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ABSTRACT
The majority of Atlantic Forest fragments in Southern Brazil are second-growth forests dominated by 
fast-growing species with considerable market-value timber. Nevertheless, volume prediction models are 
scarce, especially to estimate tree total volume (i.e., stem plus branches). This study approached the issue 
through the following aims: to fit and select stem and total volume models (generic and species-specific) 
using data from 288 harvested trees in a management operation, and to fit generic and species-specific 
bark factors. The power model embedding diameter at breast height (D) and tree stem or total height (H) 
presented the greatest prediction strength for both stem and total tree volume. Models including only D to 
predict total tree volume were similar to double-entry models regarding goodness-of-fit. Therefore, they 
may be useful in the context of subtropical closed-canopy forests, where the difficulty and uncertainty in H 
measurements are not trivial. Species-specific models fitted for Miconia cinnamomifolia (DC) Naudin. and 
Hyeronima alchorneoides Allemão surpassed generic models only for the former species. Nevertheless, 
the prediction improvement should offset the eventual extra efforts implied in the collection of reliable 
samples of these species. Finally, bark factors stood as a satisfactory tool for inside bark mean volume 
estimation. 
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INTRODUCTION

Among all Brazilian vegetation domains, the 
Atlantic Forest suffers the greatest impact from 
human activities driving forest fragmentation and 
degradation (Ribeiro et al. 2009). The fragments’ 
extent varies widely within the states where the 

Atlantic Forest is found. In this regard, Santa 
Catarina, in Southern Brazil, is privileged―
approximately 29% of its territory is covered by 
native forests (Vibrans et al. 2013), which in turn 
is divided into three main forest types/subdomains: 
evergreen rainforest (ERF), Araucaria forest, and 
seasonal deciduous forest (Klein 1978). In this 
state, forests are usually very fragmented, with 
80% smaller than 50 ha. The ERF covers 40.5% 
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of its 29,282 km² original extension, the largest in 
proportion among the three forest types (Vibrans 
et al. 2013). Notwithstanding, most of these 
remnants (~95%) are composed by second-growth 
forests, where pioneer and early secondary species 
dominate the successional process (Siminski and 
Fantini 2004, Schorn and Galvão 2006).

In this context, fast-growing species, such 
as Hyeronima alchorneoides Allemão, Miconia 
cinnamomifolia (DC) Naudin., Nectandra spp., and 
Ocotea spp., produce good quality timber, making 
secondary forest management attractive for land 
owners (Fantini et al. 2016, Siminski et al. 2016). 
Moreover, several authors agree on the potential 
benefits of pure or mixed plantations of suchlike 
species (Klein 1980, Schuch et al. 2008, Coradin et 
al. 2011). Both approaches would indeed reconcile 
the misunderstood mutually exclusive conflicting 
purposes of conservation, on the one hand, and 
use of forest resources in the region, on the other 
(Montagnini and Jordan 2005). Tailored planning 
of such a win-win solution would require a set 
of tools, including timber volume, biomass, and 
carbon stock estimation models.

Wood volume is one of the most essential 
pieces of information in the development of 
sustainable management programs. In forestry, 
regression models fitted to field data regarding 
measured tree volume and predictor variables such 
as diameter at breast height (D) and tree or stem 
height (H) prove to be feasible tools to estimate 
individual tree volume. Regression models may 
synthesize the relationship among variables and are 
hence adopted to predict a variable of interest on 
the basis of other subjects to an easier collection 
(Picard et al. 2012). Elsewhere, volumetric models 
have been developed for several purposes in Brazil, 
ranging from local to broader usages, fitted for a 
single species or for a group of species making 
up a particular forest type. Indeed, models were 
fitted for species with local economic interest like 
Mimosa scabrella Benth. (Machado et al. 2008) and 

Ocotea porosa Nees & Mart. (Santos et al. 2012), 
as well as for species that produce tannin, oil, and 
cork (Scolforo et al. 2008). For instance, Barreto 
et al. (2014) developed volumetric models for a 
community forest management project in the state 
of Pará using data from 132 trees of 23 commercial 
species. In turn, Vibrans et al. (2015) fitted generic 
and species-specific stem volume models for three 
forest types in Santa Catarina using data of 2,127 
trees with diameters ranging from 10 to 76 cm. 

