinate planes.

We shall denote by Gen(X(Cn, 0)) the set of germs of non-degenerate generic vector fields at (Cn, 0).

LetX ∈ Gen(X(Cn, 0)) andS be a separatrix ofX , i.e., an analytic curve germ invariant byFX intersecting

the origin. From the Newton-Puiseux parametrization theorem one knows that S \ {0} has the topology of
a punctured disc D \ {0}. Then we denote by Hol(FX , S,Σ) the cyclic holonomy of FX with respect to

S evaluated at a section Σ transverse to S, where Σ ∩ S = {qΣ} is a single point. We can choose Σ to

be biholomorphic to a disc in Cn−1 with center corresponding to qΣ. With this identification the group

Hol(FX , S,Σ) is analytically conjugate to a subgroup of the group Diff(Cn−1, 0).

An FX -invariant germ f ∈ Mn is called adapted to (FX , S) if it can be written locally in the form

f = g/h, where g, h ∈ On are relatively prime, S ⊂ Z(g) ∩ Z(h), where Z(g) and Z(h) denote the zero
sets of g and h respectively, and f |

Σ
is pure meromorphic for a generic transverse section Σ to S. Given

X,Y ∈ Gen(X(C3, 0))we have FX = FY if and only if for some nonvanishing holomorphic function germ

uwe have Y = uX . In this case we say thatX and Y are tangent.Any vector field germX ∈ Gen(X(C3, 0))

admitting a holomorphic first integral must satisfy the following condition (cf. Câmara and Scárdua 2009).

An Acad Bras Cienc (2017) 89 (4)



PERIODIC COMPLEX MAP GERMSAND FOLIATIONS 2571

Definition 3.3 (condition (?)). A germ of generic vector field X ∈ Gen(X(C3, 0)) satisfies condition (?)

if there is a real line L ⊂ C through the origin containing all the eigenvalues of X and such that not all the

eigenvalues belong to the same connected component of L \ {0}.

There is therefore one isolated eigenvalue ofX . The above condition holds forX if and only if holds for

any vector field Y such thatX and Y are tangent. Condition (?) implies thatX is in the Siegel domain, but is

stronger than this last. Denote by λ(X) the isolated eigenvalue ofX and by SX its corresponding invariant

manifold (the existence is granted by the classical invariant manifold theorem).We call SX the distinguished

axis ofX . We shall say thatX is transversely stable with respect to SX if for any representativeXU of the

germ X , defined in an open neighborhood U of the origin, any open section Σ ⊂ U transverse to SX with

Σ ∩ SX = {qΣ}, and any open set qΣ ∈ V ⊂ Σ there is an open subset qΣ ∈W ⊂ V such that all orbits of

XU throughW intersect Σ only in V .

In this paper we prove various equivalent conditions for the integrability of a generic germ of complex

vector field singularity in dimension three (cf. Theorem 3.4). This full statement involves the notion of flag

(Corrêa and Soares 2013, Mol 2011) and Kupka singularities (Calvo-Andrade 1994, Kupka 1964), to be

developed later in this paper. For the moment we state the following topological criteria.

Theorem 3.1. For any X ∈ Gen(X(C3, 0)) the following conditions are equivalent:

1. FX has a holomorphic first integral.

2. X satisfies condition (?) and the leaves of FX are closed off the origin and transversely stable with

respect to SX .

From this result we conclude the invariance of the existence of a holomorphic first integral for generic

germs in dimension three under topological equivalence.

Corollary 3.2. Let X,Y ∈ Gen(X(C3, 0)) be generic germs of holomorphic vector fields, both satisfying

condition (?). Assume thatX and Y are topologically equivalent. ThenX has a holomorphic first integral

if and only if Y admits a holomorphic first integral.

We stress that Theorem 3.1 above can be completed (cf. Theorem 3.4) by weakening the topological hy-

pothesis on the orbits, replacing the transverse stability by the existence of a suitable flag, i.e., a codimension

one foliation tangent to FX .

