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ABSTRACT
Gestational diabetes mellitus (GD) is a form of insulin resistance triggered during the second/third trimesters 
of pregnancy in previously normoglycemic women. It is currently estimated that 10% of all pregnancies in 
the United States show this condition. For many years, the transient nature of GD has led researchers and 
physicians to assume that long-term consequences were absent. However, GD diagnosis leads to a six-fold 
increase in the risk of developing type 2 diabetes (T2D) in women and incidence of obesity and T2D is 
also higher among their infants. Recent and concerning evidences point to detrimental effects of GD on the 
behavior and cognition of the offspring, which often persist until adolescence or adulthood. Considering 
that the perinatal period is critical for determination of adult behavior, it is expected that the intra-uterine 
exposure to hyperglycemia, hyperinsulinemia and pro-inflammatory mediators, hallmark features of GD, 
might affect brain development. Here, we review early clinical and experimental evidence linking GD to 
consequences on the behavior of the offspring, focusing on memory and mood disorders. We also discuss 
initial evidence suggesting that downregulation of insulin signaling cascades are seen in the brains of GD 
offspring and could contribute to the consequences on their behavior. 
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INTRODUCTION

Gestational diabetes (GD) is defined as a form of 
insulin resistance that initially manifests during 
the second or third trimesters of pregnancy in 
previously normoglycemic women. It is expected 
that GD occurs in up to 10% of all pregnancies, 
reaching higher incidence in developed countries, 

especially in the United States (DeSisto et al. 2014). 
Epidemiological data also suggest an alarming 
increase in the number of cases over the last few 
years (Albrecht et al. 2010). Risk factors for GD 
include family history of overweight and obesity, 
nonwhite race and advanced maternal age (Cypryk 
et al. 2008, Savitz et al. 2008), but independent of 
risk factor any pregnant woman may manifest this 
metabolic change.

GD has been associated to macrosomia of 
the offspring and to sporadic reports of neonatal 
hypoglycemia, hypocalcemia and respiratory 
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distress syndrome (Frías et al. 2007). Despite these 
observations, until recently GD was considered 
a transient condition associated with no major 
consequence to long-term health of the mother or 
child, since it is expected that only 3-5% of women 
remain diabetic after labor (Gilmartin et al. 2008) 
and longitudinal studies following this population 
are still rare. Therefore, whereas extensive research 
has focused on unraveling the consequences of 
obesity and type 2 diabetes (T2D), the long-term 
effects of GD have been poorly scrutinized and 
are possibly underestimated (Poston 2011). It is 
now known that women who developed insulin 
resistance during pregnancy have a six-fold increase 
in the risk of developing T2D later in life compared 
to women who remained euglycemic (Cheung and 
Byth 2003). However, more recent and concerning 
evidence point to detrimental effects of GD on 
the development, metabolism and behavior of 
the offspring (Daraki et al. 2017, Yessoufou and 
Moutairou 2011, Garcia-Vargas et al. 2012).

Early studies by Dorner and Mohnike (1976) 
suggested a higher incidence of diabetes in adults 
born to mothers with GD, which has been further 
supported by several other studies (Silverman et 
al. 1995, Poston and Health 2010). Animal and 
human studies suggest that the exaggerated glucose 
transportation across the placenta is the main 
responsible for fetal hyperglycemia, pancreatic 
hyperplasia and enhanced insulin secretion, 
which might generate life-long persistent effects 
on pancreatic secretory function (Plagemann et 
al. 1998). Increased hypothalamic inflammation 
and disrupted insulin signaling in this brain 
region are classical mechanisms involved in the 
physiopathology of T2D, and recent studies using 
animal models have showed that similar alterations 
occur in the hypothalamus of GD offspring even 
before T2D manifests (Melo et al. 2014, Steculorum 
and Bouret 2011).