Despite the availability of volumetric models 
in the literature, there is a lack of models to 
predict individual tree total volume (i.e., stem plus 
branches). The data for model fitting is usually 
obtained through destructive methods, i.e., tree 
harvesting (e.g., Scolforo et al. 2008). However, 
legal restrictions and operational constraints in 
protected native forests may forbid the harvesting 
of trees, thus impeding data collection. A usual 
workaround is sampling collection by means of 
tree climbing, yet a viable alternative to gather stem 
volume data (e.g., Vibrans et al. 2015). Partly, this 
could be the explanation for the scarcity of total tree 
volume models for the Atlantic Forest subdomains 
in Brazil. To account for this, in this study we 
built on the research carried out by a consortium 
of universities and the state environmental agency 
on a secondary forest management controlled pilot 
in Santa Catarina (Fantini et al. 2016). This trial 
compiled a unique data collection from a large 
sample of harvested trees of species occurring in 
secondary forest fragments. As mentioned above, 
this kind of data is not easily accessible for either 
physical or regulation limitations regarding forest 
inventory techniques.

Hence, the objectives of the present study were 
(i) to fit generic and species-specific stem and total 
(i.e., stem plus branches) volume models using 
a robust cross-validation statistical procedure; 
(ii) to compare the performance of generic and 
species-specific models in predicting the volume 
of abundant and economically relevant species, 
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(2015), this forest has a density of 1,807.6 trees 
ha-1 (D ≥ 5 cm) and basal area of 32.3 m² ha-1; 
H. alchorneoides and M. cinnamomifolia are the 
dominant species, contributing to 23.2% and 6.5% 
of the basal area, respectively. 

According to the Köppen classification, the 
study site is influenced by the Cfa climate type―
subtropical mesothermal humid climate with a hot 
summer and without a dry season (Alvares et al. 
2013). The rainfall is evenly distributed throughout 
the year, with an annual average of 1,900 mm; 
the average annual temperature ranges from 19.1 
to 20.0 °C (Pandolfo et al. 2002). The study site 
altitude above sea level ranges from 205 to 430 
m. An association of two soil types predominates 
in the study site: moderate A Tb haplic Cambisol 
and moderate A Litholic Neosol; both may present 
argillaceous texture (Embrapa 2004). 

namely Miconia cinnamomifolia and Hyeronima 
alchorneoides; (iii) to further examine the statistical 
implications of distinct relationships between 
dendrometric variables in volume models; and (iv) 
to provide generic and species-specific bark factors 
to generate inside bark volume estimates.

MATERIALS AND METHODS

STUDY AREA

The study site comprises 42 ha located in the state 
of Santa Catarina, Southern Brazil (26°32’01”S; 
49°02’30”W), within the ERF region (Figure 1) 
(Klein 1978, Oliveira-Filho et al. 2015). The site 
is covered mainly by a 35-year-old second-growth 
forest, unmanaged for the last 30 years, resulting 
from succession after the abandonment of pastures 
and partially enriched with typical species of such 
forests in the region. According to Silva et al. 

Figure 1 - Santa Catarina state, main forest types (Klein 1978), forest cover (Fundação S.O.S. Mata Atlântica 2009), 
and location of the study site.
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DATA COLLECTION

The total (i.e., stem plus branches) and stem volume 
(V) of 288 felled trees from 31 families and 65 
species were determined by use of the Smalian’s 
formula (Avery and Burkhart 2015). The diameter 
at 1.3 m from the ground (D) ranged from 5.4 to 
56.0 cm; the total tree height (Ht) ranged from 2.5 
to 33 m, and the stem height (Hs) ranged from 1.3 
to 25.2 m. The stem diameter was measured at the 
heights of 0.1, 0.3, 0.7, 1.0, 1.3, 2.0, and 3.0 m and 
consecutively at every meter until the upper end, 
which was defined by a significant bifurcation. 
The diameter of each branch at every meter from 
its base up to the diameter top limit of 5 cm was 
also measured. Diameters were measured using a 
diameter tape or a caliper. When using a caliper, two 
cross-sectional measurements were recorded. The 
tree bark thickness was measured using a digital 
caliper at the same points where the diameter had 
been measured. The total and stem heights were 
measured using a tape. In total, the 288 trees added 
up to 168.3 m³ of inside bark volume, out of which 
58.1 m³ (34.5%) corresponded to branches ≥ 5.0 cm. 

