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Abstract: The vibrational modes with nonzero frequency are localized in harmonic lattice with disordered

masses. In our work, we investigated numerically the propagation of vibrational energy in harmonic lattice

with long-range correlated disordered masses, which are randomly distributed with power law spectrum

S(k) ∝ k–α. For α = 0, a standard uncorrelated disordered mass distribution was observed and for α > 0 its

distribution exhibits intrinsic long-range correlations. Our procedure was done by the numerical solution of

the classical equations for themass displacement and velocities. Energy flowwas investigated after injection

of an initial wave-packet with energy E0 and the dynamics of the vibrational energy wave-packet was

analyzed. We also investigated the dynamics of a pulse pumped at one side of the lattice. Our calculations

suggest that vibrational modes with nonzero frequency propagate within harmonic lattice with correlated

disordered masses distribution.
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INTRODUCTION

The propagation of general particles in disordered systems represents an interesting issue with several

connections with solid state physics, acoustics, electrodynamics, biological systems and other branches

of science. Within the solid state physics, the most famous contribution in this area is Anderson’s work

(Anderson 1958). In 1958, P.W. Anderson investigated electron wave-function in disordered theoretical

samples. The model consists of a one-electron with local kinetic energy moving in a disordered potential.

The random potential simulates the local interaction between the electron and the atoms along an amorphous
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material.Anderson localization theory demonstrated that, in low-dimensional systems (d≤ 2), the electronic
dynamics is absent for any amount of disorder (Kramer and MacKinnon 1993, Abrahams et al. 1979). The

results of the Localization Theory not only had a great impact in the physics of electronics systems. but

also had thorough influence in acoustic waves (Weaver and Burkhardt 1994), electromagnetic waves (John

1984), light propagation (Störzer 2006), photonic bandgap materials (Schwartz et al. 2007), cold atoms

(Izrailev et al. 2012), etc.

The theoretical approach of Anderson takes into consideration the “uncorrelated” disorder distribution

within those systems. The term “uncorrelated disorder” represents a class of probability distribution in which

intrinsic correlation between two distinct sites is zero. It was shown, years ago, that theAnderson localization

predictions in low-dimensional disordered systems may be violated in the case of special kinds correlated

disorder (Flores 1989, Dunlap et al. 1990, Bellani et al. 1999, de Moura and Lyra 1998, Domínguez-Adame

et al. 2003, de Moura 2010, Izrailev and Krokhin 1999, Izrailev et al. 2001, Kuhl et al. 2000, 2008, Croy

and Schreiber 2012, Albrecht and Wimberger 2012). This phenomenon can be achieved by implementing

several operations. One of the most famous and successful ways to obtain extended electronic states in

disordered chains is by means of a long-range correlated disorder. In general, a disorder distribution with

long-range correlations does not exhibit an intrinsic correlation length. The correlation functions exhibit

roughly a power law decay (Izrailev et al. 2012, de Moura and Lyra 1998).

The main results of the localization theory can also be applied within the context of vibrational

modes in disordered harmonic systems. Vibrational modes with high frequencies in one-dimensional (1D)

harmonic chains with a random sequence of masses are localized (Dean 1964). Moreover, there are a few

low-frequency modes not localized, whose number is of the order of
√

N, where N is the number of masses

in the chain (Dean 1964, Matsuda and Ishii 1970, Ishii 1973). The effect of correlated disorder in classical

one-dimensional harmonic chains was properly investigated. In harmonic chains with correlated disorder,

appearance of new non-scattered vibrational modes were detected (Datta and Kundu 1994, de Moura et al.

2003, Albuquerque 2005). Other dimensionality, such as d = 2, still deserves a more intense attention, in
special, at the presence of correlated disorder.

Despite the past analysis of two-dimensional harmonic lattice with long-range correlation (de Moura

and Domínguez-Adame 2008), authors did not account for transversal atomic displacements in their model.

They found numerical proof that extended longitudinal modes can appear for strong correlations.