Considering that the perinatal period is critical 
for determination of adult behavior, including levels 

of anxiety, impulsivity and stress responses (Bolton 
and Bilbo 2014), it is expected that the intra-uterine 
exposure to hyperglicemia, hyperinsulinemia and 
proinflammatory mediators, hallmark features 
of GD, might have other consequences to both 
brain function and behavior. Animal models have 
been extremely useful in providing insights into 
this question. However, since GD is a transient 
and multifactorial condition, animal models that 
recapitulate all aspects of the disease remain 
challenging (Pasek and Gannon 2013).

Here, we review emerging clinical and 
experimental evidence linking GD to late 
consequences to the behavior of the offspring, 
especially concerning memory formation and 
mood disorders. Although preliminary, these early 
studies point out to GD as an important factor 
influencing offspring brain health. Moreover, 
studies from our group and others have recently 
described how inflammation and disrupted insulin 
signaling in memory-related brain regions occur 
in conditions that affect cognition (Bomfim 
et al. 2012, Lourenço et al. 2013, Neves et al. 
2016). Therefore, we also focus on the evidence 
suggesting that downregulation of insulin receptors 
and its intracellular cascade are seen in the brains 
of GD offspring and could contribute to affect their 
behavior. 

ANIMAL MODELS OF GD

Currently available animal models of GD rely on 
surgical, chemical, nutritional or genetic approaches. 
For over a century, partial pancreatectomy performed 
before or during various stages of pregnancy has 
been described as an efficient method to surgically 
induce GD in different species, including rodents and 
dogs (Carlson and Drennan 1911, Markowitz and 
Soskin 1927, Cuthbert et al. 1936, Jawerbaum et al. 
1993). Alternatively, models involving permanent 
damage to pancreatic β-cells can be induced 
through the administration of chemicals such as 
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the nitrosurea derivative streptozotocin (STZ) and 
alloxan, a pyrimidine derivative (Junod et al. 1969, 
Lenzen and Panten 1988). Like pancreatectomy, 
these drugs induce an irreversible state of diabetes 
in experimental animals due to the drastic reduction 
of endogenous insulin, giving rise to a condition 
more closely related to T1D. As a consequence, 
such models provide limited information on the 
pathogenesis of GD, although they are useful to 
characterize the impact of hyperglycemia on the 
offspring. 

As obesity is considered one of the main 
risk factors for GD, administration of high-
fat (HFD), or glucose infusion to pregnant 
animals have been widely used as experimental 
models (Bihoreau et al. 1986, Taylor et al. 
2005, Srinivasan et al. 2006). Likewise, 
hyperglycemia and insulin resistance are 
hallmarks of a number of genetic models used 
for the study of metabolic diseases. Transgenic 
mice that do not express leptin or leptin 
receptors are characterized by an inability to 
adequately suppress feeding behavior and are 
classically used to model obesity and T2D. 
While homozygote knockouts for leptin or its 
receptor are infertile, heterozygous mice are 
glucose intolerant and develop GD (Lambin 
et al. 2007). It is important to mention that, 
although obese women have an increased risk 
for developing GD, only about 20% of all GD 
cases are attributable to obesity (Ferrara 2007, 
Kim et al. 2012a). Many women develop GD 
despite being lean, meaning that factors other 
than increased body mass have an important 
role in the pathogenesis of the disease, and 
obesity-related models have limited construct 
validity. Moreover, HFD alters serum fatty 
acid profile (Liu et al. 2015), possibly resulting 
in consequences on the offspring which are not 
necessarily related to GD.