FITTING AND SELECTING GENERIC MODELS

Ten generic models were fitted (Table I) to predict 
individual tree (i) outside bark stem volume (m³) 
and (ii) outside bark total volume (m³). Each 
model was fit to a randomly selected 70% subset 
(n = 202) from the entire dataset (n = 288). The 
remaining subset (n = 86) was used to assess model 
performance and, subsequently, to select the best 
models. Influential observations (i.e., outliers and 
leverage points) were investigated through the 
association of the Cook’s distance―calculated for 
each observation in the fitting subsets―and the 
F distribution percentile with p and n – p degrees 
of freedom, where p is the number of regression 
parameters, and n is the number of observations in 
the fitting subset. Observations scoring F > 0.50 

were regarded as influential and were removed 
(Neter et al. 1996). 

After ordinary least squares model fitting, the 
uncertainty associated to the regression parameters 
estimation was assessed through the percent relative 
standard error (PRSE) (Eq. 1) (Sileshi 2014). 
The models’ bias (Eq. 2), adjusted coefficient of 
determination (R²), root mean squared error (RMSE, 
Eq. 3), mean absolute percentage error (MAPE, Eq. 
4) as per Sileshi (2014), and the corrected Akaike’s 
information criterion (AICc, Eq. 5) were calculated. 
The original scale of the response variable was used 
in all metrics. The R² may be denoted as pseudo-R² 
(R²*) when calculated for nonlinear models, as 
its underlying assumptions are not completely 
fulfilled (Anderson-Sprecher 1994). The procedure 
was repeated 1,000 times, from which the mean 
values of the regression parameters and their PRSE 
were determined, together with the mean values of 
the goodness-of-fit metrics (bias, RMSE, MAPE, 
AICc). In this cross-validation approach, the 
metrics may be noted as follows:
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where kθ̂ = kth estimated regression parameter; 
SE = standard error; Vi = observed volume of the 

SE



An Acad Bras Cienc (2018) 90 (4)

	 VOLUMETRIC MODELS FOR SECONDARY FOREST STANDS	 3733

ith tree; V̂i = predicted volume for the ith tree; 
n = number of trees used in the model selection 
procedure; R = number of iterations, i.e., 1,000; p 
= number of regression parameters; and SSE = sum 
of squared errors of the regression.

The selection of the best models was supported 
by the Akaike weights (Wagenmakers and 
Farrell 2004, Sileshi 2014), denoted by w(AICc). 
Likewise, the PRSE of the best performance 
models were checked. Based on Sileshi (2014), 
a PRSE > 25% threshold was set to account for 
nontrivial uncertainty in the parameter estimation 
that should be evaluated1. When a given parameter 
of the best models yielded PRSE > 25%, it 
was eventually dropped off in model fitting. 
Subsequently, the performance metrics were 
recalculated. Baskerville’s (1972) correction factor 
(BCF) was applied to the predictions derived from 
linearized power models (i.e., the predicted volume 
was multiplied by the BCF). The BCF is given by 
exp(σ²res)

0.5, where σ²res is the residual variance.
The predictions and residuals generated by the 

selected models were evaluated by observed vs. 
predicted values scatter plot inspection, hereafter 
denoted as 1:1 plot. The residuals (m³) were 
likewise plotted and weighted by their respective 
observed values (y-axis) vs. the predicted values 
(x-axis) for evaluating uncommon patterns of 
residual distribution. 