3.3 - CLOSED LEAVESAND FIRST INTEGRALS

We show that the closing of the leaves is not sufficient to ensure the existence of first integrals for FX with

X ∈ Gen(X(C3, 0)). We first remark (cf. also Câmara and Scárdua 2009, Proposition 1, Section 2.3) that

for a generic vector field germX the local holonomy group Hol(FX , SX ,Σ) is generated by a resonant map

preserving two smooth curves crossing transversely. In particular, one cannot expect a map like the map G

in Example 2.1 appearing as the (generator of the) holonomy of some X ∈ Gen(X(C3, 0)) with respect to

SX . Thus, we blow up such map and look to a neighborhood of the point determined by the exceptional

divisor and the strict transform of (y = 0). Let X ∈ X(C3, 0) be given by

X(x) = −m1[x1(1 + a1(x)) + x2b1(x)]
∂

∂x1
−m2x2(1 + a2(x))

∂

∂x2
+ x3

∂

∂x3
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where m1,m2 ∈ Z+, S := (x1 = x2 = 0), and Σ := (x3 = 1). Now consider the closed loop γ :

[0, 1] −→ S given by γ(t) = (0, 0, e2πit) and let Γ(x1,x2)(t) = (Γ1(t, x1, x2),Γ2(t, x1, x2), γ(t)) be its

lifting along the leaves of FX starting at (x1, x2, 1) ∈ Σ. In particular, the map h ∈ Diff(C2, 0) given by

Γ(x1,x2)(1) = (h(x1, x2), 1) is a generator of Hol(FX , S,Σ). Since Γ(x1,x2)(t) belongs to a leaf of FX , then

∂

∂t
Γ(x1,x2)(t) = αX(Γ1(t, x1, x2),Γ2(t, x1, x2), γ(t)).

From this vector equation one has γ′(t) = αγ(t), thus α = 2πi. Furthermore

∂

∂t
Γ1 = −2m1πi[Γ1 · (1 + a1(Γ1,Γ2, γ)) + Γ2 · b1(Γ1,Γ2, γ)], (1)

∂

∂t
Γ2 = −2m2πiΓ2 · (1 + a2(Γ1,Γ2, γ)). (2)

Example 3.1. LetX(x) = −[x1 + x22b(x3)]
∂

∂x1
− 3x2

∂
∂x2

+ x3
∂

∂x3
, then S := {x1 = x2 = 0} is invariant

byX and the holonomy of FX with respect to S evaluated at Σ = (x3 = 1) has the form h = (h1, h2) with

hj(x1, x2) = Γj(1, x1, x2), where Γ1 and Γ2 satisfy respectively equations (1) and (2) above. Now if we let

Γn(t, x1, x2) =
∑

i+j≥1 c
n
i,j(t)x

i
1x

j
2, then (2) is written in the form

∂

∂t
Γ2 = −6πiΓ2.

More precisely d
dtc

2
i,j(t) = −6πi · c2i,j(t), thus c2i,j(t) = λ2i,j exp(−6πit) for some λ2i,j ∈ C. Since

Γ2(0, x1, x2) = x2, then λ
2
0,1 = 1 and λ2i,j = 0 otherwise. Therefore Γ2(t, x1, x2) = exp(−6πit) · x2

and h2(x1, x2) = x2. On the other hand, (1) is written in the form

∂

∂t
Γ1 = −2πi[Γ1 + e−6πitx22b(γ(t))] = −2πi(Γ1 + e−6πitb(e2πit) · x22).

