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Abstract: The Kumaraswamy distribution is useful for modeling variables whose support is the standard

unit interval, i.e., (0,1). It is not uncommon, however, for the data to contain zeros and/or ones. When that

happens, the interest shifts to modeling variables that assume values in [0,1), (0,1] or [0,1]. Our goal in this
paper is to introduce inflated Kumaraswamy distributions that can be used to that end.We consider inflation

at one of the extremes of the standard unit interval and also the more challenging case in which inflation

takes place at both interval endpoints.We introduce inflated Kumaraswamy distributions, discuss their main

properties, show how to estimate their parameters (point and interval estimation) and explain how testing

inferences can be performed. We also present Monte Carlo evidence on the finite sample performances

of point estimation, confidence intervals and hypothesis tests. An empirical application is presented and

discussed.

Key words: Inflated distribution, Kumaraswamy distribution, likelihood ratio test, maximum likelihood

estimation, score test, Wald test.

INTRODUCTION

Oftentimes practitioners need to model variables that assume values in the standard unit interval, (0,1), such
as rates, proportions and concentration indices. The beta distribution is the most commonly used model in

such applications, since its density can assume a wide range of shapes depending on the parameter values.

Nonetheless, it was noted by Kumaraswamy (1976) that the beta law may fail to fit well hydrological

data, especially when the data are hydrological observations of small frequency. He then proposed a new

distribution, which can be considered as an alternative to the well known beta model. That distribution is now

known as the Kumaraswamy distribution. We say that the random variable Y is Kumaraswamy-distributed

with shape parameters α > 0 and β > 0, denoted by Y ∼ Kum(α,β), if its probability density function (pdf) is
given by

g(y;α,β) = αβyα–1(1 – yα)β–1, y ∈ (0,1), (1)
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the corresponding cumulative distribution function (cdf) being G(y;α,β) = 1 – (1 – yα)β. We note that if

Y ∼ Kum(α,1), then 1 – Y ∼ Kum(1,α) and –ln(Y) is exponentially distributed with parameter α; likewise,

if Y ∼ Kum(1,β), then 1 – Y ∼ Kum(β,1) and –ln(1 – Y) is exponentially distributed with parameter β.

The Kumaraswamy model has received considerable attention in the recent literature. Carrasco et al.

(2010) proposed a new five-parameter distribution that generalizes the beta andKumaraswamy distributions.

Lemonte (2011) obtained nearly unbiased estimators for the parameters that index the Kumaraswamy

law. A method for distinguishing between the Kumaraswamy and beta models was proposed by Silva

and Barreto-Souza (2014). Barreto-Souza and Lemonte (2013) introduced a bivariate Kumaraswamy

distribution for which the marginal distributions are univariate Kumaraswamy laws.

According to Mitnik and Baek (2013), the Kumaraswamy distribution has an advantage relative to beta

model: its distribution and quantile functions can be expressed in closed form. That renders, for instance,

random number generation based on the inversion method an easy task; see Jones (2009). It is thus, for

instance, very easy to generate sequences of pseudo-random numbers from that law using the inversion

method. To that end, one only needs to generate a sequence of pseudo-random standard uniform numbers

and evaluate the Kumaraswamy quantile function at each value. In contrast, beta random number generation

requires the use of acceptance-rejection algorithms, which are more computationally intensive.Additionally,

the Kumaraswamy density can assume many different shapes depending on the parameter values, which

makes the corresponding law quite flexible for representing rates and proportions. Finally,Wang et al. (2017)

note that the Kumaraswamy distribution is particularly useful for modeling variables that describe natural

and biological phenomena that are restricted to the standard unit interval.

It is not uncommon, however, for the data to contain zeros and/or ones. When that happens, the interest

shifts to modeling variables that assume values in [0,1), (0,1] or [0,1]. The Kumaraswamy distribution

cannot be used in such cases since, like the beta law, its support is (0,1). Ospina and Ferrari (2010) introduced
the class of inflated beta distributions, which allows for the presence of extreme values in the data. In

this paper we develop alternative laws: we introduce the class of inflated Kumaraswamy distributions. We

consider inflation at one of the endpoints of the standard unit interval and also the more challenging case

where inflation takes place at both zero and one, that is, we first consider variables whose support are

[0,1) and (0,1] and then we consider the double inflation case, i.e., variables that assume values in [0,1].
Such distributions are obtained by combining the Kumaraswamy distribution (continuous component) with

a degenerate or with a couple of degenerate distributions (discrete component).

The paper unfolds as follows.The next section presents the zero or one inflated Kumaraswamy

distribution (single inflation). Point and interval estimation are also discussed. Notice that inflation only

takes place at a single point. In the following section, we go further and introduce the zero and one inflated

Kumaraswamy distribution (double inflation). We also show how to perform point and interval estimation.

Next, we focus on hypothesis testing inference. Finally, we present and discuss: (i) Monte Carlo simulation

evidence and (ii) an empirical application.

THE ZERO OR ONE INFLATED KUMARASWAMY DISTRIBUTION

Data on rates and proportions may contain zeros and/or ones. When that happens the underlying data

generating process contains a discrete component that causes a given value or a couple of specific values to

be observed with positive probability. It is thus necessary to combine continuous and discrete data generating
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mechanisms into a more general law. In what follows, we shall focus on random variables that assume values

in (0,1) but that can also equal c with positive probability, where c = 0 or c = 1. We say there is data inflation

at one of the standard unit interval endpoints.