Pregnancy is associated to a physiological 
decrease in insulin sensitivity in peripheral 

tissues, which are adaptive to allow increased 
access of the fetus to mother’s circulating glucose. 
Several studies indicate that pancreatic β-cell 
adaptations to pregnancy are crucial to maintain 
normoglycemia. Such adaptations include β-cell 
hypertrophy and proliferation, as well as increased 
insulin production and secretion (Baeyens et al. 
2016). Failure on this physiological pancreatic 
adaptation or an abnormally increased peripheral 
insulin resistance may contribute to generate GD. 
A number of GD mouse models are based on 
genetic manipulation of factors involved in β-cell 
adaptation during pregnancy, including prolactin 
receptor (PrlR) (Lee et al. 2009), c-Met, a tyrosine 
kinase receptor activated by hepatocyte growth 
factor (HGF) (Demirci et al. 2012), the serotonin 
receptor 5Htr2b (Kim et al. 2010), and the nuclear 
factors menin (Karnik et al. 2007), hepatocyte 
nuclear factor 4α (HNF-4α) (Gupta et al. 2007), 
Forkhead box D3 (FoxD3) (Plank et al. 2011), 
and FoxM1 (Zhang et al. 2010). Although these 
transgenic models may be useful in elucidating 
how GD impacts the offspring, they target specific 
signaling pathways, in contrast to the human GD 
which is polygenic and multifactorial in nature. 

The generation of animal models that fully 
recapitulate GD is challenging, especially as 
a variety of risk factors, including ethnicity, 
weight, and family history can contribute to the 
development of the disease. Also, the severity 
of hyperglycemia found in some models is not 
typical of human GD. The main advantages and 
disadvantages of currently used animal models of 
GD are summarized in Table I. An ideal animal 
model would involve normoglycemic females at 
early pregnancy developing mild hyperglycemia 
during pregnancy, and returning to normal glucose 
levels shortly after labor. Another drawback is the 
fact that, once diagnosed, the condition is treated 
in humans, suggesting that normalization of 
glycemia in experimental GD could better reflect 
the influence of the disease in the offspring. 
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METABOLIC AND BEHAVIORAL 
CONSEQUENCES OF BRAIN INSULIN 

SIGNALING DYSFUNCTION

Historically, the skeletal muscle, adipose tissue and 
liver were considered the main insulin-responsive 
tissues in control of peripheral metabolism. 
T2D was classically associated with impaired 
sensitivity to insulin in these tissues, decreasing 
glucose uptake and leading to hyperglycemia, even 
when insulin production and release were normal 
(Hotamisligil 2008). The brain was considered 
an insulin-insensitive organ until the late 1970’s, 
when it was demonstrated that i.c.v. infusion of 
insulin decreased food intake in experimental 
models (Woods et al. 1979). After this landmark 
finding, the role of insulin signaling in brain 
regions that control peripheral metabolism have 
been extensively scrutinized. The hypothalamus is 
recognized as a key structure in control of whole 
body energy homeostasis in response to insulin 
and other hormones, and it is now known that 

hypothalamic insulin resistance plays a central role 
in obesity and T2D (Arruda et al. 2011, Thaler et 
al. 2012). 

Under physiological conditions, binding 
of insulin to its receptor triggers its intracellular 
tyrosine kinase activity. Insulin receptor substrate 
(IRS) proteins are a family of high molecular 
weight proteins, of which IRS-1 and IRS-2 are 
the most extensively studied. IRS-1 is targeted by 
insulin receptors and undergoes phosphorylation 
at tyrosine residues, a process recognized as the 
key initial step of the insulin signaling pathway, 
which is followed by PI3K activation and Akt 
phosphorylation. During T2D development, 
increased levels of pro-inflammatory mediators, 
especially TNF-α, act on the hypothalamus and 
peripheral tissues causing activation of intracellular 
stress kinases which can also target IRS-1, although 
they phosphorylate serine instead of tyrosine 
residues (Weissmann et al. 2014, Belgardt et al. 
2010). Phosphorylation of IRS-1 at serine residues 

TABLE I
Advantages and disadvantages of currently available animal models of gestational diabetes.