Analogously, d
dtc

1
i,j(t) = −2πi · c1i,j(t) for all (i, j) 6= (0, 2). Since Γ1(0, x1, x2) = x1, then c

1
1,0(t) =

exp(−2πit) · x1 and c1i,j(t) = 0 for all (i, j) /∈ {(1, 0), (0, 2)}. Finally d
dtc

1
0,2(t) = −2πi(c10,2(t) +

e−6πitb(e2πit)). Now recall that the solution to the Cauchy problem

α′(t) = −2πi · α(t)− 2πie−6πitb(e2πit), α(0) = 0

is given by

α(t) = −2πie−2πit

∫ t

0
e2πise−6πisb(e2πis)ds = −e−2πit

∫ t

0
e−6πisb(e2πis)2πie2πisds

In particular, α(1) = −e−2πi
∫
γ

b(z)
z3 dz. Thus, if we set b(z) = −z2/2πi, then α(1) = 1 and h(x1, x2) =

(x1 + x22, x2).

Completing the above example we obtain:

Proposition 3.3. There is a vector fieldX ∈ Gen(X(C3, 0)) which satisfies condition (?) and has all leaves

closed but does not admit a holomorphic first integral.
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Proof. We consider the vector field X(x, y, z) = −[x − 1
2πiy

2z2] ∂
∂x − 3y ∂

∂y + z ∂
∂z . Then X ∈

Gen(X(C3, 0)). After one blow up along the z-axis one has

π∗X(t, x, z) = −(x− 1

2πi
t2x2z2)

∂

∂x
+

1

x
(−3tx− t(−x+ t2x2z2))

∂

∂t
+ z

∂

∂z

= −x(1− 1

2πi
t2xz2)

∂

∂x
− t(2 + t2xz2)

∂

∂t
+ z

∂

∂z

which has an isolated singularity at the origin, and whose holonomy with respect to the z-axis is precisely

the map G̃ in Example 2.1. Thus it satisfies condition (?) and has all leaves closed but, from Proposition 2.3

and from what we have observed in Example 3.1 above, FX does not admit a holomorphic first integral.

3.4 - STABILITY, FLAGS, AND FIRST INTEGRALS

Proposition 3.3 shows that the statements of Theorems 1.2 and 1.3 in Câmara and Scárdua 2009 are in-

complete. The correct statement involves a natural adaptation of a classical notion for regular smooth

foliations.

3.4.1 - Stability

We consider a germ X ∈ Gen(X(C3, 0)) satisfying condition (?).

Definition 3.4 (stability). The germ X is transversely stable with respect to SX if for any representative

XU of the germX , defined in an open neighborhood U of the origin, any open section Σ ⊂ U transverse to

SX with Σ ∩ SX = {qΣ} 6= {0}, and any open set qΣ ∈ V ⊂ Σ there is an open subset qΣ ∈W ⊂ V such

that all orbits of XU throughW intersect Σ only in V .

As above mentioned, Definition 3.4 is a natural adaptation to our singular framework of the classical

notion of stability due to Lyapunov (Lyapunov 1892) and rediscovered by Reeb (cf. Godbillon 1991).

3.4.2 - Flags, dicritical components, and Kupka singularities

Let us first recall some basic notions from singularities of foliations in dimension two. Let F be a germ

of singular foliation at the origin 0 ∈ C2, then Seidenberg’s theorem (Seidenberg 1968) gives a reduction

of the singularities of F by the blow-up method. This is also called desingularization or resolution of F .

We say that F has a dicritical component if its resolution contains a non-invariant projective line. This is

equivalent to say that F has infinitely many separatrices, i.e., infinitely many analytic leaves intersecting

the origin (Camacho and Sad 1982).