We introduce the inflated Kumaraswamy distribution in c (IKc), whose cdf is given by

IKc(y;λ,α,β) = λ1[c,1](y) + (1 –λ)G(y;α,β), (2)

where 1A(y) is an indicator function that equals 1 when y ∈ A and 0 when y /∈ A and 0 < λ < 1 is the mixture

parameter. Notice that, with probability 1 – λ, Y follows the Kumaraswamy distribution with parameters

(α,β) and, with probability λ, it follows a degenerate distribution at c.
Let Y be a random variable with cdf given by (2), denoted by Y ∼ IKc(λ,α,β). Its pdf is given by

ikc(y;λ,α,β) =

 λ, if y = c,

(1 –λ)g(y;α,β), if y ∈ (0,1),
(3)

where 0 < λ < 1, α > 0 and β > 0 are the parameters that index the Kumaraswamy distribution and g(y;α,β)
is the density given in (1). Note that λ = Pr(Y = 0) or λ = Pr(Y = 1).

Figure 1 shows different Kumaraswamy densities inflated at c = 0 and at c = 1, for different values of
α and β, with λ = 0.5 (recall that λ is the mixture parameter). Note that the probability density function of

the inflated Kumaraswamy distribution at c given in (3) may assume a wide variety of shapes; e.g., it can

be U-shaped, increasing, decreasing, asymmetric to the left, asymmetric to the right, bell-shaped, and even

constant.

The rth moment of Y is

E(Yr) = λc + (1 –λ)μr, r = 1,2, . . . ,

where μr = [βΓ (1 + r/α)Γ(β)]/[Γ
(
1 + r/α+β

)
] is the rth moment of the Kumaraswamy distribution, Γ(·)

denoting the gamma function. In particular, the mean and variance of Y are

E(Y) = λc + (1 –λ)μ1 = λc +β(1 –λ)B
(

1 +
1
α

,β
)

and

Var(Y) = λc + (1 –λ)μ2 – [λc + (1 –λ)μ1]2

= λc +β(1 –λ)B
(

1 +
2
α

,β
)

–
[
λc +β(1 –λ)B

(
1 +

1
α

,β
)]2

= λc(1 –λc) + (1 –λ)β
{

B
(

1 +
2
α

,β
)

– B
(

1 +
1
α

,β
)[

2λc +β(1 –λ)B
(

1 +
1
α

,β
)]}

,

respectively, where B(·, ·) is the beta function.
It is noteworthy that the density function presented in (3) can be written as

ikc(y;λ,α,β) =
[
λ
1{c}(y)(1 –λ)1–1{c}(y)

]
×
[
g(y;α,β)1–1{c}(y)

]
. (4)

The density in (4) is expressed as the product of two terms: the first term only depends on λ whereas the

second term only involves α and β.
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Figure 1 - Inflated Kumaraswamy densities at c = 0 and c = 1, λ = 0.5.
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The likelihood function for θ = (λ,α,β)′ based on y = (y1,y2, . . . ,yn)′, a IKc random sample, is

L(θ;y) =
n

∏
i=1

ikc(yi;λ,α,β) = L1(λ;y)×L2(α,β;y),

where

L1(λ;y) =
n

∏
i=1
λ
1{c}(yi)(1 –λ)1–1{c}(yi) = λ∑

n
i=11{c}(yi)(1 –λ)n–∑

n
i=11{c}(yi) and

L2(α,β;y) = ∏
i=1

yi∈(0,1)

g(yi;α,β).

The zero or one inflated Kumaraswamy log-likelihood function is then given by

`(θ;y) = `1(λ;y) + `2(α,β;y),

where

`1(λ;y) = ln(λ)
n

∑
i=1
1{c}(yi) + ln(1 –λ)

[
n –

n

∑
i=1
1{c}(yi)

]
and

`2(α,β;y) = ∑
i=1

yi∈(0,1)

ln(αβ) + (α– 1) ∑
i=1

yi∈(0,1)

ln(yi) + (β– 1) ∑
i=1

yi∈(0,1)

ln(1 – yαi ).

The score function, which is obtained by differentiating the log-likelihood function, is denoted byU(θ) =[
Uλ(λ),Uα(α,β),Uβ(α,β)

]
, where

Uλ(λ) =
∂`1(λ;y)

∂λ
=

1
λ

n

∑
i=1
1{c}(yi) –

1
1 –λ

[
n –

n

∑
i=1
1{c}(yi)

]
,

Uα(α,β) =
∂`2(α,β;y)

∂α
=

1
α

[
n –

n

∑
i=1
1{c}(yi)

]
+ ∑

i=1
yi∈(0,1)

ln(yi) + (β– 1) ∑
i=1

yi∈(0,1)

(
yαi

yαi – 1

)
ln(yi) and

Uβ(α,β) =
∂`2(α,β;y)

∂β
=

1
β

[
n –

n

∑
i=1
1{c}(yi)

]
+ ∑

i=1
yi∈(0,1)

ln(1 – yαi ).

The maximum likelihood estimator (mle) of λ is λ̂ = n–1
∑

n
i=11{c}(yi), i.e., it is given by the proportion

of sample values that equal c. The maximum likelihood estimators of α and β cannot be expressed in

closed-form. They can be obtained, however, by numerically maximizing the log-likelihood function using

a nonlinear optimization method, such as a Newton or quasi-Newton method. The BFGS quasi-Newton

method is commonly used for numerically maximizing log-likelihood functions; for details on such a

method, see Nocedal and Wright (2006) and Press et al. (1992).