In this work, we considered the problem of a harmonic 2D lattice with correlated disorder and masses’

movements in transversal and longitudinal ways (i.e., x and y directions). In our model, the random

masses distribution exhibits a power-law spectral density S(k) ∼ 1/kα. For α = 0 we recovered the standard
disordered harmonic lattice. For α > 0, the masses distribution contains long-range correlations that decays
approximately as a power law. We solved the classical equations using a second order Euler formalism. Our

numerical experiments consists of energy injection into the lattice and track the evolution of thewave-packet.

Our calculations suggest that intrinsic correlations, which exists within the masses’ distribution, promotes

a ballistic energy flux throughout those disordered systems.

MODELAND NUMERICAL CALCULATIONS

We consider a two-dimensional harmonic lattice (L×N) where each site (n,m) represents an atom with

mass Mn,m. When the system is at rest, the x and y coordinates may be set to xn,m = m and yn,m = n (in
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Figure 1 - Mn,m × n×m for L = N = 100 and α = a)0, b)1.5 and c)3. We observe that as α is increased, masses’

distribution becomes smoother due to the presence of long-range correlations.

Figure 2 - (a, b)Velocity of mass n,m ( Vn,m =
√

(vx
n,m)2 + (vy

n,m)2) versus n and m for α = 0 and α = 3. Calculations
were done in a square lattice with N×N = 1500×1500 (n = m = 0 represent the center of lattice). Classical equations
were integrated until tmax ≈ 600. We observe clearly in (b) the effect of intrinsic correlations promoting a fast and

intense vibrational energy propagation.
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Figure 3 - (a-d) Rescaled energy spread σ(t)/Nμ versus rescaled time t/N for α = (a) 0, (b) 1, (c) 2 and

(d) 3. The initial condition used was xn,m(t = 0) = m +Δδn,n0δm,m0 , yn,m(t = 0) = n +Δδn,n0δm,m0 and

vn,m
x (t = 0) = vn,m

y (t = 0) = 0 (here we used Δ = 0.5). The data collapse for α = 3 suggests occurrence of

ballistic dynamics (σ(t) ∝ t1). For α < 2, our calculations point to a superdifusive dynamics with exponent
ς ∝ tμ with μ < 1. In (e) we plot the evolution of the exponent μ as the correlation becomes stronger.
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Figure 4 - a) Calculations of the energy flux through the harmonic lattice with correlated disorder. We

plot Zn0,z0 versus t for N = 2400, L = 360, n0 = L/2, z0 = 1300 and α = 0,1 and 3. b)I(ω) = |FT(Zn0,z0 (t))|
versus ω for several values of α. For α > 2, our calculations suggest the existence of a phase of extended
vibrational modes with frequencies within the interval [0,ωc].

units of the lattice spacing a = 1), respectively. Masses are randomly distributed with power law spectrum

S(k) ∝ k–α. For α = 0 we get an uncorrelated disordered mass distribution. For α > 0, mass distribution
exhibits intrinsic long-range correlations. In order to generate the long-range correlated mass distribution,

we used the framework similar to those presented in refs. (dos Santos et al. 2007), applying the formula

Θn,m defined as:

Θn,m =
L/2

∑
kn=1

N/2

∑
km=1

ζ(α)(
k2

n + k2
m

)
α/4 ×

cos(
2πnkn

L
+ψi,m)cos(

2πmkm
N

+φi,m) , (1)

where ψn,m and φn,m are independent random phases uniformly distributed in the interval [0,2π] and
ζ(α) is a normalization constant. We normalized Θn,m in such a way that < Θn,m >= 0 and < (Θn,m)2 =
1 >. The mass Mn,m of our harmonic system is defined as Mn,m = tanh(Θn,m) + 2. We emphasize that this

transformation of Θn,m using hiperbolic function did not change the power law spectrum (S(k) ∝ k–α). This

transformation generated a disorder distribution Mn,m with the same intrinsic correlations as inΘn,m within

the interval [1,3].