FITTING AND SELECTING SPECIES-SPECIFIC 
MODELS 

Analogously, species-specific models were fitted 
for the two main species in the study site, namely 
M. cinnamomifolia (n = 29; D range: 14.0–56.0 cm; 
Ht range: 15.2–27.3 m; Hs range: 4.6–18.1 m) and 
H. alchorneoides (n = 53; D range: 6.2–46.9 cm; Ht 
range: 6.5–27.8 m; Hs range: 2.5–25.2 m). Due to 
the smaller sample sizes, the leave-one-out cross-

1  The significance of a given regression parameter is attained 
if PRSE ≤ 50%, considering a sample with 30 degrees of 
freedom and α = 0.05 (Moser and Oliveira 2017).

validation approach was chosen. The models’ bias 
(%), R²*, MAPE (%), RMSE, AICc, and w(AICc) 
were reported. The performances of the best generic 
model for stem and total volume were compared 
by applying them using each ‘leftout’ observation. 
Specific and generic models were compared 
through joint 95% confidence intervals of their 
parameters built using the ‘ellipse’ package in R. 
The ANOVA for nested models (Picard et al. 2012) 
was eventually applied to examine dendrometric 
relationships in the volume models; we calculated 
the relative importance of the predictor variables 
by using the ‘relaimpo’ package in R to assess their 
role in explaining the response variable in the stem 
and total volume models. To check the collinearity 
between predictor variables, the variance inflation 
factor (VIF) was calculated by the use of the ‘car’ 
package in R.

DEVELOPING AND VALIDATING BARK FACTORS

Six bark factors were developed to estimate the 
inside bark total volume and stem volume of all 
species (n = 288), total volume and stem volume 
of M. cinnamomifolia (n = 29), and total volume 
and stem volume of H. alchorneoides (n = 53). 
The mean bark factor was estimated as the ratio 
between the inside bark volume and the outside 
bark volume. To evaluate the reliability of this 
approach―i.e., using bark factors for attaining 
mean inside bark volume estimates―the following 
steps were taken: (i) apply the best fitted volumetric 
model to the dataset; (ii) multiply the estimates by 
the respective bark factor; (iii) compare the mean 
volume generated in step (ii) with the observed 
mean inside bark volume through 95% confidence 
intervals for the mean paired difference using the 
standard t distribution procedure. 
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RESULTS AND DISCUSSION

GENERIC MODELS

The generic models for stem volume presented 
RMSE ranging from 0.08 to 0.15 m³ and MAPE 
ranging from 9.7 to 44.8%. The model 10 presented 
the best performance; it yielded RMSE = 0.07 
m³ and MAPE = 9.7%, and the uncertainty in 
the estimates of its parameters was small (PRSE 
< 5%; Table I). The model showed positive bias, 
although it was close to zero (1.1%). The 1:1 plot 
of the residuals revealed a good adjustment of 
the model to the data, and no evidence of strong 
heteroskedasticity was discernible. 

The generic models for total tree volume 
presented inferior performance compared to the 
stem volume models. Their RMSE ranged from 0.17 
to 0.20 m³ and MAPE ranged from 16.0 to 72.3%. 
The greatest performance was achieved by model 4 
according to the w(AIC) (Table I). However, we chose 
not to rely solely on this metric, as the model yielded 
a MAPE of 30.7% and bias of -12.7%. Additionally, 
its parameters yielded a PRSE value greater or close 
to 30% due to the evident collinearity between the 
terms D² and D²H. Because of these results, we 
evaluated models 3, 9, and 10 more closely, as they 
outperformed the others. The intercept of model 3 
rendered PRSE > 50%; therefore, we dropped it off 
and fitted the model again. The three models presented 
similar performance regarding RMSE and MAPE; 
models 9 and 10 presented slightly smaller MAPE. 
The uncertainty in the estimates of the parameters of 
these models may be considered acceptable (PRSE 
< 25%) according to the standards proposed by 
Sileshi (2014). Finally, we may indicate model 10 
as the most reliable among the three, because the 
compound term D²H―included in models 3 and 
9―may generate great leverage observations and 
therefore should be avoided (Sileshi 2014). Some 
degree of heteroskedasticity was noticeable, although 
the weighted residual plots showed evenness along 
the range of predicted values (Figure 2).