The Fisher information matrix for the zero or one inflated Kumaraswamy law is

K(θ) =


kλλ 0 0

0 kαα kαβ

0 kβα kββ

 , (5)
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where

kλλ =
n

λ(1 –λ)
, kαα =

n(1 –λ)
α2

+
nβ(1 –λ)
α2(β– 2)

{[
ψ(β) –ψ(2)

]2 –
[
ψ
′(β) –ψ′(2)

]}
,

kαβ = kβα = –
n(1 –λ)
α(β– 1)

{[
ψ(β+ 1) –ψ(2)

]}
, kββ =

n(1 –λ)
β2

.

Here, ψ(z) = ∂ lnΓ(z)/∂z is the digamma function and ψ′(z) = ∂ψ(z)/∂z is the trigamma function.

Let θ̂ = (λ̂, α̂, β̂)′ denote the mle of θ. In large samples θ̂ is expected to be approximately normally

distributed: θ̂
a∼ N3(θ,K(θ)–1), where K(θ) is the information matrix given in (5) and

a∼ denotes

approximately distributed. Using such a result, it is possible to construct approximate confidence intervals

for the model parameters. Let δ ∈ (0,0.5). It follows that (1 –δ)×100% asymptotic confidence intervals for

λ, α and β are given, respectively, by λ̂± z(1–δ/2)se(λ̂), α̂± z(1–δ/2)se(α̂) and β̂± z(1–δ/2)se(β̂), where se(·)
denotes standard error and z(1–δ/2) is the 1 – δ/2 standard normal quantile. The standard errors are obtained

as square roots of the diagonal elements of the inverse of Fisher’s information matrix after the unknown

parameters are replaced with the corresponding maximum likelihood estimates.

ZEROAND ONE INFLATED KUMARASWAMY DISTRIBUTION

The distribution introduced in the previous section is not suitable for modeling fractional data that contain

both zeros and ones, i.e., when data inflation occurs at both ends of the standard unit interval. In what follows

we shall introduce a distribution that can be used to model variables that have support in [0,1]. We shall

now introduce the appropriate law for that case. We say that the random variable Y follows the zero and one

inflated Kumaraswamy distribution, denoted by Y ∼ ZOIK(y;λ,p,α,β), if its cdf is given by

ZOIK(y;λ,p,α,β) = λBer(y;p) + (1 –λ)G(y;α,β),

with y ∈ [0,1], where λ ∈ (0,1) is the mixture parameter and Ber(y;p) denotes the cumulative distribution

function of a Bernoulli random variable with parameter p = Pr(Y = 1).

It follows that the pdf of Y is

zoik(y;λ,p,α,β) =


λp, if y = 1,

λ(1 – p), if y = 0,

(1 –λ)g(y;α,β), if y ∈ (0,1).

(6)

Note that λp = Pr(Y = 1) and λ(1 – p) = Pr(Y = 0). For y ∈ (0,1) and 0 < a < b < 1, Pr(Y ∈ (a,b)) = (1 –
λ)

∫ b
a g(y;α,β)dy.

Figure 2 presents several ZOIK densities for λ = 0.2 and p = 0.5. Notice the many different shapes that

the density can assume. The distribution is thus a very flexible law for variables that assume values in the

standard unit interval with inflation at both interval limits.
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Figure 2 - Zero and one inflated Kumaraswamy densities, λ = 0.2 and p = 0.5.

LetY be a zero and one inflated Kumaraswamy random variable. Its rthmoment isE(Yr) = λp+(1–λ)μr,
r = 1,2, . . .. Hence,

E(Y) = λp + (1 –λ)μ1 = λp +β(1 –λ)B
(

1 +
1
α

,β
)

and

Var(Y) = λp + (1 –λ)μ2 – [λp + (1 –λ)μ1]2

= λp +β(1 –λ)B
(

1 +
2
α

,β
)

–
[
λp +β(1 –λ)B

(
1 +

1
α

,β
)]2

= λp(1 –λp) + (1 –λ)β
{

B
(

1 +
2
α

,β
)

– B
(

1 +
1
α

,β
)[

2λp +β(1 –λ)B
(

1 +
1
α

,β
)]}

,

where μ1 and μ2 are the first and second Kumaraswamy moments, respectively.

Consider the zero and one inflated Kumaraswamy density given in (6). It is possible to write it as

zoik(y;λ,p,α,β) =
[
λpy(1 – p)1–y

]1{0,1}(y)
×
[
(1 –λ)g(y;α,β)

]1–1{0,1}(y)

=
[
λ
1{0,1}(y)(1 –λ)1–I{0,1}(y)

][
py(1 – p)1–y

]1{0,1}(y) [
g(y;α,β)1–1{0,1}(y)

]
, (7)
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where now 1{0,1}(y) is the indicator function that equals one if y ∈ {0,1} and equals zero if y /∈ {0,1}. The
pdf in (7) factors into three terms: the first term only depends on λ, the second term only depends on p and

the third term involves α and β.

The likelihood function for θ = (λ,p,α,β)′ based on the random sample y = (y1,y2, . . . ,yn)′ is

L(θ;y) =
n

∏
i=1

zoik(yi;λ,p,α,β) = L1(λ;y)×L2(p;y)×L3(α,β;y),

where

L1(λ;y) =
n

∏
i=1
λ
1{0,1}(yi)(1 –λ)1–1{0,1}(yi) = λ∑

n
i=11{0,1}(yi)(1 –λ)n–∑

n
i=11{0,1}(yi),

L2(p;y) =
n

∏
i=1

[
pyi(1 – p)1–yi

]1{0,1}(yi)
= p∑

n
i=1 yi1{0,1}(yi)(1 – p)∑

n
i=1(1–yi)1{0,1}(yi)

= p∑
n
i=11{1}(yi)(1 – p)

[
∑

n
i=11{0,1}(yi)–∑

n
i=11{1}(yi)

]
and

L3(α,β;y) = ∏
i=1

yi∈(0,1)

g(yi;α,β) = ∏
i=1

yi∈(0,1)

(αβ)y(α–1)
i (1 – yαi )(β–1).

