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Infl uence of water volume reduction on 
the phytoplankton dynamics in a semi-
arid m an-made lake: A comparison of 
two morphofunctional approaches

GUSTAVO G. BRAGA & VANESSA BECKER

Abstract: Signifi cant reductions in the water levels of lakes are infl uenced by droughts 
and freshwater demands, especially in semi-arid regions, where hydric stress is greater. 
The aim of this study was to investigate the dynamics of phytoplankton during two 
different water volume periods resulting from an extended drought in a semi-arid 
lake. Another objective was to compare two functional approaches to test which 
one of these best captures phytoplankton variability as a function of environmental 
variability. Multivariate analyses performed using the Reynolds Functional Groups (RFG) 
and Morphology-Based Functional Groups (MBFG) classifi cation schemes indicated two 
periods, high and a low water volume. The results demonstrated the importance of 
light availability on phytoplankton assemblages as these two periods showed signifi cant 
differences in water transparency and phytoplankton composition. During extended 
droughts the reduction in water volume enhances the development of bloom-forming 
cyanobacteria through the limitation of light in a eutrophic man-made lake. Moreover, 
both functional traits approaches demonstrated the effect of light availability on 
phytoplankton assemblage composition and can be applied in similar systems. However, 
the RFG classifi cation provides more information and allows a more detailed description 
of the algal assemblages.

Key words: hydric deficit, cyanobacteria, eutrophication, Reynolds Functional Groups, 
Morphology-Based Functional Groups.

INTRODUCTION

Physical and chemical changes in water 
columns associated with climatic circumstances 
largely determine changes in the composition 
of phytoplankton assemblages in lakes and 
reservoirs (Tundisi 1990). In ecosystems with 
large variations in water levels, the annual 
and inter-annual variability of phytoplankton 
abundance and composition can be strongly 
influenced by peculiar hydrological regimes 
(Harris & Baxter 1996) and also by changes in 
mixing regimes (Naselli-Flores & Barone 2005). A 
number of studies demonstrate that water level 

fl uctuations can affect the abundance, biomass, 
composition, and diversity of pelagic primary 
producers through changes in light availability 
and nutrients (Kangur et al. 2003, Naselli-Flores 
& Barone 2005, Leira & Cantonati 2008, Costa et 
al. 2016).

Reservoirs and man-made lakes in semi-
arid regions are mostly shallow and subjected 
to wide seasonal water volume variations as a 
result of the precipitation irregularity in these 
regions (Coops et al. 2003, Bucak et al. 2012, 
Terefi  et al. 2014, Figueiredo & Becker 2018). A 
considerable number of these reservoirs can dry 
out completely during intense droughts, which 
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results in agricultural losses and socioeconomic 
problems, as water supply collapse. Therefore, 
considerable attention should be given to 
managing these water resources.

Phytoplankton plays an important role in 
aquatic ecosystems, and they are sensitive to 
water level fluctuations, as well as changes in 
the availability of light and nutrients (Reynolds 
2006). Because of the brief generation and 
replication times of these organisms (hours to 
days), phytoplankton can respond quickly to 
environmental changes (Reynolds 1990). Thus, 
they can be considered good indicators of 
natural or artificial changes in aquatic systems 
(Reynolds 1990).

During drought events, the water volume 
reductions and high water residence times of 
lakes and reservoirs contribute to increased 
phytoplankton biomass,  favoring the 
development of species adapted to low light 
and high nutrient availability such as some of 
the cyanobacteria species (Naselli-Flores 2000, 
2003, Bouvy et al. 2003, Geraldes & Boavida 2005, 
Jeppesen et al. 2015).

A useful way of studying changes in 
phytoplankton assemblages is to group 
organisms based on similarities in their adaptive 
strategies (Litchman & Klausmeier 2008). Thus 
organisms can be grouped according to the 
morpho-physiological traits that respond to 
light availability and nutrient concentration 
in a similar way. This approach was named 
the trait-based approach, and it facilitates an 
understanding of the species selection dynamics 
in the community because it captures greater 
variability than do taxonomic approaches (Kruk 
et al. 2002, Hu et al. 2013).