The overall quality of the models may be 
considered satisfactory, thus providing useful 
volume estimation tools in forest management 
operations in the Southern Brazilian ERF. The 
stem volume models outperformed the total tree 
volume models, as expected. Stem volume data are 
usually more homogeneous (i.e., less variability) 
than total tree volume data due to the fact that 
stems’ geometrical attributes are better addressed 
by a combination of D and stem H. Although 
the models to estimate total tree volume showed 
an inferior performance, they are still useful, 
especially facing the lack of such models for native 
species in the ERF and elsewhere in Brazil. As 
stated above, the destructive nature of such a data 
collection process partially explains the scarcity 
of models, although efforts could target standing 
tree measurements for building models to predict 
total tree volume for native species, in the line of 
Scolforo et al. (2008) in Minas Gerais state. The 
subject is more than critical when the wood volume 
of the crown is proportionally large in relation to 
the total tree volume. As a matter of fact, in our 
study, the branches (≥ 5 cm) represented 34.5% of 
the trees’ total volume. This impressive amount of 
wood is not to be neglected in management systems 
conducted in secondary forests; it may well be used 
as firewood or for coal production. Indeed, the 
wood of M. cinnamomifolia and H. alchorneoides 
provides a calorific value comparable to Eucalyptus 
species (Brand et al. 2013, Carvalho et al. 2014).

Generic models to estimate tree total volume 
using only D as the predictor variable presented 
an acceptable performance, with MAPE values 
smaller than 20% (e.g., models 7 and 8). Models 
7 and 8 presented quite similar prediction strength 
compared to model 10, which includes D and H 
(see Table I). In the case of generic models that 
estimate stem volume using only D as a predictor, 
the MAPE values were greater than 25%. Indeed, 
stem volume models for tropical species that do 
not include stem H may yield a mean squared error 
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twice as great as models including both D and H 
(Brandeis et al. 2005). Accordingly, Feldpausch et 
al. (2012) reported that pantropical biomass models 
including H outperformed models not including 
it. Facing these results, we conjecture that models 
using only D to predict tree total volume are useful 
because precise height measurement in (sub)tropical 
dense forests is unfeasible in most situations or too 
expensive. In addition, the measurement of H might 
represent a new source of uncertainty in volume or 

biomass predictions (Segura and Kanninen 2005, 
Temesgen et al. 2015). In fact, studies addressing the 
uncertainty in the predictions yielded by volumetric 
models using visually estimated or model-predicted 
tree heights as inputs would be useful (e.g., 
McRoberts et al. 2016).

In regards to methodological aspects, our study 
exposed a neglected topic highlighted by Sileshi 
(2014): models with collinear or non-explicative 
terms may yield parameters with large standard 

Figure 2 - Observed vs. predicted values generated by model 10 for stem and total volume. 
The plots are based on three independent iterations of the model fitting algorithm.
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error, despite the eventual satisfactory performance 
conveyed by metrics such as RMSE and AIC (e.g., 
see models 5 and 6 in Table I for a clear example). 
Therefore, we strongly suggest the use of PRSE, 
standard errors, or confidence intervals of the 
parameters in model selection. Accordingly, models 
with nonsignificant parameters (i.e., not statistically 
different from zero) should be discarded. The PRSE 
should be evaluated considering the remarks of 
Picard et al. (2015) and Moser and Oliveira (2017), 
especially when adopting the parameter exclusion 
threshold suggested by Sileshi (2014). Reporting 
at least one of the aforementioned statistics is 
mandatory, as stated in the guidelines provided by 
Jara et al. (2015). 

SPECIES-SPECIFIC MODELS	

Not surprisingly, for both species, stem volume 
models using D and H outperformed models using 
only D (Tables II and III). The latter models yielded 
RMSE ranging from 0.15 to 0.37 m³ and MAPE > 
20%. For M. cinnamomifolia, only two specific stem 
volume models (9 and 10) performed better than the 
generic stem volume model (model 10) in the leave-
one-out procedure. The generic model yielded bias 
= -2.6%, MAPE = 8.65%, RMSE = 0.07 m³, and 
AICc = -150. Model 10 fitted for M. cinnamomifolia 
presented the best performance considering all 
metrics (Table II). The joint confidence intervals 
of its parameters did not overlap the ones built 
for the generic stem volume model. We therefore 
conjectured that the models were not equivalent, 
even though differences in their predictions in the 
1:1 plot are subtle (Figure 3).