The corresponding log-likelihood function can be expressed as

`(θ;y) = `1(λ;y) + `2(p;y) + `3(α,β;y),

where

`1(λ;y) = ln(λ)
n

∑
i=1
1{0,1}(yi) + ln(1 –λ)

[
n –

n

∑
i=1
1{0,1}(yi)

]
,

`2(p;y) = ln(p)
n

∑
i=1
1{1}(yi) + ln(1 – p)

[
n

∑
i=1
1{0,1}(yi) –

n

∑
i=1
1{1}(yi)

]
and

`3(α,β;y) = ∑
i=1

yi∈(0,1)

ln(αβ) + (α– 1) ∑
i=1

yi∈(0,1)

ln(yi) + (β– 1) ∑
i=1

yi∈(0,1)

ln(1 – yαi ).

The score function is given by U(θ) =
[
Uλ(λ),Up(p),Uα(α,β),Uβ(α,β)

]
, where

Uλ(λ) =
∂`1(λ;y)

∂λ
=

1
λ

n

∑
i=1
1{0,1}(yi) –

1
1 –λ

[
n –

n

∑
i=1
1{0,1}(yi)

]
,

Up(p) =
∂`2(p;y)

∂p
=

1
p

n

∑
i=1
1{1}(yi) –

1
1 – p

[
n

∑
i=1
1{0,1}(yi) –

n

∑
i=1
1{1}(yi)

]
,

Uα(α,β) =
∂`3(α,β;y)

∂α
=

1
α

[
n –

n

∑
i=1
1{0,1}(yi)

]
+ ∑

i=1
yi∈(0,1)

ln(yi) + (β– 1) ∑
i=1

yi∈(0,1)

(
yαi

yαi – 1

)
ln(yi) and

Uβ(α,β) =
∂`3(α,β;y)

∂β
=

1
β

[
n –

n

∑
i=1
1{0,1}(yi)

]
+ ∑

i=1
yi∈(0,1)

ln(1 – yαi ).
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The maximum likelihood estimators of λ and p are, respectively, λ̂ = 1
n ∑

n
i=11{0,1}(yi), which is the

proportion of discrete values in the sample, and p̂ = ∑
n
i=11{1}(yi)/∑

n
i=11{0,1}(yi), which is the proportion

of degenerate values that equal one.

The Fisher information matrix for the zero and one inflated Kumaraswamy distribution is

K(θ) =



kλλ 0 0 0

0 kpp 0 0

0 0 kαα kαβ

0 0 kβα kββ


, (8)

where

kλλ =
n

λ(1 –λ)
, kpp =

nλ
p(1 – p)

, kαα =
n(1 –λ)
α2

+
nβ(1 –λ)
α2(β– 2)

{[
ψ(β) –ψ(2)

]2 –
[
ψ
′(β) –ψ′(2)

]}
,

kαβ = kβα = –
n(1 –λ)
α(β– 1)

{[
ψ(β+ 1) –ψ(2)

]}
, kββ =

n(1 –λ)
β2

.

As before, approximate confidence intervals can be constructed based on the asymptotic normality of θ̂,

the mle of θ. In large samples, it is expected that θ̂
a∼ N4(θ,K(θ)–1), where K(θ) is the information matrix

given in (8). Using such a limiting distribution, it is possible to construct asymptotic confidence intervals

for λ,p,α and β. For δ ∈ (0,0.5), the (1 –δ)×100% asymptotic confidence intervals for such parameters are

given, respectively, by λ̂± z(1–δ/2)se(λ̂), p̂± z(1–δ/2)se(p̂), α̂± z(1–δ/2)se(α̂) and β̂± z(1–δ/2)se(β̂).

HYPOTHESIS TESTING INFERENCE

The asymptotic normality of θ̂ can also be used to construct hypothesis tests. Suppose the interest lies in

making testing inference on a subset of parameters. Let θ = (θ′1,θ′2)′, where θ1 is an r×1 vector of parameters

of interest and θ2 is an (m – r)×1 vector of nuisance parameters. We wish to test the null hypothesis H0 :
θ1 = θ(0)

1 against the alternative hypothesis H1 : θ1 6= θ(0)
1 . The inference can be based on the following

criteria: likelihood ratio (LR), Wald (W) and score (S). For details on these tests, see Buse (1992), Cox and
Hinkley (1979, Chapter 9) and Welsh (1996, Section 4.5).

Let θ̂ be the unrestricted maximum likelihood estimator of θ and let θ̃ =
(
θ

(0)′
1 , θ̃′2

)′
be the restricted

maximum likelihood estimator of θ which is obtained by imposing H0. The likehood ratio test statistic is

given by

LR = 2[`(θ̂) – `(θ̃)],

the Wald test statistic can be written as

W =
(
θ̂1 –θ(0)

1

)′ [
Krr(θ̂)

]–1
(
θ̂1 –θ(0)

1

)
and the score test statistic is

S = Ur(θ̃)′Krr(θ̃)Ur(θ̃),

where Krr(θ̂) is the r× r block of Fisher’s information matrix inverse that corresponds to θ1 evaluated at

θ̂, Ur(θ̃) denotes the r× 1 vector that contains the r elements of the score function corresponding to the
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parameters of interest and Krr(θ̃) is the r× r block of Fisher’s information matrix inverse that corresponds

to θ1 evaluated at θ̃.