Strategy Method Major Advantages Major Disadvantages

Surgery -Pancreatomy -Affordable
-Not accurate pathogenesis of GD

-Irreversible after labor

Chemically 
Induced

-Streptozotocin
-Alloxan

-Affordable
-Can be applied to different species

-Not accurate pathogenesis of GD
-Potential nonspecific pharmacological 

consequences 
-Severe hyperglycemia
-Irreversible after labor

Nutritional 
Manipulation

-High-fat diet
-High-sucrose diet
-Glucose infusion

-Affordable
-Can be applied to larger animals

-Reproduces cases of GD associated 
to obesity

-Ignores genetic contributions of GD
-Does not reflect cases of GD not 

associated to obesity

Genetic 
Manipulation

-Gene knockouts
-Transgenic 

overexpression

-Spontaneous development of GD
-Reproduces genetic contributions 

of GD
- Transient nature

-Not accurate pathogenesis of GD
-Not an option for many species 
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inhibits its phosphorylation at tyrosine residues and 
thus interferes with its ability to engage in insulin 
signaling even in the presence of insulin (Copps 
and White 2012).

Insulin and insulin-like growth factor (IGF) 
receptors in the central nervous system, however, 
are not restricted to the hypothalamus, being widely 
distributed throughout the encephalon (Zhao et al. 
2004). The hippocampus and cortex have extensive 
expression of theses receptors and are centrally 
involved in memory formation (Zhao and Alkon 
2001). By acting on these brain regions, insulin 
was shown to be neuroprotective (Plum et al. 2005, 
Kovacs and Hajnal 2009, Ott et al. 2012, Bomfim et 
al. 2012) and to affect synapse plasticity (Wan et al. 
1997, Biessels et al. 1996) and cognitive function 
in healthy subjects (Ott et al. 2012, Benedict et al. 
2004). Interestingly, growing evidence support that 
defective hippocampal insulin signaling is related 
to conditions that affect memory processing, 
particularly Alzheimer’s disease (AD) (Bomfim et 
al. 2012, Craft and Watson 2004, Ma et al. 2009). 
TNF-α levels are elevated in the brains of AD 
patients and transgenic mouse models (Takeda et 
al. 2010, Salkovic-Petrisic and Hoyer 2007). As in 
the hypothalamus of T2D patients, hippocampal 
activation of stress kinases (JNK, IKK and PKR) 
is also reported in response to increased levels 
of TNF-α in AD models (Lourenço et al. 2013, 
Forny-Germano et al. 2014, Ma et al. 2009). As 
a consequence, IRS-1 serine phosphorylation is 
increased and insulin signaling is impaired in the 
hippocampus, contributing to memory impairment 
in mouse models of sporadic and familial forms 
of AD (Bomfim et al. 2012). Our group has 
recently investigated whether similar molecular 
mechanisms also underlie cognitive impairment 
seen in sepsis survivors. Sepsis is accompanied 
by alterations in circulating glucose levels in 
acute stages and insulin administration was shown 
to increase survival rates (Gearhart and Parbhoo 
2006). These patients often present late cognitive 

impairment and some of them never fully recover 
(Iwashyna et al. 2010, Pandharipande et al. 2013, 
Semmler et al. 2012). Using an experimental 
model of sepsis, we were able to mimic the late 
cognitive impairment seen in patients and found 
that increased hippocampal expression of TNF-α 
and impaired insulin signaling in this brain region 
also accompany sepsis-associated late cognitive 
decline (Neves et al. 2016). Whether impaired 
brain insulin signaling is a common denominator 
of other conditions affecting memory remains to be 
established.