The functional trait-based classification 
proposed by Reynolds et al. (2002) and 
reviewed by Padisák et al. (2009) categorizes 
phytoplankton populations into functional 
groups. These groups are often polyphyletic 

and are based on attributes and physiological, 
morphological, and ecological similarities of the 
species that can potentially dominate or co-
dominate certain habitats (Reynolds et al. 2002). 
This approach, called the Reynolds Functional 
Groups (RFG) classification scheme (Kruk et al. 
2017), is widely used in ecological studies of 
freshwater phytoplankton and is applicable 
to different types of environments around the 
globe (Padisák et al. 2006, 2009, Becker et al. 
2009, Barbosa et al. 2011, Crossetti et al. 2013, 
Costa et al. 2016, Souza et al. 2016, Jati et al. 2017, 
Silva et al. 2018, Selmeczy et al. 2019).

Another functional classification was 
proposed by Kruk et al. (2010), in which 
organisms are classified into only seven groups 
based on measurable morphological criteria 
(Morphology-Based Functional Groups [MBFG]). 
However, in a recent study the inclusion of an 
additional MBFG (group VIII) was proposed that 
includes nitrogen-fixing cyanobacteria (Reynolds 
et al. 2014). Some studies demonstrated greater 
ease and predictability of the MFBG scheme 
compared with other functional classifications 
because MFBG classifications are based purely 
on simple morphological traits (Kruk et al. 2011, 
Hu et al. 2013, Rangel et al. 2016).

Based on studies of hydrological regime 
effects on water quality and the functional 
approaches of phytoplankton communities, 
the hypothesis of this work was that the water 
level reduction caused by drought favors the 
development of bloom-forming functional 
groups that comprise filamentous and colonial 
organisms adapted to a stable, warmer, and 
turbid environment. 

The aim of this study was to investigate 
phytoplankton dynamics during two different 
water volume periods resulting from an extended 
drought in a semi-arid lake. We also compared 
two functional approaches to test which one of 
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these best captures phytoplankton variability as 
a function of environmental variability.

MATERIALS AND METHODS
Study area
Dourado man-made lake (06°14’48” S: 36°30’30” 
W) located in Currais Novos, a city in a semi-arid 
region in northeastern Brazil (Fig. 1). The regional 
climate is tropical semi-arid and of type BSW’h 
according to the Köppen climate classification 
(Alvares et al. 2014). The average temperature 
exceeds 25 °C, and there is a pronounced 
temporal and spatial variation of annual rainfall 
(300-1000 mm.year-1). This shallow tropical lake 
was built in 1982 from the impoundment of the 
São Bento River for multiple uses, including 
water supply, irrigation, fishing, and recreation. 
Dourado’s water capacity is approximately 
10,300,000 m³, with a surface area of 3.16 km² 
and a maximum depth of 10 m.

Sampling
Water samples were taken at monthly intervals 
from May 2011 to April 2013 at a sampling 
station near the dam (Figure 1). Vertical profiles 

for temperature, pH, dissolved oxygen (DO), 
and conductivity were measured in situ using 
a multi-sensor probe (Hydrolab DS5) at 1-m 
intervals from the surface to the bottom. Water 
transparency was estimated according to Secchi 
disk depth. Integrated samples (between 0.5 
and 3 m depth) for nutrients and phytoplankton 
analyses were collected with a Van Dorn bottle 
(2 L). Phytoplankton samples were fixed with 
acetic Lugol’s solution for later identification 
and counting.

Sample analysis
Total phosphorus (TP) was measured using a 
spectrophotometric method (Valderrama 1981). 
Soluble reactive phosphorus (SRP) and nitrate 
was measured in water filtered on 0.45-µm 
glass-fiber filters (Murphy & Riley 1962). Total 
and fixed suspended solids (inorganic solids) 
were determined by gravimetry after drying 
the filters overnight at 100 °C and ignition of 
filters at 500 °C for 3 h (APHA 2012). The organic 
suspended solids (OSS) were measured by the 
difference between total suspended solids 
and inorganic suspended solids (APHA 2012). 
Chlorophyll was measured by spectroscopy 

Figure 1. Location of 
Dourado man-made lake 
and sampling station 
right next to the dam 
(S1).
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using the Jespersen and Christoffersen (1988) 
methodology.