Notice that in order to compute LR one needs to obtain θ̂ and θ̃, i.e., it is necessary to perform both

unrestricted and restricted parameter estimation. In contrast, in order to compute W one only needs to

perform unrestricted estimation and in order to compute S one only needs to carry out restricted estimation.

Under H0 and under some regularity conditions outlined by Serfling (1980), LR d→ χ2
r , W d→ χ2

r and

S d→ χ2
r , where

d→ denotes convergence in distribution. The three test statistics thus share the same asymptotic

null distribution. The tests are typically carried out using asymptotic (i.e., approximate) critical values. The

null hypothesis H0 is rejected at significance level δ∈ (0,1) if the selected criterion exceeds χ2
r;1–δ, the 1–δ

χ
2
r upper quantile.

NUMERICAL EVALUATION

In what follows we shall report results of Monte Carlo simulations that were carried out to evaluate the finite

sample performances of point estimators, confidence intervals and hypothesis tests. We consider inflation at

one and also inflation at both zero and one. The reported results are based on 10,000 replications and were

obtained using the Ox matrix programming language; see Cribari-Neto and Zarkos (2003) and Doornik

(2009). Log-likelihood maximization was performed using the quasi-Newton BFGS method with analytical

first derivatives, which is typically regarded as the best performing method; see Mittelhammer et al. (2000,

Section 8.13). The initial values used in the BFGS iterative scheme were arbitrarily selected, being different

from the true parameter values. We varied such initial values and noticed that they had little impact on the

results.

At the outset we focus on point estimation. Tables I and II contain the variances, relative biases andmean

squared errors (MSEs) of themaximum likelihood estimators of the parameters that index theKumaraswamy

distribution with inflation at one and with inflation at zero and one, respectively. Relative bias is computed

as the difference between the mean estimate and the true parameter valued divided by the latter. We report

results for different sample sizes. The mixture parameter (λ) assumes two values: 0.05 and 0.50. The results

show that the relative biases, variances and mean squared errors decay as the sample size increases. The

results in Table I show that point estimation of λ is less accurate when the true parameter value is small.

Consider, e.g., n = 50. The relative bias of λ̂ equals 8.60% when λ = 0.05 and –0.02% when λ = 0.50. It is
noteworthy that point estimation of β is less accurate than that of α and λ, especially when the value of λ is

large (0.50). This seems to be a characteristic Kumaraswamy maximum likelihood point estimation that is

carried over to the new class of inflated distributions. Consider, for instance, the numerical evidence reported

by Lemonte (2011). Except when the value of β is quite small, the numerical evidence in his paper shows

that the maximum likelihood estimator of β is considerably less accurate than that of α both in terms of bias

and mean squared error.

Next, we evaluate the accuracy of interval estimation in finite samples. The confidence intervals

empirical coverages and non-coverages are presented in Tables III (single inflation) and IV (double

inflation); entries are percentages. The results show that the empirical coverages approach the nominal ones

as the sample size increases. The non-coverages also become better balanced as number of data points is

increased. Consider, e.g., n = 100, λ = 0.50 and 1 – δ = 0.95. Under single inflation, the empirical coverage

rates for λ, α and β are, respectively, 94.62%, 94.53% and 96.32%. Under double inflation, the corresponding
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TABLE I

Relative biases, variances and MSEs of the maximum likelihood estimators

of the parameters that index the IK1 distribution; α = 1.5,β = 3.0α = 1.5,β = 3.0α = 1.5,β = 3.0.

λ Measure Estimator
n

50 100 200 500

0.05

Rel. Bias

λ̂ 0.0860 0.0040 0.0020 0.0000

α̂ 0.0375 0.0193 0.0095 0.0043

β̂ 0.0933 0.0449 0.0223 0.0099

Variance

λ̂ 0.0008 0.0005 0.0002 0.0001

α̂ 0.0579 0.0266 0.0130 0.0051

β̂ 0.8120 0.3045 0.1358 0.0524

MSE

λ̂ 0.0008 0.0005 0.0002 0.0001

α̂ 0.0610 0.0274 0.0132 0.0052

β̂ 0.8903 0.3226 0.1403 0.0533

0.50

Rel. Bias

λ̂ –0.0002 –0.0004 –0.0004 –0.0002

α̂ 0.0803 0.0381 0.0174 0.0079

β̂ 0.2044 0.0875 0.0411 0.0172

Variance

λ̂ 0.0049 0.0024 0.0012 0.0005

α̂ 0.1282 0.0557 0.0258 0.0099

β̂ 2.6576 0.7277 0.2943 0.1030

MSE

λ̂ 0.0049 0.0024 0.0012 0.0005

α̂ 0.1427 0.0590 0.0264 0.0101

β̂ 3.0335 0.7965 0.3095 0.1057

coverage rates for λ, α, β and p are 94.27%, 94.77%, 96.50% and 96.63%. Overall, the confidence intervals

display reasonably accurate coverages except the confidence interval for λ when the true parameter value

is very small (λ = 0.05, Table III). For instance, when n = 100 and 1 – δ = 90%, the exact interval coverage

was slightly below 86%. For α and β, the corresponding coverage figures were 89.76% and 91.28%.

We also carried out simulations to evaluate the finite performances of testing inferences based on the

LR,W and S asymptotic chi-squared criteria. The interest lies in testing H0 : λ = λ0 ×H1 : λ 6= λ0 for the

IK1 law. For the ZOIK law, we test H0 : λ = λ0 ×H1 : λ 6= λ0 and also H0 : p = p0 ×H1 : p 6= p0.