Even though GD represents a self-limited 
metabolic condition for the mother, factors such 
as the high permeability of placental barrier and 
the maternal pro-inflammatory and hyperglycemic 
status can be extremely deleterious to the fetus 
brain. Women with GD have increased plasma 
levels of inflammation markers, such as C-reactive 
protein, malondialdehyde (MDA) (Badehnoosh et 
al. 2017), TNF-α (Friedman et al. 2008) among 
others (Lowe et al. 2010). Increased expression of 
the transcription factor peroxisome proliferator-
activated receptor γ (PPARγ) has been described in 
leukocytes from GD patients compared to healthy 
pregnant women (Wójcik et al. 2015). Importantly, 
one study has shown that maternal overweight, but 
not exposure to intra-uterine hyperglycemia, was 
associated with increased plasma levels of IL-6 and 
C-reactive protein in 18-27-year-old offspring from 
GD mothers (Kelstrup et al. 2012). Animal studies 
have shown that both placenta and brains of GD 
fetuses have increased levels of pro-inflammatory 
markers (Tang et al. 2015, Melo et al. 2014). In 
the hypothalamus, the pro-inflammatory profile 
appears to be long-lasting, since high expression 
of IL1-β mRNA and increased protein levels of 
NFκB/p-JNK were described in the hypothalamus 
of adult mice born from high-fat diet-fed mothers 
(Melo et al. 2014). Levels of endoplasmic reticulum 
stress markers were also higher in the brains of 
these adolescent animals delivered by GD females, 
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suggesting that obesity-induced insulin resistance 
during pregnancy is associated to persistent 
changes in physiological protein synthesis (Melo et 
al. 2014). In addition, leptin resistance and reduced 
neural projections within hypothalamic nuclei of 
adult mice born from hyperglycemic dams were 
also reported (Steculorum and Bouret 2011). 
These findings suggest that hypothalamic effects 
of GD in the offspring might be a consequence of 
inflammation or disrupted central insulin response. 
In this scenario, it seems plausible that the insulin 
signaling pathway in brain regions involved in 
learning and memory might also be affected, and 
this hypothesis has never been directly addressed.

EMERGING EVIDENCE OF LONG-
LASTING INFLUENCE OF GD TO BRAIN 

AND BEHAVIOR OF THE OFFSPRING

MEMORY AND BRAIN INSULIN SIGNALING 

Epidemiological, clinical and experimental studies 
support that GD can interfere with intra-uterine 
brain development and influence behavior later 
in life. Impaired performance in explicit memory 
tasks have been reported in 1-year-old babies 
(Deboer et al. 2005, Riggins et al. 2010), whereas 
a slower development of cognition and language 
was found in 18-month-old babies from obese 
and diabetic mothers compared to the offspring 
of healthy subjects (Torres-Espinola et al. 2015). 
These cognitive deficits appear to be reversible, as 
older children from diabetic mothers have normal 
performance in different memory tasks (Riggins et 
al. 2010). These findings are suggestive of delayed 
neurocognitive development in the offspring of GD 
mothers.

Incipient studies have suggested that brain 
insulin signaling is involved in neurological deficits 
of offspring from diabetic mothers. One interesting 
study recorded fetal brain activity triggered by 
glucose ingestion in healthy or GD pregnant 
subjects, and associated diabetes to a slower brain 

response of the offspring (Linder et al. 2015). 
Using a STZ rat model, Jing et al. (2014) found 
a decreased expression of IGF-1 and increased 
expression of insulin receptors in brains of E14, E16 
and E18 fetuses from diabetic mothers, effects that 
were accompanied by reduced number of dendritic 
spines and smaller levels of the pre-synaptic 
protein synaptophysin. Authors found that these 
alterations were absent in fetuses from rats treated 
with insulin throughout pregnancy, suggesting that 
they are directly linked to hyperglycemia. Another 
study evaluated the expression of IGF-1 and insulin 
receptors specifically in the hippocampus of pups 
from STZ-treated pregnant rats. Authors found 
that IGF-1 receptor expression was decreased in 
the hippocampi of P7 and P14 male rats born from 
STZ-treated dams, whereas hippocampal insulin 
receptor expression was slightly increased at P0, 
but significantly reduced in P14 rats born from 
diabetic dams compared to control groups (Hami 
et al. 2013). Structural and electrophysiological 
alterations have also been described in the 
hippocampus of rodents born from GD mothers. 
A decreased number of neurons was found in the 
pyramidal layers of CA1 and CA3 hippocampal 
regions at postnatal days 7 and 21, in the offspring 
of STZ-treated rats (Golalipour et al. 2012). 
Chandna et al. (2015) reported that hippocampal 
neurons in newborn pups from STZ-treated females 
showed altered action potential kinetics along with 
a more hyperpolarized resting membrane potential. 
Despite these changes in neonatal hippocampal 
excitability, animals in this study showed normal 
memory acquisition as adults.