The identification and counting of 
phytoplankton were performed using a 
standard optical microscope (1000x) and an 
inverted microscope (400x). Individuals (cells, 
colonies, filaments) were counted in random 
fields (Uhelinger 1964) using a sedimentation 
technique (Utermöhl 1958), and at least 100 
specimens of the most abundant species were 
counted (Lund et al. 1958).

Data analysis
Monthly precipitation data and historical 
averages for the past 30 years were provided 
by the State Agricultural Research Company 
of Rio Grande do Norte (Empresa de Pesquisa 
Agropecuária do RN [EMPARN]). A standardized 
precipitation index at a timescale of 12 months 
(SPI12), which is proper for detecting hydrological 
drought events, was used to categorize the 
intensity of the precipitation (McKee et al. 
1995, Guttman 1999, Mishra & Singh 2010). The 
Standardized Precipitation Index (SPI) for any 
location is calculated based on the long-term 
precipitation record for a desired period (Jain 
et al. 2015). The SPI is perhaps the most widely 
used drought index (Mishra & Singh 2010). McKee 
et al. (1995) developed the SPI to identify and 
monitor drought events using monthly rainfall 
data. It is intended to identify drought periods, 
as well as the severity of droughts at multiple 
time steps, such as at 1, 3, 6, 9, 12, or 24 months 
(Jain et al. 2015).

Monthly average values of SPI accumulation 
at 12 months (SPI12) were obtained from the 
online database of the National Institute of 
Meteorology (Instituto Nacional de Meteorologia 
[INMET]). Water volume values were provided 
by the State Environmental Water Resources 
Agency of Rio Grande do Norte (Secretaria do 

Meio Ambiente e dos Recursos Hídricos do Rio 
Grande do Norte [SEMARH]). 

The criteria used to determine trophic states 
were those identified by Thornton & Rast (1993).

The study period was divided into two 
periods: the high volume period, when the 
water volume was higher than 50% of the total 
capacity of the reservoir, and the low volume 
period, when the water volume was lower than 
50%. This classification was supported as a 
result of a two-way cluster analysis performed 
with PC-ORD® software using water volume and 
limnological variables, which showed the same 
pattern in sample characterizations.

Euphotic zone depth (zeu) was estimated by 
multiplying the Secchi depth by 2.7 (Cole 1994). 
The temperature profile was used to determine 
mixing and stratification of the water column 
using a minimum difference of 0.5 °C for the 
thermal gradient (Dantas et al. 2012). The 
euphotic zone depth and maximum depth ratio 
(zeu/zmax) were used to assess the availability of 
light (Jensen et al. 1994).

Biovolume (mm³ L-1) was calculated from the 
approximate geometric shapes (Hillebrand et al. 
1999), assuming the unit fresh weight expressed 
as mass of 1 mm³ L-1 = 1 mg L-1 (Wetzel & Likens 
2000). The descriptor species were defined as 
those that contributed more than 5% of the total 
biomass and were classified using two different 
functional trait approaches: RFG (Reynolds et al. 
2002, Padisák et al. 2009, Kruk et al. 2017) and 
MBFG (Kruk et al. 2010, Reynolds et al. 2014). 
Species diversity (H’) was estimated using the 
Shannon-Wiener index (Shannon & Weaver 
1963) based on biomass and expressed in bits 
per milligram, as recommended by Sommer et 
al. (1993).

Descriptive statistics and exploratory 
analysis were performed using Statistica® 

software. A one-way analysis of variance 
(ANOVA) between higher and lower volume 
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samples and zeu/zmax was also performed to 
verify significant differences between the light 
availability in both periods. A two-way cluster 
analysis was performed to assess similarities 
between samples, as well as to verify temporal 
patterns in variables.

For a description of the relationships 
between the dominant groups of phytoplankton 
and the environmental variables investigated, 
a redundancy analysis (RDA) was performed 
for each functional approach. The data on the 
groups’ abundance were previously analyzed 
by correspondence analysis and are not biased 
by detrended correspondence analysis (DCA), 
indicating that a linear ordering model would 
be more appropriate. These ordinations were 
performed using PC-ORD version 6.0 software 
(McCune & Mefford 2011). The significance of the 
variables was analyzed using the Monte Carlo 
permutation test.

