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Abstract: A long-term wave hindcast (1979-2009) based on the NCEP/NCAR Reanalysis
and WAVEWATCH III has been assessed using 29 months of wave measurements over Rio
Grande shelf, South Brazil to evaluate the skills and biases in the wave hindcast for this
region. Extreme events were selected by Peaks Over Thresholds (POT) and fitted by a
Generalized Pareto Distribution (GPD) to estimate the extreme significant wave height
from the 31 years wave simulation. The significant wave heights from the hindcast and
measurement show generally good agreement although the wave heights tended to be
underestimated in the hindcast. This underestimation was more pronounced in extreme
wave events. The estimated extreme waves, based on a hindcast, with 50 and 100 years
return period in the offshore deep water over the Rio Grande shelf, feature large waves
heights with 10.54 and 11.18 meters, respectively. The information presented here can be
useful for those involved in coastal management and disaster response and also for the
navigation and offshore operations.
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INTRODUCTION

Knowledge of extreme ocean wave has important
application in many marine sectors. Extreme
analysis requires long-term datasets and
adequate resolution to provide accurate
information, for example, to structure design
in wind farms, oil and gas exploitation (Vanem
& Walker 2013), to understand the coastal
morphology change, ecosystem structure (Hoeke
et al. 2013, Parise et al. 2009) and also marine
transportation (Goda 2010, O’Brien et al. 2013).

Currently, extreme wave conditions can be
estimated from a long database measured by
in situ buoys or by remote sensing. Satellite
altimetry data can measure waves with a high

spatial resolution (Young et al. 2015), however,
it has limited temporal resolution, being less
useful for estimation of extreme wave conditions
(Silva et al. 2015). On the other hand, buoys
provide continuous measurements required to
estimate extreme waves and are also a baseline
for validating the numerical model (Guo & Sheng
2015).

Nevertheless, in the South Atlantic Ocean,
the absence of uninterrupted long-term wave
data measured by oceanographic buoys still is
a major obstacle for the characterization of
severe events in these regions, as well as for
extrapolation of return levels with long return
periods (D.F. Aguiar et al., unpublished data).
Studies such as H.G. Cardoso Júnior (unpublished
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data) and Campos et al. (2012) highlight the
difficulties associated with the analysis of
extreme events based on a small number of
measurements. In an attempt to overcome the
lack of existing data, numerical modeling is a
useful tool and is widely used in simulating
ocean wave conditions with reasonable accuracy
(Chawla et al. 2013, Stopa & Cheung 2014).

Chawla et al. (2013) generated a 31-year
global hindcast wave dataset using a third
generation wind-wave model WAVEWATCH III®
(WW3; v3.14), the surface winds used to drive
their wave model were extracted from the NCEP’s
latest high-resolution Climate Forecast System
Reanalysis (CFSR) (Saha et al. 2010). Currently,
a simplified version of this wave model output,
i.e., the Hs (significant wave height), Tp (period
peak) and Dp (direction peak) parameters, are
globally available from 1979 to 2009. Due to
the absence of long-term wave measurements
on the Brazilian coast in general, this available
dataset from WW3 is an attractive alternative
source of wave climate information.

The region to be studied in this paper is the
southern Brazilian shelf (SBS) localized on the
Rio Grande do Sul (RS). That area is formed by a
long sandy coast barrier, approximately 620 km,
subject to small astronomical tide variations and
exposed to the ocean waves (Figueiredo 2013,
Parise et al. 2009 and Machado et al. 2010).
According to de Oliveira et al. (2010) that region
is constantly affected by the passage of cold
fronts associated with low-pressure systems and
extratropical cyclones are considered to be the
most severe events that reach that region.

In line with Guimarães et al. (2015), most
of the incoming wave energy that is incident
on the Southern Brazilian coast is associated
with gravity waves and the energetic events are
associated with extratropical cyclones. Studies
as Calliari et al. (1998a, b), Dillenburg et al.
(2004) and, Speranski & Calliari (2001) highlights

that these meteorological systems can be
responsible for severe storms in Rio Grande do
Sul coastline and therefore pose a high risk
of damages along the coastline. This area also
contains one of the most important harbors
in Latin America with intensive maritime traffic.
Therefore, understand and estimate extreme
wave condition in this area is essential and
beneficial for many economic activities and
mainly for the coastal management.