MOOD DISORDERS 

Classical studies in developmental psychobiology 
and physiology have shown how variations in 
perinatal environment are associated with changes 
in behavior that persist throughout life. Increased 
impulsivity, anxiety levels and depressive-like 
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behavior, among other emotional behaviors, 
have been described as a consequence of the 
exposure to different stressful environments during 
development (Zhang and Meaney 2010). Studies 
which directly investigated whether intra-uterine 
exposure to hyperglycemia and hyperinsulinemia 
were associated to altered anxiety levels showed 
confounding results. While some of them report 
no differences in anxiety levels among rats born 
from GD dams when diabetes was induced before 
pregnancy (Kinney et al. 2003, Ramanathan et al. 
2000), one study reported decreased anxiety levels 
in the offspring when STZ was administered during 
mid pregnancy (Chandna et al. 2015), a condition 
which more closely resembles the time course of 
GD development in humans. 

Mood-relevant neurotransmitter systems in 
the fetus brain may also be affected by GD, since 
changes in cathecolamine system were observed 
in several hypothalamic nuclei of newborn and 
adolescent offspring from GD rats (Plagemann et 
al. 1998). Until now, there are no studies directly 
evaluating whether animals or patients born from 
diabetic mothers show increased depressive-like 
behavior or whether they are more susceptible to 
becoming depressive following a second hit later 
in life, as previously described for other conditions.

NEUROPSYCHIATRIC DISORDERS 

Early-life exposure to several common viruses 
and bacteria has been linked to the development 
of neuropsychiatric disorders. Manipulation of 
maternal immune system appears to be a common 
denominator important for determination of later 
outcomes (Estes and MacAllister 2016). In fact, a 
broader range of environmental distresses during 
the prenatal period have been associated to the 
development of schizophrenia and autism later 
in life (Reisinger et al. 2015). Clinical evidence 
suggest that the offspring of GD mothers have 
increased risk of developing schizophrenia (Van 

Lieshout and Voruganti 2008, Boksa 2004) and 
autism (Gardener et al. 2009, Xiang et al. 2015) 
during adolescence and adulthood. Interestingly, 
a schizophrenic-like phenotype was successfully 
reproduced in male rats born from STZ-treated 
dams, as these animals showed disruption of pre-
pulse inhibition response in their young adulthood 
(Chandna et al. 2015). This behavior persisted 
even when euglycemia was ensured by insulin 
treatment during pregnancy, but authors did not 
further evaluate the mechanisms underlying this 
interesting behavioral finding.