RESULTS
Meteorological and hydrological scenarios
Two distinct hydrological events occurred in this 
study. The first one was a heavy rainy season 
at the beginning of the study with precipitation 

above the historical average (May 2011 - July 
2011) followed by normal hydrological conditions 
(Fig. 2). The second event was a prolonged 
drought scenario that started with moderate dry 
conditions in April 2012 and reached extremely 
dry conditions status from January to March 
2013 (Fig. 2).

Because of the lack of rainfall, evaporation 
rates and water consumption, a reduction of 
nearly 90% of the water volume was observed 
(Fig. 3). The study was therefore divided into 
two distinct periods defined by water level 
fluctuation: (I) high water volume period, 
marked by water volumes above 50% of the 
total capacity and also by moderately wet and 
normal hydrological conditions (from May 2011 
to January 2012); and (II) low water volume 
period, characterized by water volumes lower 
than 50% of the total capacity and hydrological 
conditions varying from normal to extremely dry 
(from February 2012 to April 2013) (Figs. 2 and 3).

Limnological scenario
The water column was mixed for most of the 
study period, and no anoxic conditions were 
detected. Water level reduction manifested 
both in maximum depth (zmax) and in euphotic 

Figure 2. Monthly rainfall, 
rainfall historical average and 
standardized precipitation index 
(SPI 12) from May 2011 to April 2013 
for Currais Novos City.
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depth (zeu) (Table I). Light availability was higher 
during higher volume period and was reduced 
in lower volume period. The difference in light 
availability between the periods was significant 
(F = 47.48; R² = 0.87; P < 0.0001). The low light 
availability in Lake Dourado during the low 
volume period was associated with the presence 
of OSS which indicates turbidity caused by high 
phytoplankton biomass (Table I).

In general, the lake could be classified 
as eutrophic based on total phosphorus and 
chlorophyll-a concentrations. There was an 
increase in these two variables during low-
volume periods, indicating more eutrophic 
conditions compared with high volume periods 
(Table I, Fig. 3). 

The two-way cluster analysis demonstrates 
the similarity between environmental variables 
and monthly samplings (Fig. 4). There are two 
main clusters with different patterns in water 
volume, transparency, nutrients, and chlorophyll 
concentrations. These differences were also 
considered for distinguishing high volume from 
low-volume periods. The first cluster is the period 
from May 2011 to January 2012, characterized by 
water volumes above 50% of the total capacity 
of the reservoir and higher transparency (zeu); 
thus this cluster was named the high water 
volume period (Fig. 4). The second cluster is 
composed of samples (February 2012 to April 
2013) corresponding to the low water volume 
period (below 50%), associated with high pH, 
conductivity, and chlorophyll-a (Fig. 4).

Table I. Descriptive statistics (average, minimum and maximum) of the limnological variables studied at Dourado 
man-made lake during periods identified by water volume.

Variables High Water Volume Low Water Volume

Temperature (°C) 26.4 (24.6-28.3) 26.7 (24.3-30.2)

pH 7.53 (6.50-8.51) 8.44 (7.78-9.40)

zmax (m) 9.0 (8.1-9.7) 5.6 (2.1-8.2)

zeu (m) 2.9 (2.2-4.0) 0.8 (0.3-1.6)

zeu/zmax 0.32 (0.24-0.42) 0.15 (0.06-0.23)

Conductivity (µS  cm-1) 801.9 (635.0-936.0) 1548.0 (945.0-2653.0)

DO (mg  L-1) 7.11 (6.17-7.89) 7.89 (5.71-9.65)

ISS(mg  L-1) 2.05 (0.40-4.00) 7.45 (0.00-20.76)

OSS (mg  L-1) 6.43 (0.00-27.60) 20.37 (4.80-40.80)

TP (µg  L-1) 70.70 (26.00-149.57) 145.24 (38.20-445.00)

SRP (µg  L-1) 40.58 (0.50-131.00) 9.14 (1.16-28.57)

DIN (µg  L-1) 659.02 (528.84-803.15) 1453.29 (503.51-3206.19)

Chl-a (µg  L-1) 15.12 (5.66-27.82) 142.37 (42.68-332.85)