In the former case, α = 1.5 and β = 3.0; in the latter case, for the test on λ we generated data using

p = 0.5,α = 1.5,β = 3.0 and for the test on p we performed data generation using λ = 0.2,α = 1.5,β = 3.0.
Data generation was performed under the null hypothesis. The significance levels are 5% and 10%. The

tests null rejection rates are presented in Tables V (test on λ, IK1 law), VI (test on λ, ZOIK, law) and VII

(test on p, ZOIK law). Notice that the empirical null rejection rates converge to the corresponding nominal

significance levels as the sample size increases. Overall, the likelihood ratio test is the best performing
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TABLE II

Relative biases, variances and MSEs of the maximum likelihood estimators

of the parameters that index the ZOIK distribution; p = 0.5,α = 1.5,β = 3.0p = 0.5,α = 1.5,β = 3.0p = 0.5,α = 1.5,β = 3.0.

λ Measure Estimator
n

50 100 200 500

0.05

Rel. Bias

λ̂ 0.3920 0.0880 0.008 0.0020

p̂ –0.0028 –0.0026 –0.0014 –0.0006

α̂ 0.0390 0.0185 0.0084 0.0038

β̂ 0.0964 0.0439 0.0209 0.0089

Variance

λ̂ 0.0007 0.0004 0.0002 0.0001

p̂ 0.0243 0.0310 0.0255 0.0104

α̂ 0.0593 0.0267 0.0130 0.0051

β̂ 0.8137 0.3104 0.1381 0.0521

MSE

λ̂ 0.0011 0.0004 0.0002 0.0001

p̂ 0.0243 0.0310 0.0255 0.0104

α̂ 0.0627 0.0275 0.0132 0.0052

β̂ 0.8973 0.3278 0.1420 0.0528

0.50

Rel. Bias

λ̂ –0.0016 –0.0016 –0.0006 –0.0004

p̂ 0.0024 0.0012 0.0008 0.0002

α̂ 0.0779 0.0359 0.0163 0.0071

β̂ 0.2033 0.0868 0.0395 0.0166

Variance

λ̂ 0.0049 0.0025 0.0012 0.0005

p̂ 0.0101 0.0051 0.0025 0.0010

α̂ 0.1283 0.0552 0.0253 0.0095

β̂ 2.6944 0.7409 0.2873 0.0996

MSE

λ̂ 0.0049 0.0025 0.0012 0.0005

p̂ 0.0102 0.0051 0.0025 0.0010

α̂ 0.1419 0.0581 0.0259 0.0096

β̂ 3.0663 0.8087 0.3013 0.1020

test, i.e., it is typically the least size-distorted test. For example, when n = 100, λ = 0.10 (λ = 0.50) and at

the 5% significance level in Table V, the likelihood ratio null rejection rate is 4.44% (5.38%) under single

inflation. The corresponding figures for the score and Wald tests are, respectively, 6.35% (5.38%) and 7.05

(5.38%). The null rejection rates of the three tests coincide when λ0 = 0.50 (IK1 and ZOIK), even though the

test statistics values are slightly different in each replication. The tests become less accurate when they are

used to make inference on p (Table VII), especially when the value of p0 is small. The tests become more
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TABLE III

Confidence intervals empirical coverages and noncoverages (to the left; to the right)

rates (%), IK1 distribution; α = 1.5α = 1.5α = 1.5 and β = 3.0β = 3.0β = 3.0.

λ 1 –δ Parameter
n

50 100 200 500

0.05

95%

λ 99.63 88.01 92.60 93.32

(0.37; 0.00) (0.52; 11.47) (1.31; 6.09) (1.25; 5.43)

α 94.91 95.15 95.00 95.02

((2.84; 2.25) (2.57; 2.28) (2.65; 2.35) (2.77; 2.21)

β 96.07 95.85 95.59 95.23

(0.49; 3.44) (1.10; 3.05) (1.54; 2.87) (2.02; 2.75)

90%

λ 98.69 85.58 84.97 88.61

(1.31; 0.00) (2.95; 11.47) (2.59; 12.44) (2.83; 8.56)

α 89.64 89.76 89.89 90.24

(6.05; 4.31) (5.78; 4.46) (5.48; 4.63) (5.30; 4.46)

β 91.75 91.28 90.82 90.11

(2.50; 5.75) (3.39; 5.33) (3.91; 5.27) (4.68; 5.21)

0.50

95%

λ 93.72 94.62 94.43 94.54

(3.29; 2.99) (2.71; 2.67) (2.87; 2.70) (2.83; 2.63)

α 94.52 94.53 94.93 94.80

(3.19; 2.29) (3.05; 2.42) (2.61; 2.46) (2.72; 2.48)

β 96.53 96.32 95.67 95.33

(0.00; 3.47) (0.49; 3.19) ( 1.20; 3.13) (1.67; 3.00)

90%

λ 88.42 91.66 89.99 90.28

(6.00; 5.58) (4.11; 4.23) (5.20; 4.81) (4.79; 4.93)

α 89.51 89.46 89.58 89.86

(6.70; 3.79) (6.16; 4.38) (5.90; 4.52) (5.40; 4.74)

β 94.08 92.23 90.55 90.38

(0.56; 5.36) (2.50; 5.27) (3.74; 5.71) (4.43; 5.19)

accurate when n ≥ 200. Consider, for example, p0 = 0.10, δ = 10% and n = 200. The null rejection rates of
the likelihood ratio, score and Wald tests are 9.38%, 8.14% and 12.40%.

We have also carried out power simulation, i.e., simulations in which data generation was performed

under the alternative hypothesis. For brevity, we shall only report results for the test on λ in the ZOIK law.