NEURODEGENERATIVE DISEASES

Alzheimer’s disease (AD) is the most common 
form of dementia in the elderly. Increasing evidence 
suggests that AD development is influenced by 
events that take place throughout life, manifesting 
itself as a consequence of cumulative factors (De 
Felice, 2013). It has been hypothesized that adverse 
environments early in life may influence how 
neurons interact with microglia and astrocytes, 
making cells over reactive when exposed to the 
amyloid-β peptide, which is generated in the brain 
under physiological conditions and form large 
extracellular deposits during disease development 
(Ferreira and Klein 2011). Epidemiological data 
on how gestational diabetes and maternal obesity 
influence the development of AD and other 
neurodegenerative disease are still lacking. In an 
interesting study using a classical AD transgenic 
model (3xTg), female mice were treated with a high-
fat diet during pregnancy and lactation. Maternal 
obesity did not increase Aβ load in the brains of 
adult offspring, but higher levels of phosphorylated 
Tau protein were found in the hippocampus of 
these animals, which was associated to a worsened 
performance in several memory tasks (Martin et 
al. 2014). Similar experiments were performed 
in Tg2576 AD transgenic mice, and an increased 
amyloid-β burden was found in the brains of the 
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offspring as a result of maternal obesity (Nizari 
et al. 2016). Interestingly, Hawkes et al. (2015) 
showed that exposure of pregnant mice to high-fat 
diet leads to changes in multiple components of the 
neurovascular unit of the offspring, which impairs 
perivascular clearance of Aβ from their brains, 
favoring amyloid deposition. Although these studies 
clearly support a possible role of gestational health 
on the development of neurodegenerative diseases 
in adult life, more studies should be performed 
in order to directly investigate the consequences 
of intra-uterine exposure to hyperglycemia, 
hyperinsulinemia and inflammatory markers in the 
development of neurodegenerative disorders later 
in life as well as scrutinize the possible underlying 
mechanisms.

CONCLUSIONS

The developing brain is extremely sensitive 
to endogenous and exogenous signals. GD is 
a condition where fetuses are exposed to high 
circulating levels of glucose and increased pro-

inflammatory mediators during a critical period of 
brain development (Melo et al. 2014, Tang et al. 
2015). Although gross malformations are reported 
in 3-5% of children delivered by GD mothers 
(Wren et al. 2003, Gharehbaghi and Ghaemi 2010), 
hypothalamic dysfunction and obesity are expected 
to affect 30-40% of the offspring (Kim et al. 
2012b). Therefore, other changes to brain function, 
behavior and development of brain diseases could 
be expected in the offspring of GD (Figure 1). 
Defects in brain insulin signaling might explain at 
least in part this delayed cognitive development 
of GD offspring, and this hypothesis has never 
been directly addressed. However, downregulation 
of insulin signaling mediators has already been 
reported in experimental models of GD. GD is a 
transient and multifactorial condition which makes 
it challenging to experimentally recapitulate. We 
believe that further studies should be performed 
in order to enable the development of new animal 
models for GD, so that long-term consequences to 
both mothers and offspring can be assessed in light 
of the disease’s complexity.

Figure 1 - Consequences of gestational diabetes (GD) to the offspring. Intra-uterine exposure to hyperglycemia, hyperinsulinemia, 
inflammation and oxidative stress, hallmarks of GD, is associated to anatomical malformations (green circle) and hypothalamic 
dysfunction/obesity (red circle) in the offspring. Emerging evidence suggest that GD might be associated to behavioral and 
neurophysiological defects in the offspring (dashed blue circle), which may only manifest at childhood, adulthood or old age.
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In developed countries, screening for GD is 
mandatory and treatment of this condition reaches 
a high percentage of these patients, suggesting that 
glycemia is kept within normal levels during the 
rest of gestation. In animal models, maintenance of 
euglycemia by insulin treatment has been associated 
to reversion of several effects in the central nervous 
system of the offspring (Jing et al. 2014, Hami et al. 
2013). However, standard treatment regimens are 
not always effective in prevention of other classical 
complications of GD in patients (Crowther et al. 
2005, Landon et al. 2009), and there remains a need 
to improve treatment of diabetic pregnant women. 
Moreover, considering that increased levels of 
pro-inflammatory markers may have a key role in 
brain development and central insulin resistance, 
normalization of these markers to physiological 
levels in response to the classical treatment used 
for GD should be addressed. 

Lifestyle intervention in pregnant obese 
women was also shown to reduce circulating levels 
of inflammation markers (Renault et al. 2015) and 
it is expected that nearly 50% of GD cases could 
potentially be prevented if we reduced the risk of 
overweight and obesity to that of normal-weight 
women (Kim et al. 2012a). Therefore, changes 
in lifestyle habits, such as frequent exercise and 
healthy diet, remain the best known ways of 
preventing GD and its undesired long-term effects. 
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