The distance dn,m
l between the site (n,m) and its four first nearest neighbors (l = 1,2,3,4) after a spring

deformation around site n,m was measured as:

dn,m
1 =

√
(xn,m – xn+1,m)2 + (yn,m – yn+1,m)2, (2)

dn,m
2 =

√
(xn,m – xn,m+1)2 + (yn,m – yn,m+1)2, (3)

dn,m
3 =

√
(xn,m – xn–1,m)2 + (yn,m – yn–1,m)2 (4)
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and

dn,m
4 =

√
(xn,m – xn,m–1)2 + (yn,m – yn,m–1)2. (5)

In this model, the effective force on mass (Mn,m) was computed as ~F
n,m =~Fn,m

1 +~Fn,m
2 +~Fn,m

3 +~Fn,m
4

where~Fn,m
l = K|dn,m

l – 1|r̂l with l = 1,2,3,4. K is value of the spring constant and r̂l is an unity vector along

the direction l (K = 1 here). We stress that the direction of r̂l depends on the distance dn,m
l : if dn,m

l > 1,
then the vector r̂l points to the direction of mass n,m; on the other hand, if dn,m

l < 1, then r̂l points to the

opposite direction of mass n,m. The vibrational energy dynamic process is obtained by solving the classical

equations:

[~Fn,m]x = Mn,m
d2xn,m

dt2
(6)

and

[~Fn,m]y = Mn,m
d2yn,m

dt2
(7)

In general, eqs. 6 and 7 were solved in the following manner: each second order equation was separated

into two first order equations (for the eqs. 6 and 7, we get: [~Fn,m]j = Mn,m
dvn,m

j
dt and vn,m

j =
djn,m

dt , where j =
x,y, respectively). Therefore, we have a set of four equations for each mass (n,m) which can be solved using

a second order Euler method (2EM). In order to explain the (2EM)method, we used, as example, the two first

order equations for the x direction. Assuming that we know the initial value of xn,m(t = 0) and vn,m
x (t = 0),

we find a first order estimation for these quantities at time dt as: xn,m(t = dt)1 = xn,m(t = 0) + dt∗vn,m
x (t = 0)

and vn,m
x (t = dt)1 = vn,m

x (t = 0) + dt ∗ [~Fn,m(t = 0)]x/Mn,m. The second order formulae for these quantities

is written as: xn,m(t = dt)2 = xn,m(t = 0) + (dt/2) ∗ (vn,m
x (t = 0) + vn,m

x (t = dt)1) and vn,m
x (t = dt)2 = vn,m

x (t =
0) + (dt/2) ∗ ([~Fn,m(t = 0)]x + [~Fn,m(t = dt)]x)/Mn,m. The same second order procedure is employed for the

y direction. In our calculations, we used dt ≈ 5 × 10–3 along the entire time interval. We also checked

for numerical accuracy of our method. It was done by monitoring the temporal evolution of the total energy

contained within the lattice. If an initially localized wave-packet with energy E0 was injected into the lattice,

then the time-dependent total energy E(t) would be constant along the time. We found |1 – E(t)/E0| < 10–10

within the entire interval.

Our first analysis consists of injecting an initial wave-packet with energy E0 at the center (N/2,L/2)
of a square lattice (i.e., N = L) and then calculating its spread along time. The fraction Rn,m of the initial

energy on the mass (n,m) was used to estimate the spread of energy within the lattice. Rn,m is defined as

Rn,m = hn,m/E0, where hn,m is the classical hamiltonian at the mass n,m (hn,m = Mn,m[(vn,m
x )2 +(vn,m

y )2]/2+
(1/4)[(1 – d1)2 + (1 – d2)2 + (1 – d3)2 + (1 – d4)2]). After computing Rn,m for each n,m, we can determine the

spread of the energy distribution characterized as:

σ(t) =
√

∑
n,m

[(n – N/2)2 + (m – N/2)2][Rn,m] (8)
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The quantity ς, for extended states, increases ballistically from 0 until it reaches values near N. In the
case of localized states, ς remains finite. This analysis gives us a general measure of the energy spread within

the lattice. We also performed a direct measure of the propagation of a mode with frequency ω along the

system employing another numerical experiment, with a new topology and initial condition: i) rectangular

geometry (N × L with N > L); ii) one of the sides of this rectangular lattice is now coupled with some

oscillators which inject a pulse defined as :

xn,m=0 = ∑
ωn

Ucos(ωnt) (9)

where U is a small amplitude and ωn is a set of frequencies within the interval [ωmin,ωmax] = [0.05,5].
In this second numerical experiment, we are interested in studying energy propagation along one direction.