Data generation was carried using λ = 0.20 and λ = 0.40 when λ0 = 0.10 and λ0 = 0.50, respectively. Since no
test is very liberal, the tests are performed using asymptotic (χ2) critical values. The tests nonnull rejection
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TABLE IV

Confidence intervals empirical coverages and noncoverages (to the left; to the right)

rates (%), ZOIK distribution; p = 0.5,α = 1.5p = 0.5,α = 1.5p = 0.5,α = 1.5 and β = 3.0β = 3.0β = 3.0.

λ 1 –δ Parameter
n

50 100 200 500

0.05

95%

λ 99.39 94.79 93.49 93.47

(0.61; 0.00) (0.42; 4.79) (1.18; 5.33) (1.23; 5.30)

p 98.84 94.20 89.53 93.24

(0.59; 0.57) (2.88; 2.92) (5.25; 5.22) (3.29; 3.47)

α 94.68 94.93 95.07 95.06

(2.88; 2.44) (2.63; 2.44) (2.55; 2.38) (2.57; 2.37)

β 96.30 95.70 95.57 95.26

(0.43; 3.27) (1.22; 3.08) (1.58; 2.85) (1.93; 2.81)

90%

λ 97.48 92.07 86.11 88.64

(2.52; 0.00) (3.14; 4.79) (2.29; 11.60) (2.96; 8.40)

p 94.49 87.46 85.95 87.61

(2.62; 2.89) (6.13; 6.41) (7.14; 6.91) (6.03; 6.36)

α 89.85 90.07 90.27 89.84

(5.84; 4.31) (5.47; 4.46) (4.95; 4.78) (5.25; 4.91)

β 92.11 91.31 90.64 90.34

(2.47; 5.42) (3.65; 5.04) (3.84; 5.52) (4.55; 5.11)

0.50

95%

λ 93.87 94.27 94.40 94.45

(3.08; 3.05) (2.77; 2.96) (2.79; 2.81) (2.74; 2.81)

p 93.38 93.63 94.82 94.63

(3.32; 3.30) (3.23; 3.14) (2.55; 2.63) (2.57; 2.80)

α 94.72 94.77 94.88 95.53

(3.13; 2.15) (2.96; 2.27) (2.66; 2.46) (2.19; 2.28)

β 96.59 96.50 95.66 95.78

(0.00; 3.41) (0.43; 3.07) (1.27; 3.07) (1.40; 2.82)

90%

λ 88.48 90.98 89.78 90.15

(5.69; 5.83) (4.34; 4.68) (5.04; 5.18) (4.86; 4.99)

p 87.95 88.71 89.81 89.51

(6.22; 5.83) (5.64; 5.65) (5.05; 5.14) (4.97; 5.52)

α 89.42 89.72 90.05 90.51

(6.74; 3.84) (5.61; 4.67) (5.49; 4.46) (5.02; 4.47)

β 94.12 91.88 91.04 90.88

(0.45; 5.43) (2.69; 5.43) (3.40; 5.56) (3.97; 5.15)
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TABLE V

Null rejection rates (%), IK1 distribution,

H0 : λ = λ0 ×H1 : λ 6= λ0H0 : λ = λ0 ×H1 : λ 6= λ0H0 : λ = λ0 ×H1 : λ 6= λ0.

λ0 δ Test
n

50 100 200 500

0.10 5% LR 5.25 4.44 5.87 5.21

W 12.20 7.05 6.88 5.75

S 2.39 6.35 4.39 4.37

10% LR 8.64 9.87 9.68 10.31

W 13.70 13.90 11.88 11.22

S 8.64 13.29 12.24 8.59

0.50 5% LR 6.28 5.38 5.57 5.46

W 6.28 5.38 5.57 5.46

S 6.28 5.38 5.57 5.46

10% LR 11.58 8.34 10.01 9.72

W 11.58 8.34 10.01 9.72

S 11.58 8.34 10.01 9.72

TABLE VI

Null rejection rates (%), ZOIK distribution,

H0 : λ = λ0 ×H1 : λ 6= λ0H0 : λ = λ0 ×H1 : λ 6= λ0H0 : λ = λ0 ×H1 : λ 6= λ0.

λ0 δ Test
n

50 100 200 500

0.10 5% LR 2.90 3.91 6.07 5.44

W 5.61 6.03 7.31 5.72

S 2.90 5.80 4.33 4.61

10% LR 7.00 8.96 10.03 10.10

W 7.45 12.59 12.04 10.83

S 7.00 12.36 12.30 8.67

0.50 5% LR 6.13 5.73 5.60 5.55

W 6.13 5.73 5.60 5.55

S 6.13 5.73 5.60 5.55

10% LR 11.52 9.02 10.22 9.85

W 11.52 9.02 10.22 9.85

S 11.52 9.02 10.22 9.85

TABLE VII

Null rejection rates (%), ZOIK distribution,

H0 : p = p0 ×H1 : p 6= p0H0 : p = p0 ×H1 : p 6= p0H0 : p = p0 ×H1 : p 6= p0.

p0 δ Test
n

50 100 200 500

0.10 5% LR 3.20 2.37 3.51 5.20

W 0.67 0.79 8.35 7.05

S 6.32 4.65 3.48 4.90

10% LR 6.32 5.11 9.38 10.11

W 2.02 3.01 12.40 11.81

S 10.29 7.49 8.14 9.69

0.75 5% LR 2.39 4.84 5.43 5.55

W 5.30 8.61 7.08 6.30

S 4.08 4.09 4.80 5.29

10% LR 6.30 10.06 10.33 10.51

W 10.00 14.00 12.16 11.11

S 5.96 9.20 10.07 10.63

TABLE VIII

Nonnull rejection rates (%), ZOIK distribution,

H0 : λ = λ0 ×H1 : λ 6= λ0H0 : λ = λ0 ×H1 : λ 6= λ0H0 : λ = λ0 ×H1 : λ 6= λ0.