GivenX ∈ X(C3, 0), we denote its corresponding foliation by FX . By a flag containing FX , we mean

a germ of codimension one holomorphic foliation Fω at 0 ∈ C3 giving by an integrable holomorphic 1-form

ω = Adx+Bdy +Cdz with singular set Sing(Fω) of codimension ≥ 2 containing the origin and with the

property that (for some representatives of each foliation defined in a common domain containing the origin)

each leaf of FX is contained in some leaf of Fω. This last property is enclosed in the formula iXω ≡ 0. The

notion of flag is detailed in Mol 2011. A codimension two irreducible component K ⊂ Sing(Fω) \ {0} is

a Kupka type component if dω does not vanish along K. According to Kupka’s theorem (Calvo-Andrade

1994, Kupka 1964), for a representative FU of Fω in an open neighborhood 0 ∈ U , where Fω is given by an
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integrable holomorphic 1-form ωU , and a representativeKU ⊂ Sing(FU ) of the componentK ⊂ Sing(Fω),

there is a germ of foliation η(K) at 0 ∈ C2 such that for each point q ∈ KU there is a holomorphic

submersion ϕq : Vq → C2, with the property that q ∈ Vq ⊂ U, ϕq(q) = 0 and ϕ∗
q(η(K)) = FU |Vq

. The

foliation η(K) is then called the Kupka transverse type of Fω along the Kupka componentK. One says that

the Kupka component K is dicritical if the corresponding transverse type η(K) has a dicritical singularity

at the origin 0 ∈ C2, in the above sense.

Example 3.2. A particular case of a dicritical Kupka component is the one induced by the codimension one

foliation Fωm,n
, where ωm,n = nydx − mxdy and m,n ∈ Z+. In fact it represents the product foliation

FXm,n
× (C, 0) with Xm,n = mx ∂

∂x + ny ∂
∂y .

We shall call a dicritical Kupka component η(K) of radial type if in suitable coordinates η(K) is given

by a 1-form ωm,n as above.

Given a flag Fω containing the foliation FX , consider its restriction Fω|Σ to a transverse section Σ ≈
(C2, 0) as above. Since Σ is transverse to FX , it is also transverse to Fω off the singular set Sing(FX) and

therefore one may identify the germ induced by Fω at the point qΣ = Σ ∩ S(X) with the germ of foliation

at the origin 0 ∈ C2. Then one says that Fω|Σ is dicritical if this corresponding germ in dimension two is

dicritical.

Definition 3.5 (Adapted flag). Let now X ∈ Gen(X(C3, 0)) with linear part given by J1(X) = mx ∂
∂x +

ny ∂
∂y −kz

∂
∂z , then the local holonomy generator h of FX with respect to the distinguished axis z is periodic

with linear part given by J1(h)(x, y) = (exp(−2mπi
k )x, exp(−2nπi

k )y). In particular, φ := h◦(k) is tangent

to the identity. Therefore, this map can be written locally in the form φ(x, y) = exp[1]X̂(x, y), where X̂ is

its infinitesimal generator. Then one says that (FX ,Fω) is an adapted flag if FX ⊂ Fω is a flag such that

Fω|Σ is a germ of foliation having a dicritical component adapted to φ = h◦(k).

Notice that the last definitions are of finite determinacy character. Furthermore, if Fω|Σ is dicritical,

then (FX ,Fω) is automatically an adapted flag. Using this terminology, one may complete the statements

in Câmara and Scárdua 2009 as follows.

Theorem 3.4. Suppose that X ∈ Gen(X(C3, 0)) satisfies condition (?) and let SX be the distinguished

axis of X . Then the following conditions are equivalent:

1. The leaves of FX are closed off the origin and transversely stable with respect to SX ;

2. Hol(FX , SX ,Σ) has finite orbits and is (topologically) stable;

3. Hol(FX , SX ,Σ) is periodic;

4. FX has a holomorphic first integral.

Moreover, in terms of flags of foliations, the above conditions are also equivalent to each of the following

conditions:

5. The leaves of FX are closed off the origin and there is an adapted flag (FX ,Fω);

6. The leaves of FX are closed off the origin and there is a flag FX ⊂ Fω such that Fω is a Kupka

component of radial type.
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Proof of the first part of Theorem 3.4. It follows immediately from the definition of transverse stability of

germs of vector fields and from (topological) stability of maps that (1) implies (2). It comes from Lemma 2.5

that (2) implies (3). Now let us prove that (3) implies (4). SinceX satisfies condition (?) andHol(FX , SX ,Σ)

is linearizable, then Elizarov and Ilyashenko 1984 ensures that FX is linearizable. Therefore, one may sup-

pose without loss of generality that X(x) = λx1
∂

∂x1
+ µx2

∂
∂x2

− κx3
∂

∂x3
, where λ, µ, κ ∈ R+. Since

Hol(FX , SX ,Σ) is periodic, one may suppose without loss of generality that λ = m,µ = n, κ = k ∈ Z+.