Phytoplankton biomass (mg  L-1) 11.29 (5.60-22.14) 63.79 (15.20-107.17)

Phytoplankton diversity (bits  mg-1) 2.01 (1.42-2.55) 1.30 (0.73-1.94) 

zmax = maximum depth; zeu = euphotic zone; DO = Dissolved Oxygen; ISS = Inorganic Suspended Solids; OSS = 
Organic Suspended Solids; TP = Total Phosphorus; SRP = Soluble Reactive Phosphorus; DIN = Dissolved Inorganic 
Nitrogen; Chl-a = Chlorophyll-a.
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Phytoplankton dynamics
Total phytoplankton biomass variation showed 
an increasing pattern, reaching maximum values 
during the low volume period. Shannon-Wiener 
diversity was higher during high volume periods 
while the phytoplankton community was less 
diverse in low-volume periods (Table I).

A total of 54 taxa were identified during the 
study, but only 27 were considered descriptor 
taxa and were distributed among 10 RFGs (SN, 
M, H1,S1, X1, K, L0, J, F, and P) and among six (06) 
morphology-based functional groups – MBFG (I, 
III, IV, VI, VII, and VIII) (Table II).

Using the RFG approach, groups F and J 
were predominant, including mostly green 
algae with a high affinity for light and nutrients. 
This presented a significant contribution to 
phytoplankton biomass during the high volume 
period. Group P, which includes diatoms and 
some green algae, also contributed to the 
biomass in the period. The functional groups 
SN and M, which both include cyanobacteria, 
represented the majority contribution to 
phytoplankton biomass during the low-volume 
periods, followed by S1 and H1 (Fig. 5a).

The MBFG approach presented groups IV 
(organisms of medium size lacking specialized 
traits) and VI (non-flagellated organisms with 

siliceous exoskeletons) as the most important 
contributors of phytoplankton biomass during 
the high volume periods and groups VIII 
(filamentous nitrogen-fixing cyanobacteria) 
and VII (large mucilaginous colonies) as those 
that most contributed to biomass during the 
low volume periods (Fig. 5b). It is important to 
mention that groups VIII and VII were present 
during high volume periods, although they were 
less abundant than in the low volume period.

According to the redundancy analysis based 
on the RFG (Fig. 6a), the first two axes accounted 
for 63.4% of the variance (axis 1: 54.5%; axis 
2: 8.8%). The Monte Carlo test indicated a 
significant correlation between environmental 
variables and the first axis (P = 0.001). The first 
axis was mainly correlated with zeu(0.93), water 
volume (0.82), and conductivity (-0.79), while TP 
(-0.47) and SRP (0.42) were correlated to axis 2. 
Figure 7a shows the biplots (first two axes) of 
monthly samples and functional groups (FGs) 
with respect to the environmental variables.

The results of the RDA carried out on the 
MBFG (Fig. 6b) accounted for 63.9% of explained 
variance (axis 1: 58.3%; axis 2: 5.6%), a similar 
percentage to the RFG approach. The Monte 
Carlo test was also significant for the first axis 
(P = 0.001). The first axis was also correlated with 
zeu (0.95), water volume (0.83), and conductivity 

Figure 3. Monthly values of 
maximum volume capacity and 
chlorophyll-a concentrations 
on Dourado during the study 
period. The dark dot indicates 
when (February 2012) the water 
volume reached least half of the 
maximum capacity (< 50%). 
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Table II. List of dominant taxa founded in Dourado reservoir and their Reynolds’ Functional Groups (RFG) and 
Morphology-Based Functional Groups (MBFG) classification.