Therefore we solved the equations in a rectangular geometry in whichN > L represents the propagation axis.

In order to analyze the energy propagation along the system, we follow the time-evolution of energy pulse

by monitoring the mass position xn0,z0 . In our calculations, n0 ≈ L/2 and z0 is close to N/2. Hence, xn0,z0
represent the position of a mass far from the lattice side which received the energy pumping. We calculated

the displacement of mass (n0, z0) relative to the initial condition i.e. Zn0,z0(t) = xn0,z0(t) – xn0,z0(t = 0) (in
units of the lattice spacing a = 1). Then, we can computed I(ω) = |FT(Zn0,z0(t))|, where FT(A) represents
the Fourier transform of function A. I(ω) reveals information about the frequencies that propagate along the
chain. When I(ω) = 0, the frequency ω does not propagate along the lattice. If I(ω) > 0, our results provide a
numerical demonstration that vibrational modes with frequency ω evolves along the lattice from one side to

the other. In summary, I(ω) > 0 suggests propagation and the existence of extended modes with frequency ω.

RESULTSAND DISCUSSION

We generated the disorder distribution using the procedure defined in the previous section, i.e. Mn,m =
tanh(Θn,m) + 2, where Θn,m is defined in eq. 1. In fig. 1, we plot Mn,m ×n×m for α = a)0, b)1.5 and c)3.
We observed that, for α = 0, masses are randomly distributed within the interval [1,3]. As the value of α is
increased the aforementioned distribution acquires intrinsic correlations and the disorder profile becomes

smoother. This phenomenon was studied in detail in ref. (da Silva et al. 2017). Authors gave numerical

proof of the smoothness of local disorder as the correlation parameter α increases. It is a consequence of the

Fourier method used to generate the correlated disorder. However, in ref. (da Silva et al. 2017) it was also

shown that, for α ≤ 3, the local disorder does not vanish in finite samples. In figs. 2 and 3, we plot results
for the time evolution of a initially localized energy wave-packet in a square harmonic lattice with N = L.

For t = 0, an initial energy input was injected on siteN/2,N2 as xn,m(t = 0) = m+Δδn,N/2δm,N/2, yn,m(t =
0) = n+Δδn,N/2δm,N/2 and vn,m

x (t = 0) = vn,m
y (t = 0) = 0. This kind of initial excitation is called displacement

excitation. Our calculations were done forΔ = 0.5 and dt = 0.005. The energy conservation was checked for
each integration step. We calculated the total energy of the lattice as E(t) = ∑n,m hn,m and our convergence

criterion was |1 – E(t)/E0| < 10–10. In fig. 2 we plot the velocity of mass n,m (Vn,m =
√

(vx
n,m)2 + (vy

n,m)2)

versus n and m for α = 0 and α = 3. We studied a square lattice with N×N = 1500× 1500 and final time

tmax ≈ 600 time units. In fig. 2, n = m = 0 represents the center of lattice. Results clearly show that for

α = 3, the initial wave-packet spreads over a larger region and also faster than the case with α = 0. However,
fig. 2 represents only a pedagogical visualization about the vibrational energy propagation within our model.
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Now, we discuss the energy propagation by observing the spread of the energy wave-packet i.e. the quantity

ς. We plot in fig. 3 (a-d) the re-scaled mean square displacement σ(t)/Nμ versus scaled time t/N computed

in lattices N×N =100× 100, 200× 200 and 400× 400. Here, we integrated the classical equations until
a stationary state is reached after multiple reflections of the energy vibration on the lattice boundaries. It

is worth mentioning that the mean-square displacement saturates at a value ∝ Nμ due to finite size effects.
Using the scaling variables (σ/Nμ versus t/N) we detect the presence of extended or localized states by

analyzing the existence of a data collapse of all curves. The data collapse using the scaled variables suggests

that the dynamics for long time is ς∝ tμ. We notice that, for α = 3, our calculations indicated the presence of
a data collapse with μ≈ 1. It is a signature of ballistic dynamics and, therefore, extended states (see fig. 3d).
For α < 2, we found data collapse with μ < 1 (see fig. 3a, c). It is a clear signature of super-diffusive dynamics.
We stress that, in disordered harmonic chains, it was demonstrated that the Anderson Localization Theory

works for high frequencies, but modes around ω = 0 (the uniform mode) can propagate even for strong

disorder (Dean 1964, Datta and Kundu 1994). Also, propagation of the uniform mode promotes a diffusive