The result then follows from Lemma 2.3 in Câmara and Scárdua 2009. Finally let us verify that (4) im-

plies (1). The existence of a first integral for FX ensures that the leaves of FX are closed off Sing(FX).

Furthermore, Hol(FX , SX ,Σ) = 〈H〉 admits a couple of generically transverse FX -invariant holomor-

phic functions whose restrictions to Σ have the level sets preserved by H . Thus Theorem 2.3 ensures that

Hol(FX , SX ,Σ) is periodic and, in particular, topologically stable. Hence the leaves of FX are transversely

stable with respect to SX . This proves the first four equivalences in Theorem 3.4.

As a straightforward consequence (cf. Theorem 2 in Câmara and Scárdua 2009), one has the following

topological criterion for the existence of invariant meromorphic functions for elements in Gen(X(C3, 0)).

Theorem 3.5. Let X ∈ Gen(X(C3, 0)) satisfy condition (?) with distinguished axis SX . Suppose that FX

has closed leaves off the origin and is transversely stable with respect to SX . Then there is an FX -invariant

meromorphic function adapted to (FX , SX).

Now we study the topological invariance of the existence of a holomorphic first integral for a generic

germ of holomorphic vector field, as a consequence of our preceding results. We recall that two germs of

holomorphic vector fields X and Y at the origin 0 ∈ Cn are topologically equivalent if there is a homeo-

morphism ψ : U → V , where U, V are neighborhoods of the origin 0 ∈ Cn and XU , YV are vector fields

representing X,Y respectively, such that ψ takes orbits of XU into orbits of YV . Such a map ψ takes sepa-

ratrices of XU into separatrices of YV : indeed, a separatrix of XU is an orbit which is closed off the origin,

and the same holds for its image under ψ. Assume that the vector fieldX is generic satisfying condition (?)

and admits a holomorphic first integral. In this case one has:

Claim 6. The vector fieldX is analytically linearizable, sayX(x, y, z) = Xn,m,−k := nx ∂
∂x+my

∂
∂y−k

∂
∂z

with n,m, k ∈ Z+ in suitable local coordinates (x, y, z) ∈ (C3, 0). In particular, X admits a unique

separatrix off the dicritical plane {z = 0}, and this separatrix corresponds to the distinguished separatrix

SX .

Proof. Indeed, the analytic linearization of X is a straightforward consequence of the first part of Theo-

rem 3.4 (or, since by hypothesis there is a holomorphic first integral, in view of Lemma 2.5 and Elizarov

and Ilyashenko 1984). In this normal form

X(x, y, z) = Xn,m,−k := nx
∂

∂x
+my

∂

∂y
− k

∂

∂z

the “dicritical plane” is the plane {z = 0} and the distinguished separatrix is the z-axis. The orbit O(a,b,c)

of X through the point (a, b, c) is given by

φ(t) = (x(t), y(t), z(t)) = (aent, byemt, ce−kt), t ∈ C.
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Thus, if O(a,b,c) accumulates at the origin, either c = 0 or c 6= 0 and a = b = 0. For instance, if c 6=
0 6= a, then the orbit is contained in the hypersurface xkzn = akcn 6= 0, which does not accumulate at the

origin.

Lemma 3.6. A topological equivalence takes the distinguished axis of X into the distinguished axis of Y .