For H. alchorneoides, none of the specific 
stem volume models outperformed the generic stem 
volume model applied for this species. Only model 10 
presented similar performance to the generic model, 
and the joint confidence intervals built for their 
parameters overlapped. The generic model showed 
a slightly better performance than the best specific 

model (10); it yielded bias = -0.3%, MAPE = 7.5%, 
RMSE = 0.05 m³, and AICc = -310. Nevertheless, 
the 1:1 plot revealed that the differences between the 
specific model and the generic model were almost 
unperceivable (Figure 3).  

According to the w(AICc), the best specific 
total volume model for both species was model 7, 
which included only ln(D) as the predictor variable 
(Tables II and III). However, models using D and 
H, such as models 9 and 10, outperformed model 
7 regarding the MAPE, although the parameter 
associated with ln(H) in model 9 yielded PRSE > 
25% for both species (see the discussion below). 
In most cases, the generic model presented inferior 
performance according to the metrics, even though 
the 1:1 plots revealed similar patterns regarding 
their predictions (Figure 3). 

Heteroskedasticity in the residuals was 
observable, especially for H. alchorneoides. The 
megaphone pattern is expected in biological data, 
as the magnitude of the residuals increases with the 
increase in the magnitude of the predictor variables 
(Picard et al. 2012). However, heteroskedasticity 
is an issue only when the estimation of confidence 
intervals for predictions is required (Neter et al. 
1996, Picard et al. 2012).

The comparison between generic and species-
specific models revealed important findings. For 
species with characteristic and regular architecture 
like M. cinnamomifolia, specific models might 
be useful for attaining better predictions. Specific 
models were more accurate for M. cinnamomifolia 
than for H. alchorneoides, possibly because the 
former species has a more regular architecture. 
Nonetheless, the better performance of species-
specific models may not justify extra efforts 
demanded in data collection of reliable samples, 
even for species with great management potential, 
for which extra accurate volume prediction would 
be helpful. As a word of caution, we point out that 
the two species considered in our study represented 
together 28.5% of the trees in the dataset. 
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Figure 3 - Observed vs. predicted values generated by the best specific and 
generic stem and total tree volume models for M. cinnamomifolia and H. 
alchorneoides.
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EXAMINING DENDROMETRIC RELATIONSHIPS IN 
VOLUME MODELS

We further investigated why the models with two 
predictor variables (D and H) failed to outperform 
the single predictor variable (D) models for M. 
cinnamomifolia and H. alchorneoides. In the case 
of the best species-specific stem model [ln(V) = 
ln(a) + b ∙ ln(D) + c ∙ ln(H) + ε], a weak linear 
relationship was found between D and stem H, as 
observed for H. alchorneoides (r = 0.14, p = 0.31) 
(Figure 4). This finding implies that each variable 
might be regarded as independent in explaining the 
variation of V. As the two variables describe the 
geometrical form of the stem, a double-entry model 
is expected to perform better. The decomposition of 
the explained variance of ln(V) by ln(D) and ln(H) 
in the model ln(V) = ln(a) + b ∙ ln(D) + c ∙ ln(H) + 
ε fitted for H. alchorneoides yielded R²*ln(D) = 0.86 
and R²*ln(H) = 0.13. With small collinearity between 
predictor variables (VIF = 1.03), the standard 
errors of the regression parameters decreased; in 
the aforementioned model, the two parameters 
yielded PRSE < 5%.