There are, however, only a few relevant
studies in the literature on extreme wave events
over SBS (Melo et al. 2010, Guimarães et al.
2015). Melo et al. (2010) studied extreme wave
conditions based on a numerical simulation
produced by WAVEWATCH III (WW3, v2.2), ocean
wave model, during the years 1979 to 2008,
and found 40 events with significant wave
heights greater than 6m, representing in average
1.33 extreme events per year. Guimarães et
al. (2015) analyzed the global wave data from
WW3 between 2000 and 2010, and selected as
extreme events six cases with waves height
higher than 5m. The authors suggested that the
eastward displacement of Mid-Atlantic cyclones
develop extreme wave events on Rio Grande
do Sul coast more intensively. Parise et al.
(2009) andMachado et al. (2010) investigated the
relationship between extreme wave events and
erosion episodes along the southern Brazilian
coast and found a positive correlation.

The purpose of this study is, firstly, to
validate the wave parameters from WW3, based
on a 29-month time series from an Argus
buoy anchored off Rio Grande do Sul coast,
approximately 150 km offshore and examine
extreme wave conditions, with aim to statistically
characterize the model biases for that specific
location. Secondly, use the peak-over-threshold
(POT) approach associated with Generalized
Pareto Distribution (GPD) to estimate the 5, 20, 50
and 100 years return period wave heights from
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30-years model results over the Rio Grande do
Sul, Brazil.

The GPD is a two-parameters distribution
applied for a set of data exceeding a threshold
value and the main principle is based on
the asymptotic argument for providing extreme
value (Pickands 1975). It is a common method to
estimate extreme events and widely applied in a
variety of areas, e.g. Jagger & Elsner (2006) used
the model to study hurricanes, Moisello 2007
applied the model for the hydrological extreme
discharge, and You et al. (2016) used GPD to
estimate wave height.

The remainder of the paper is organized
as follows. Materials and Methods describe the
statistical approach to validate the WW3 dataset
and its application for extreme events. The
validation of the wave model, evaluation of
its performance against buoy observations, and
the extreme analysis are shown in the Results
section. The discussion of these results and their
implications for the Southern Brazil region are
presented in the Discussion section. A summary
of the main findings is found in the Conclusions
section.

MATERIALS AND METHODS
This section is divided between two different
statistic approaches. The first one focus on the
validation of the WW3 wave data using a buoy
station. It should be noted that the WW3 has
been extensively validated in the previous years
around the world and studies made, for example,
by Saha et al. (2010) and Chawla et al. (2013)
can be the reference for readers. The second
part of this section concentrates on the classical
extreme value theory used for extreme analysis
studies.

Validation of ocean wave model

The WW3 is a spectral wave model to use over
large scales, operating in a global grid with

resolution of 1/2° latitude and longitude, driven
by global high-resolution wind hindcast from
the Climate Forecast System Reanalysis (CFSR).
This wind reanalysis has much higher spatial and
temporal resolutions than previous reanalyses,
and thus provides a valuable resource to develop
a long-term hindcast database for wind waves
(Chawla et al. 2013). The wave data from WW3
was obtained from the National Centers for
Environmental Prediction (NCEP) archive
(http://polar.ncep.noaa.gov/waves).

To assess the quality of theWW3 output data,
a record available from the Rio Grande do Sul
offshore buoy (called Minuano) is used (Figure
1). This buoy is an Argus oceanographic buoy,
which forms part of the National Buoy Program
(PNBOIA) and has been anchored off the coast
of southern Brazil at 32°54’S and 50°48’W from
May 2001 to June 2002 and from September
2002 to January 2004. The buoy stores hourly
measurements for Hs and Tp but does not have
sensors to measure directional wave spectra.
The validation was performed throughout of the
buoy’s operation.