Species RFG MBFG Phylum

Aphanizomenon gracile (Lemmermann) Lemmermann H1 VIII Cyanobacteria

Aphanocapsa elachista West & G.S. West K VII Cyanobacteria

Aphanothece sp. K VII Cyanobacteria

Aulacoseira granulata (Ehrenberg) Simonsen P VI Bacillariophyta

Botryococcus sp. F VII Chlorophyta

Chlorella vulgaris Beyerinck X1 IV Chlorophyta

Chroococcus minor (Kützing) Nägeli L0 I Cyanobacteria

Coelastrum astroideumDe Notaris J IV Chlorophyta

Cronbergia sp. H1 VIII Cyanobacteria

Crucigenia sp. J IV Chlorophyta

Cuspidothrix sp. H1 VIII Cyanobacteria

Cyanodictyon imperfectum Cronberg & Weibull K VII Cyanobacteria

Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju SN VIII Cyanobacteria

Dolichospermum sp. H1 VIII Cyanobacteria

Geitlerinema amphibium (C. Agardhex Gomont) Anagnostidis S1 III Cyanobacteria

Melosira sp. P VI Bacillariophyta

Microcystis sp. M VII Cyanobacteria

Monoraphidium minutum (Nägeli) Komárková-Legnerová X1 IV Chlorophyta

Nephrocytium sp. F IV Chlorophyta

Oocystis sp. F VII Chlorophyta

Planktolyngbya limnetica (Lemmermann) Komárková-Legnerová & Cronberg S1 IV Cyanobacteria

Planktothrix isothrix (Skuja) Komárek & Komárková  S1 III Cyanobacteria

Scenedesmus acuminatus (Lagerheim) Chodat J IV Chlorophyta

Sphaerocavum brasiliense M.T de P. Azevedo & C. L. Sant’Anna M VII Cyanobacteria

Staurastrum volans West & G.S. West P IV Charophyta

Synechocystis aquatilis Sauvageau L0 I Cyanobacteria

Synechocystis cf. salina Wislouch K I Cyanobacteria

(-0.81). Environmental variables presented low 
correlation indices in axis 2.

The results of these analyses indicated that 
the biomass of phytoplankton groups using 
both approaches can be predicted from the 
environmental variables. In both ordinations, low 
volume period samples were plotted separately 

from the high volume period samples. Thus 
there was a temporal tendency (pattern) from 
the positive side of axis 1 to the negative side of 
the same axis (Figs. 6a and 6b).

The different optical conditions between 
periods expressed by zeu seem to be the most 
important variable determining the algal groups. 
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As an example, the RFGs J, P, and F and the 
MBFGs IV and VI seem to be associated with less 
turbid environments. On the other hand, groups 
SN and S1 and MBFGs VIII and III presented higher 
abundance in less light availability.

DISCUSSION

Seasonal reduction in the water volume of a 
reservoir related to drought periods is considered 
an important environmental condition, especially 
for phytoplankton dynamics. In this respect, 
light availability and nutrient concentration in 
water columns are considered growth-limiting 
resources in determining phytoplankton 
assemblages (Reynolds 2006). 

As a consequence of water level reductions 
in Lake Dourado, there was a tendency 
toward nutrient and phytoplankton biomass 
concentration that can be observed in TP, 
dissolved inorganic nitrogen (DIN), conductivity, 
and chlorophyll-a. As a result of phytoplankton 
biomass, the organic turbidity, which is indicated 
by OSS, increased during the low water volume 
period. Similar patterns in environmental 
conditions during drought events were reported 
by other studies in the same semi-arid region 
(Bouvy et al. 1999, 2003, Medeiros et al. 2015). 
The wind action may have favored mixing and 
prevented stratification, probably acting as a 
stabilizing factor of the turbid state in this shallow 
reservoir (Torremorell et al. 2007). Considering 
that cyanobacteria are a heterogeneous group in 
which each taxon has different ecophysiological 
adaptations, it is possible to associate 
their morphological traits with a prevailing 
environmental situation (Litchman et al. 2010, 
Mantzouki et al. 2016). Once the environmental 
conditions became more turbid and eutrophic, 
some cyanobacteria, such as Cylindrospermopsis 
and Planktothrix, were favored because they 
tolerate low light availability (Smith 1996, 
Mantzouki et al. 2016). Studies semi-arid regions 
(Huszar et al. 2000, Bouvy et al. 2000, Arfi 2003, 
Naselli-Flores 2003, Dantas et al. 2011, Medeiros 
et al. 2015, Brasil et al. 2016) demonstrate that 
water level reduction is associated with turbid 
conditions (organic turbidity) and greater 