λ0 δ Test
n

50 100 200 500

0.10 5% LR 56.36 80.54 97.89 100.00

W 42.53 72.68 96.77 99.99

S 56.36 86.90 97.89 100.00

10% LR 70.11 86.90 98.55 100.00

W 56.42 80.56 97.89 100.00

S 70.11 91.89 99.15 100.00

0.50 5% RV 34.39 55.55 82.55 99.53

W 34.39 55.55 82.55 99.53

S 34.39 55.55 82.55 99.53

10% RV 45.67 62.92 89.12 99.82

W 45.67 62.92 89.12 99.82

S 45.67 62.92 89.12 99.82
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rates are presented in Table VIII. It is noteworthy that the tests are less powerful when the value of λ0 is

large. Consider, e.g., n = 200 and δ = 5%. The estimated powers of the likelihood ratio, score and Wald

tests are around 98% whereas for λ0 = 0.10 they are around 82%. We also note that the powers of the tests

coincide when λ0 = 0.50.

EMPIRICALAPPLICATION

In what follows we shall present an empirical application of the IK1 distribution. The variable of interest

assumes values in (0,1]. It is the proportion of inhabitants in each of the 5,566 Brazilian municipalities that

lived in homes with at least one bathroom and piped water in 2010. The data source is the 2013 edition

of the Brazilian Atlas of Human Development; http://www.atlasbrasil.org.br/2013. The data contain 73

observations that equal one. Table IX displays some descriptive statistics on the variable of interest. Notice

that 75% of the data points exceed 0.6778 and that there if left-skewness.

TABLE IX

Descriptive statistics.

minimum 1st quartile median mean 3rd quartile maximum

0.0326 0.6778 0.9124 0.8087 0.9800 1.0000

We fitted the inflated Kumaraswamy (IK1) and beta distributions (BEOI), both with inflation at one.

The maximum likelihood estimates of the parameters that index that IK1 distribution (standard errors in

parentheses) are λ̂ = 0.0131 (0.0015), α̂ = 2.3513 (0.0503) and β̂ = 0.5292 (0.0085). The parameter estimates

we obtained for the BEOI law are λ̂ = 0.0131 (0.0015), μ̂ = 0.8026 (0.0027) and φ̂ = 2.7160 (0.0518). Again,
log-likelihood maximization was performed using the BFGS quasi-Newton method and the Ox matrix

programming language. Figure 3 contains the data histogram and the fitted IK1 density. The fitted BEOI

density is not included in the plot because it is very similar to the fitted IK1 density, as expected given the

large sample size.

We performed the Kolmogorov-Smirnov test; for details on such a test, see Pestman (1998, Section

7.4). The interest lies in determining whether the sample at hand came from the the postulated distribution.

The test was performed for each of the two inflated laws. For the inflated Kumaraswamy and beta laws, the

test statistics are, respectively, 0.1896 and 0.1938. Even though the null hypothesis is not rejected for both

distributions, the fact that the test statistic is smaller for the inflated Kumaraswamy law indicates there is

more evidence in favor of the inflated Kumaraswamy distribution relative to the alternative law.

Using the maximum likelihood estimate of λ (IK1 law), we constructed the asymptotic 95% confidence

interval for such a parameter. The lower interval limit is 0.0102 and the upper limit equals 0.0160.

Finally, we tested the following null hypotheses against the corresponding two sided alternative

hypotheses (IK1 law): (i)H0 : λ = 0.010, (ii)H0 : λ = 0.015 and (iii)H0 : λ = 0.015, the respective likelihood
ratio test statistics (p-values in parentheses) being 4.9695 (0.0258), 1.3970 (0.2372) and 15.3039 (0.0001).
The corresponding score [Wald] figures are 5.4566 (0.0195) [4.1736 (0.0411)], 1.3381 (0.2474) [1.5274

(0.2165)] and 13.4602 (0.0002) [20.3827 (< 0.0001)]. It is thus clear that the second null hypothesis is not
rejected at the usual nominal levels, and one can safely take the value of λ to be 0.015.

An Acad Bras Cienc (2019) 91(2) e20180955 16 | 18



FRANCISCO CRIBARI-NETO and JÉSSICA SANTOS Inflated Kumaraswamy distributions

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

y

IK1

Figure 3 - Data histogram and fitted inflated Kumaraswamy density.

CONCLUSIONS

Applied statisticians oftentimes need to model variables that assume values in the standard unit interval,

(0,1); e.g., rates, proportions, income inequality indices, etc. The beta and Kumaraswamy distributions are

commonly used with such variables. There are instances, however, when the variable of interest may display

inflation, i.e., it may equal zero and/or one with positive probability. Put differently, it assumes values in

[0,1) (inflation at zero), (0,1] (inflation at one) or [0,1] (inflation at both interval limits). In this paper,

we introduced inflated Kumaraswamy distributions that can be used as underlying laws for variables that

assume values in those intervals. We considered two separate cases, namely: (i) inflation at zero or one

and (ii) inflation at zero and one. For both cases, we introduced the appropriate law and also discussed

point estimation, interval estimation and hypothesis testing inference.We presented Monte Carlo simulation

evidence on the finite sample performances of point estimates, confidence intervals and hypothesis tests.

Finally, an empirical application was presented and discussed.
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