Proof. Indeed, as we have seen above, the image ψ(SX) is some separatrix of Y . If this is not the distin-

guished axis of Y , then the distinguished axis of Y is taken by ψ−1 into a separatrix other than the distin-

guished axis of X . Therefore, according to Claim 6, ψ−1(SY ) must be a separatrix of the “dicritical” part

of X , i.e., in the coordinates (x, y, z) above, where X(x, y, z) = Xn,m,−k, we have ψ
−1(SY ) ⊂ {z = 0}.

Nevertheless, any invariant neighborhood of a leaf contained in a dicritical separatrix of X off the origin

intersects infinitely many separatrices (namely, those contained in the intersection of this neighborhood with

the dicritical plane {z = 0}). On the other hand, this same phenomena does not occur for arbitrarily small

invariant neighborhoods of a leaf contained in the distinguished axis SY of Y . Therefore, necessarily ψ(SX)

is the distinguished axes of Y .

From the above considerations we immediately obtain Corollary 3.2 from Theorem 3.4.

3.4.3 - Flags and integrability

In this section we prove the remaining part of Theorem 3.4. We address therefore the following problem.

Given a germ of foliation by curves FX induced by a germ of vector field of the form

X = mx(1 + a(x, y, z))
∂

∂x
+ ny(1 + b(x, y, z))

∂

∂x
− kz(1 + c(x, y, z)

∂

∂z
(3)

with a, b, c ∈ M3, what are the consequences of the existence of a codimension 1 germ of holomorphic

foliation tangent to X , which is transversely dicritical with respect to S?

We begin by studying the consequences of the existence of a flag foliation with a dicritical transverse

type for a vector filed X ∈ Gen(X(C3, 0)).

Lemma 3.7. Let FX be a germ of foliation by curves at (C3, 0), S an invariant curve of FX through the

origin, and Fω a codimension one foliation satisfying the following conditions:

(i) Fω is tangent to X;

(ii) There is a section Σ transverse to S such that Fω|Σ is dicritical.

Then Fω is transversely dicritical with respect to S.

Proof. Since the orbits of X are contained in the leaves of F, then these leaves are invariant by the flow

of X . Therefore, if Σ′ is another section transversal to S and h : Σ −→ Σ′ is an element of the holonomy

pseudogroup ofX with respect to S, then it is a diffeomorphism taking the leaves of F|Σ onto the leaves of

F|Σ′ .

We are now in a position to finish the proof of Theorem 3.4. For this sake, let us first recall some

facts proved along this work and introduce some terminology. First notice that any X ∈ Gen(X(C3, 0))

admitting a holomorphic first integral must satisfy condition (?) in Definition 3.3 (cf. Câmara and Scárdua
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Figure 3 - The liftings of γ along the leaves of FX starting at points of L.

2009). Assume the curve SX is the z-axis, let Σz := (z = const .) be a section transverse to SX , and

Hol(FX , SX ,Σz) be the holonomy of FX with respect to SX evaluated at Σz .

End of the proof of Theorem 3.4. First suppose all the leaves of FX are closed off the origin {0} ⊂ C3 and

that there is an adapted flag FX ⊂ Fω. Given a germ of leaf L of FX it follows that the closure L ⊂ L∪{0}
is a germ of analytic subset of pure dimension one (Gunning and Rossi 1965) at (C3, 0). Since this leaf is

transverse to Σz , one concludes that L ∩ Σz is a finite set. On the other hand, given a point x ∈ L ∩ Σz ,

its orbit in the holonomy group is also contained in L ∩ Σz , so that it is a finite set. Thus the orbits of

the generator of Hol (FX , SX ,Σz) are finite. By hypothesis, for any z0 ∈ S(X) the foliation Fω|Σz0
has

a dicritical component. Now consider a simple loop γ around the origin inside the z-axis starting from z0.

Pick a leaf L of Fω|Σz0
and consider the liftings of γ starting at points of L, along the trajectories of FX .