Analysis of the behavior of the statistical
indicators employed for the evaluation of the
quality of numerical models is often neglected
due to their apparent simplicity (Mentaschi et
al. 2013). Willmott & Matsuura (2005) highlight
that their use can generate conflicting and
inconsistent results. Therefore, to quantify the
errors in the WW3 wave hindcast the following
four metrics are used: root mean square error
(RMSE =

√∑N
i=1 (mi – oi)

2 /N), the mean bias
(Bias = m – o), scatter index (SI = RMSE/o), and
symmetric slope (SS =

√∑N
i=1m

2
i /

∑N
i=1 o

2
i ),

where mi and oi is the model and the
observation value respectively, N is the total
number of observations. The overbar refers to
the mean value.
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Figure 1. Study area representation. (a) Brazil map highlights (red) the Rio Grande do Sul coastline. (b) Rio Grande
do Sul coastline with bathymetry isolines in dashed lines. The blue, pink and green stars represent Hermenegildo
Beach, Rio Grande City and Conceição lighthouse, respectively. The black point indicates the Minuano buoy and the
red point represents the WW3 grid point.

Extreme value analysis method

The peaks-over-threshold (pot) method

Many statistical approaches were used in the
past to estimate return values of extreme
significant wave heights (D’Angremond & Van
Rood (2004) and Kamphuis (2010)). Currently,
there are two fundamental approaches to
identify extremes in real data and obtain
return values, both widely used for extreme
value theory studies: the Block (or Annual)
Maxima (BM) associated with the use of the
generalized extreme value (GEV) distribution

and the Peaks-Over-Threshold (POT) method
associated with generalized Pareto distribution
(GPD) (Ferreira & de Haan 2013).

According to Mendes & Lopes (2004),
although the BM method has a theoretical basis,
this method only uses one observation each
year to calculate the extreme values and when
the times series are not bigger enough the
method cannot be determined accurately. Based
on previous studies in extreme events (Campos
et al. (2012), Coles et al. (2001), de Oliveira et
al. (2010) and Guo & Sheng (2015)) and 31-year
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data available from WW3, this work uses the POT
method.

The POT approach uses the data more
efficiently. This method provides a model
for independent exceedances over a certain
threshold and is based on the assumption
that the excesses of an independent and
identically distributed (iid) sequence over a
high threshold follows a Poisson distribution
and the corresponding excesses over u are
independent and have a GPD, also the excesses
and exceedance times are independent of each
other.

To apply the POT, it is important to
consider studies such as Balkema & Hann
(1974) and Pickands (1975), which gave rise to
the Pickands-Balkema-de Hann theorem. This
theorem states that, given a threshold u, the
distribution of excess values of the variable x
over u can be expressed by Equation 1:

Fu (x) = P
{
X – u≤x|X > u

}
=
F (u+ x) – F(u)

1 – F(u) (1)

Let y = X – u for n observed variables
X1,. . .Xn, then can write yj = Xi – u such that
i is the index of the j-th exceedance, j =

1, . . .,nu. The distribution of the exceedances
(y1, . . ., ynu) can be approximated by Generalized
Pareto Distribution (GPD) which has a cumulative
distribution function (CDF) given by Equation 2:

Gξ,σu (y) =

1 –
(
1 – ξ y

β

)– 1
ξ , ifξ 6=0

1 – exp
(
y
β

)
, ifξ = 0

(2)

Where ξ and β are the shape and scale
parameters, respectively. The shape parameter,
in this case, dominates the behavior of the tail,
which means, when ξ = 0, the GPD corresponds
to an exponential distribution (medium-size
tail); if the ξ < 0 the distribution of excesses has
an upper bound at u – β/ξ (long tail), and when
ξ > 0, the distribution has no upper limit.

The parameters of a GPD can be estimated
by several numerical methods, including
Pickand’s Estimator (PKD), Probability Weighted
Moments (PWM), Moment Method (MOM) and
Maximum Likelihood Method (ML). In this study,
the choice of the estimator was based on
the calculated parameters variance. Behind
calculating parameters, the distribution applied
to the tail (distribution of excesses above the
threshold) (Equation 3) is described as:

F (y + u) =
Nu
n
(1 + ξ

y
β
)
– 1
ξ (3)

Where n is a total number of events and Nu is the
number of events above the defined threshold.

E. Bommier (unpublished data) stated that
the main difficulty in the POT method is the
choice of the appropriate threshold. A low
threshold value increases the bias and produces
a low variance of the estimators. In contrast, a
high threshold value reduces the bias as this
more closely satisfies extreme value theory, but
increases the variance for the estimators of the
GPD parameters.