Figure 4. Two-way cluster analysis diagram of physical-
chemical variables and monthly sampling. On the 
matrix, dark squares represent maximum values 
while white ones represent minimum values for each 
parameter (columns) during monthly samples (lines). 
Chl-a = Chlorophyll-a; Conduc. = Conductivity; SRP = 
Soluble Reactive Phosphorus; TP = Total Phosphorus; 
DIN = Dissolved Inorganic Nitrogen; pH = Potential 
of Hydrogen; zeu = Euphotic depth; Volume = Water 
volume.
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phytoplankton biomass is associated with 
cyanobacteria predominance, explaining why 
phytoplankton diversity is reduced during the 
lower volume period. To illustrate this, a recent 
study of four Chinese reservoirs showed that 
a decline in water levels boosts cyanobacteria 
dominance (Cylindrospermopsis, Microcystis, 
and Raphidiopsis) through the reduction of 
euphotic depth, demonstrating the tolerance of 
these organisms to turbid environments (Yang 
et al. 2016).

Light availability is one of the most important 
limnological key factors, and it exerts profound 
effects on phytoplankton diversity (Reynolds 
1998) and competition (Reynolds 2006). Light-
limiting conditions prevail in reservoirs in 
Brazilian semi-arid regions (Barbosa et al. 
2012), and previous studies have shown that 
there is a tendency in more turbid conditions 
toward greater phytoplankton biomass and 
cyanobacteria blooms during drought periods 

(Huszar et al. 2000, Bouvy et al. 2003, Soares et 
al. 2013, Brasil et al. 2016).

Considering that water level fluctuation is 
an important driver in aquatic ecosystems, as 
proposed by Scheffer & Jeppesen (2007), it is 
possible to compare the high volume period to 
a clear-water state and the low volume period 
to a turbid state. These two states shift in the 
function of water level fluctuations caused by 
the duration of droughts and wet periods.

Our results demonstrate that the biomass 
of phytoplankton groups in both approaches 
used in this study can be predicted from the 
environmental variables. The analyses show 
the separation between the high water-volume 
period, marked by higher transparency values, 
and the low water volume period, when turbid 
conditions prevailed. The difference between 
the percentages of the explained variance of the 
two approaches was not considerable, indicating 
that both are similar in this study.

Figure 5. Relative 
biomass variation of 
Reynolds’ Functional 
Groups (a) and 
Morphology-Based 
Funcional Groups (b) 
along the study.
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Considering the RDA performed with the 
RFG classification, it is possible to observe a 
noticeable difference between samples from 
high volume and low volume periods. The 
functional groups related to higher transparency 
(zeu) values and water volume were P, J, and F. 
Group F is composed of algae from clear water 
environments that are tolerant to nutrient 
deficiency and sensitive to high turbidity. Group 
J is commonly associated with shallow, mixed, 
highly enriched systems. Group P predominates 
in eutrophic and mixed water and tolerates 
medium light availability conditions (Reynolds 
et al. 2002, Padisák et al. 2009). On the other 
hand, samples from low volume periods 
were related to high turbidity and nutrient 
concentration (DIN and TP). Functional groups 
related to organic and inorganic turbidity 
were SN and S1. Both groups are composed of 

filamentous cyanobacteria that tolerate light 
shortage in mixed environments, though SN 

predominates in warmer conditions. Despite a 
significant contribution to biomass during the 
low volume periods, group M did not show any 
strong relationship with selected variables, 
but it is known that this group predominates 
in low latitudes, shallow, and eutrophic to 
hypereutrophic lakes and also includes bloom-
forming cyanobacteria (Reynolds 2006).

The c lassi f icat ion based just  on 
morphological traits proposed by Kruk et al. (2010) 
and also by Reynolds et al. (2014) demonstrated 
a slightly greater percentage of variance (0.5%) 
compared with the RFG approach, but this is 
because the total variation in the data set 
decreases with a lower number of groups. Thus 
in this case both approaches can be considered 
equivalent, differing from the usual results 