Then these liftings form a three dimensional real variety, say SL, whose intersection with Σz0 is given by L

and L′ (see Figure 2). In particular, if h := hγ is the generator of Hol (FX , SX ,Σz), then L
′ = h(L). For the

1-form ω, one has that SL is tangent to Ker(ω) and SL∩Σz0 is tangent to the induced foliation Fω|Σz0
. Thus,

L′ is a leaf of Fω|Σz0
. Since Fω|Σz0

has a dicritical component and h is a diffeomorphism with resonant

linear part having finite orbits, then Lemma 2.4 ensures that h is periodic (in particular linearizable and

finite). Since FX ∈ Gen(X(C3, 0)) has linearizable periodic holonomy, then it follows from Elizarov and

Ilyashenko 1984 that the foliation FX is also analytically linearizable. Therefore, one may suppose without

loss of generality thatX(x, y, z) = mx ∂
∂x+ny

∂
∂y −kz

∂
∂z . This vector field has a holomorphic first integral.

From the above linearization, it is easy to see that the flag foliation Fω containing FX must have a linear

dicritical Kupka transverse type along the z-axis. In particular, Fω is of radial type. This proves that (5)

implies (1)-(4) and also (6). Since the converse is immediate, this proves that the first four conditions in

Theorem 3.4 are equivalent to conditions (5) and (6).

Remark 3.1 (Parabolic curves and smooth sets of fixed points cf.Abate 2001). In our previous paper Câmara

and Scárdua 2009 it is stated an integrability result mentioning only the fact that the leaves of FX are closed

off Sing(FX). Nevertheless, as we saw above, this result is not correct. Indeed, there are such kind of vector

fields without holomorphic first integral (cf. Example 3.3).

Let us identify precisely the missing point in Câmara and Scárdua 2009. This justifies the further topo-

logical conditions introduced above in order to correct the statements of the main theorems therein (Theo-
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rems 1.2 and 1.3 in Câmara and Scárdua 2009). Along these lines we shall keep all the notations introduced

in Câmara and Scárdua 2009. In Theorem 3.6 of Câmara and Scárdua 2009 we have stated that every non

trivial complex map germ fixing the origin admits a parabolic curve. Javier Ribon draw our attention to the

fact that this is not true with the following example:

Let Xo = py ∂
∂y − qx ∂

∂x with p, q ∈ Z+ and X = xyXo, then the orbits of the map Φ(x, y) =

exp[1]X(x, y) are confined in the level sets of the first integral f(x, y) = xpyq to the vector field X .

Therefore, Φ has no orbit attracting to the origin, thus it does not admit any parabolic curve at the origin.

Some time after that MarcoAbate communicated us the same fact showing that Theorem 3.6 in Câmara

and Scárdua 2009 contradicts Proposition 2.1, p. 185, in Abate 2001. As a matter of fact, Lemma 3.5 (and

thus Theorem 3.6) is not correct. This is due to the authors misinterpretation of the proof of Corollary 3.1

in Abate 2001 wrongly stated as Theorem 3.2 in Câmara and Scárdua 2009. Indeed, the correct statement

is the following: Let G ∈ Diff1 (C2, 0) and suppose that S := Fix(G) is a smooth curve through the origin

such that ind0(G,S) /∈ Q+. Then G admits ν(f)− 1 parabolic curves.

More precisely, one can check that this would be the appropriate hypothesis looking to the proof of

Theorem 3.1 in Abate 2001. Now one can check that the diffeomorphism in the proof of Lemma 3.5 in

Câmara and Scárdua 2009 does not satisfy the conditions of the above theorem.

We finish with an immediate consequence of the proof of Theorem 2.3.

Corollary 3.8. Let X ∈ Gen(X(C3, 0)) and SX be the distinguished axis of X . Suppose that FX admits a

pure meromorphic first integral, then the holonomy group Hol(FX , SX ,Σ) is periodic.
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