In contrast, in the total volume model [ln(V) 
= ln(a) + b ∙ ln(D) + c ∙ ln(H) + ε] fitted for H. 
alchorneoides, D and H were strongly correlated (r 
= 0.86, p < 0.01) (Figure 4). The collinearity (VIF 
= 5.24) inflated the standard error of the parameter 
associated with ln(H), the variable showing 
weaker relationship with the response variable. 
As a comparison, the parameter associated with 
ln(H) yielded PRSE = 33%, while the parameter 
associated with ln(D) yielded PRSE = 5%. The 
difference between the explained variation of 
ln(V) by collinear predictor variables is noticeable: 
R²*ln(D) = 0.57 and R²*ln(H) = 0.43―the R²* was 
split between the surrogate variables. A model 
using only ln(D) would have yielded R²* = 0.98. 
This brief explanation might support the results 
regarding the model ln(V) = ln(a) + b ∙ ln(D) + ε as 

one of the best performances for total tree volume 
prediction for both species. 

As stressed by Picard et al. (2015), collinearity 
should not overwhelm researchers, especially 
when dealing with relevant variables for volume or 
biomass prediction, such as D and H. Collinearity 
between these variables implies that their regression 
parameters are not to be standalone interpreted, 
though rather as an ensemble. Our example might 
well represent the paradox of maintaining or not 
maintaining a given parameter when its PRSE > 
25% or 30%. Keeping the parameter associated 
with ln(H) in the model (even though presenting 
PRSE = 33%) would be a reasonable decision, 
because for equal D trees, H will act as a correction 
variable―e.g., the greater the H, the larger the 
volume estimate by the model (Picard et al. 2015). 
Evidence in favor of keeping the c parameter in 
the model is the significant difference (F = 8.9, p 
= 0.004) revealed by the ANOVA comparing the 
model ln(V) = ln(a) + b ∙ ln(D) + c ∙ ln(H) + ε and 
the nested model ln(V) = ln(a) + b ∙ ln(D) + ε fitted 
for the total volume dataset of H. alchorneoides.

BARK FACTORS

For the 288 measured trees, the bark represented 
16.6% (SD = 4.8%) of their total volume and 
14.7% (SD = 4.8%) of their stem volume. The 
mean bark factors ranged from 0.798 to 0.858, 
while presenting quite similar values (Table IV). 

The mean paired differences between the 
observed and predicted inside bark volume 
were small (Table IV). Significant differences 
(nonetheless small) were found only for the stem 
volume of M. cinnamomifolia and H. alchorneoides. 
These results may validate the use of the calculated 
bark factors in mean inside bark volume estimation. 

CONCLUSIONS

We may draw the main conclusions of this study as 
follows: (i) the overall quality of the models was 
satisfactory, and therefore they provide tailored 
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Figure 4 - Relationships between different predictor variables and stem and total volume of H. 
alchorneoides (n = 53). r = Pearson’s correlation coefficient.
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TABLE IV
Bark factors, mean paired differences between the 

observed total and stem inside bark volume and the 
predicted inside bark volume using the generic and 

species-specific models and bark factors.

Species Bark factor 
(SD)

Mean difference 
(± 95% CI)

Generic (n = 288)
Total volume 0.834 (0.048) -0.0158ns ± 0.0169 m³
Stem volume 0.853 (0.048) 0.0033ns ± 0.0079 m³

M. cinnamomifolia 
(n = 29)

Total volume 0.858 (0.029) -0.0271ns ± 0.0378 m³
Stem volume 0.831 (0.030) 0.0203* ± 0.0184 m³

H. alchorneoides 
(n = 53)

Total volume 0.831 (0.036) -0.0212ns ± 0.0381 m³
Stem volume 0.798 (0.049) 0.0231* ± 0.0145 m³

ns - nonsignificant (p ≥ 0.05), * - significant (p < 0.05).

and useful volume estimation tools in forest 
management in the Southern Brazilian ERF; (ii) 
species-specific models performed just slightly 
better than generic models. Accordingly, it is clear 
that the additional effort in specific data collection 
does not pay off; (iii) D single-predictor models are 
an acceptable solution due to the compromising 
issues regarding the operational measurement of H 
in subtropical closed-canopy forests. Eventually, 
such models may even outperform more complex 
ones in the case of species with more regular 
architecture (e.g., M. cinnamomifolia); (iv) 
quantification of uncertainty in the estimation of 
regression parameters reveals critical information 
for model selection and validation; (v) bark factors 
applied together with volumetric models are 
effective mean inside bark volume estimation tools. 
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