Figure 6. Redundancy analysis diagrams using Reynolds’s Functional Groups (RFG) approach (a) and Morphology-
Based Funcional Groups (MBFG) approach (b) with limnological variables (arrows) and monthly samplings 
(dots). Cond. = Conductivity; DIN = Dissolved Inorganic Nitrogen; ISS = Inorganic Suspended Solids; OSS = Organic 
Suspended Solids; SRP = Soluble Reactive Phosphorus; TP = Total Phosphorus; Vol. = Water volume; zeu = Euphotic 
depth.
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of other studies in which the MBFG approach 
demonstrated a more significant difference 
in variance compared with the RFG approach 
(Izaguirre et al. 2012, Hu et al. 2013, Rangel et 
al. 2016). The MBFG approach also showed a 
clear separation between high and low volume 
period samples. One of the advantages of this 
approach is the objectivity and independence 
from taxonomic affiliations that simplifies the 
classification process. It is important to note 
that using the RFG classification is necessary for 
a deeper knowledge of phytoplankton taxonomy 
and functional aspects.

The more representative MBFGs during 
the high volume periods were IV (organisms 
of medium size lacking specialized traits) and 
VI (non-flagellated organisms with siliceous 
exoskeletons), which were associated with less 
turbidity and meso-eutrophic conditions, while 
groups III (large gas-vacuolate filaments), VIII 
(nitrogen-fixing cyanobacteria), and I (small 
organisms with high S/V) were associated with 
DIN and turbidity. Group VII (large mucilaginous 

colonies) did not show a clear association with 
variables, although it is known that this group 
succeeds in eutrophic conditions (Kruk & Segura 
2012). It is important to mention that groups 
III and VIII were plotted next to each other, 
indicating that in this case nitrogen-fixing and 
non-fixing filaments do not show a significant 
difference in their responses to environmental 
conditions as proposed by Reynolds et al. 
(2014). This fact must be explained by the 
high availability of DIN during the low volume 
period, which contributed to reduced nitrogen 
competition between nitrogen-fixing and non-
fixing cyanobacteria, allowing the co-dominance 
of these two MBFGs.

It is also important to remark that groups 
M and VII (both mostly represented by 
mucilaginous colonies) contributed a significant 
biomass during low volume period, but no clear 
association between environmental variables 
and these two groups was found. In this respect, 
Dantas et al. (2011) demonstrated that Microcystis 
aeruginosa, colonial cyanobacteria from groups 

Figure 7. Simplified 
scheme of drought’s 
effects on the 
phytoplankton structure 
(functional approaches). 
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M and VII, can co-dominate with C. raciborskii 
in non-stratified eutrophic reservoirs such as 
the semi-arid Brazilian Lake Dourado. Thus the 
absence of stratification can also be considered 
an important environmental condition for the 
establishment of RFG M and MBFG VII.

Although studies on phytoplankton 
functional classification in Brazilian semi-arid 
lakes are scarce, the occurrence of groups SN 

and VIII represented by Cylindrospermopsis 
raciborskii is frequently related to this region, 
particularly during drought periods and warmer 
conditions (Bouvy et al. 1999, 2000, Soares 
et al. 2013, Moura et al. 2018). This study also 
corroborates the predictions regarding climate 
change scenarios; that is, in shallow lakes during 
extended droughts, the dominance of bloom-
forming cyanobacteria will tend to become more 
frequent in the future (Intergovernmental Panel 
on Climate Change [IPCC] 2007, Marengo et al. 
2010, Moss et al. 2011). All abundant groups during 
the low volume periods (RFG: SN and M; MBFG: III, 
VII, and VIII) have bloom-forming cyanobacteria 
representatives, indicating a potential risk for 
water consumption and biodiversity (Borics et 
al. 2012). 

Both classifications used separate samples 
from the low volume and high volume periods, 
and also demonstrated the importance of light 
availability on phytoplankton assemblage, as 
these two periods showed significant differences 
in their transparency and phytoplankton 
composition. Other studies comparing functional 
classifications reported good ecological 
predictions using RFG and MBFG classifications 
(Izaguirre et al. 2012, Hu et al. 2013, Rangel et al. 
2016). It is reasonable to conclude that during 
extended droughts water volume reduction 
enhances the development of bloom-forming 
cyanobacteria groups through light limitation. 
Regarding the functional traits approaches, both 
demonstrated the effect of light availability on 

phytoplankton assemblage composition and can 
be applied in similar systems (Fig. 7). However, 
the functional approach proposed by Reynolds 
et al. (2002) provides more information and 
allows a more detailed description of the algal 
assemblages.
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