(or super-diffusive) energy propagation along the chain. Our calculations suggest that in disordered lattices

with weak correlations in the disorder distribution (i.e α < 2) the energy propagates in a super-diffusive

regime (ς ∝ tμ with 0.75 < μ < 1) similar to the 1d disordered case (Dean 1964, Datta and Kundu 1994). In

fig. 3e we plot the exponent μ versus α with α = 0 up to 3. We clearly see a transition from a super-diffusive

regime (0.5 < μ < 1) to a ballistic one (μ = 1) as the correlation degree α is increased. The transition point
seems to be around α = 2. We emphasize that the critical point α = 2 was also found in electronic 1d systems
with correlated disorder (Izrailev et al. 2012).

In fig. 4a, we plot Zn0,z0 versus t for α = 0, 1 and 3. Calculations were done in a rectangular (L×N)
harmonic lattice with N = 2400 and L = 360 and with n0 ≈ L/2 and z0 ≈ 1300. We emphasize that, in this

figure, 4awe considered t = 0 the time inwhich that |Zn0,z0 | > 10–10. By using the time-evolution ofZn0,z0 we

calculated the quantity I(ω) as I(ω) = |FT(Zn0,z0(t))|, where FT(Zn0,z0(t)) represents the Fourier transform of

Zn0,z0(t). The results of I(ω) for several values of α are found in figure 4b.We emphasize that the calculations

of I(ω)were averaged using 50 distinct samples. Our calculations were summarized as follows: The function
I(ω) for the uncorrelated case α = 0 is almost null for ω > 0 and exhibits a pronounced peak around ω = 0.
Looking in more detail we can see that there is a peak around ω = 0 and narrow region with frequency ω≈ 0
that also exhibits I(ω) slightly larger than zero. This peak and this small region are related with those modes
around the uniform mode (ω = 0) which propagates along the lattice (Dean 1964). We emphasize that the

phenomenology around the uniform mode (ω = 0) in disordered harmonic systems was first investigated
in disordered harmonic chains. This uniform mode represents a mode without spring deformation, so it

has divergent wave-length and, also, it is not affected by the disorder propagating through the system (Dean

1964, Datta and Kundu 1994). In two dimensional disordered harmonic systems, the uniformmodel can also

propagate along the lattice, thus promoting the appearance I(ω≈ 0) > 0. For α = 1 and 1.5 the results of I(ω)
are quite similar to that obtained for α = 0. For α = 2, we observed a small increasing of the frequency interval
in which that I(ω) > 0. We think that these results are in good agreement with our previous calculations about

the kind of energy propagation. As the correlation parameter exceeds the value α = 2, we observe that the
region of frequencies in which that I(ω) > 0 increases. For α = 3 we see a phase of extended frequencies with
I(ω) > 0 within the interval 0 < ω < ωc (based on fig. 4b ωc ≈ 1). These results are strong indications that
the vibrational modes with frequency within the interval [0,1] should be extended.
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CONCLUSIONS

We investigated the nature of vibrational modes in an harmonic lattice with long-range correlated disorder. In

our model, the randommasses distribution exhibited a power-law spectral density S(k) ∼ 1/kα. For α = 0, we
recovered the standard disordered harmonic lattice and for α > 0, the masses distribution contains long-range
correlations that decays approximately as a power law. Our numerical experiments consisted of injecting

energy into the lattice and follow the evolution of the initially localized wave-packet. Our calculations

suggested that as the correlation parameter α is increased, the vibrational energy propagation throughout

lattice increases. Our calculations indicate that, for α > 2, the dynamics becomes ballistic and the model
contains a phase of extended vibrational modes.
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