Following Davison & Smith (1990), a Mean
Residual Life (MRL) graphical method for the
selection of the threshold u is used. This
method is based on the mean of the GPD: for
a range of thresholds, it involves (1) identifying
the corresponding mean threshold excess, (2)
plotting the mean threshold excess against u,
therefore making it possible to (3) find a value u0
above which linearity is found in the plot. If the
GPD assumption is correct, then the plot should
follow a straight line before it becomes unstable
due to the very high variance.

For the validation of this statistical model a
popular graphical method, the quantile-quantile
plot (QQ-plot) is widely used. The QQ-plot
represent the quantiles of an empirical
distribution plotted against the quantiles of a
hypothetical distribution – in this case, the fitted
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GPD. If the data is well represented by the GPD,
the QQ-plot will approximate a straight line.

Return period estimates

According to H.G. Cardoso Júnior (unpublished
data), the return values are results from the
extrapolation of GPD for long return periods
(Equation 4), and can be written as (Equation 5):

rv = u+
β

ξ

[(
n
Nu

(1 – p)
)–ξ

– 1

]
(4)

p = 1 – F =

(
1 –

1

ne

)
(5)

Where p is the probability of non-exceedance
and ne the number of data expected for each
return period. Basically ne = pr .(n/nyears),
where pr is the return period, n the total number
of points in the data series and nyears is the
number of years.

RESULTS

This section firstly shows the results of the
validation of the ocean wave model-WW3
clarifying the model tendency to the study area,
and also quantifies the model performance in
extreme situation only. Secondly, presents the
results of the extreme value analysis based on
POT and GPD method.

Validation of ocean wave model

Table I shows the basic descriptive statistic
parameters, i.e., mean, standard deviation and
mode calculated for the entire campaign of the
Minuano buoy and the data extracted from WW3
for the same period.

The values show generally good agreement
between the modeled and the measured data
although the modeled means and standard
deviations are lower than the measured data.
The Tp mode shows that swell states present in
the measurement data are about 1.75 s higher

than the modeled data. For the Hs, the modeled
mode is 0.18 m higher than the Minuano buoy
data. The comparison of Hs and Tp measured by
the Minuano buoy with data from WW3 is shown
in Figure 2. In an initial qualitative analysis of
Hs, similar behavior between both is noted, even
though underestimation can be seen in some
peaks. The same is observed for Tp values.

Figure 3 shows the dispersion between
measured data (x-axis) and the data predictions
by WW3 (y-axis) for Hs and Tp. As can be seen in
this figure, the dashed line (45°) represents the
"perfect fit" and the continuous line represents
the value calculated by the symmetric slope (SS)
(see Table II for statistical parameters).

Table I. Basic descriptive statistical parameters for the
Minuano buoy and WW3.

Minuano Buoy WAVEWATCHIII (WW3)

Mean Std Mode Mean Std Mode

Hs (m) 2.22 0.93 1.65 2.14 0.86 1.83

Tp (s) 9.13 2.17 9.14 8.50 1.92 7.39

Table II. Statistical parameters responsible to quantify
the model perform.

RMSE Bias SI SS Samples

Hs (m) 0.342 -0.078 0.154 0.958 7217

Tp (s) 1.810 -0.626 0.198 0.928 7217

The SS values close to 1 indicate a good
fit between modeled and measured data,
even though the wave model shows a slight
tendency to underestimate the values of Hs
and Tp compared with the observations. The
underestimation also was confirmed through
the bias results, where there is an indication
that measurements tend to exceed the modeled
values. Also, for this dataset, the RMSE values
indicate 0.34 m and 1.81 s errors on Hs and Tp
estimation, respectively. The dispersion of the
model results compared to the measurement
data, calculated by SI, shows values between
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Figure 2. The time series for Hs and Tp, where the dotted line is the Minuano buoy record; the blue and pink lines
represent the Hs and Tp from WW3 respectively.

Figure 3. Scatterplot, where each point corresponds to the pair [(parameters) observed (parameter) modeled], the
dashed line represents the perfect fit and the continuous line represents the symmetric slope.
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15% for Hs and 20% for Tp, further indicating
the satisfactory performance of WW3. Therefore,
a critical analysis of the results shows that the
WW3 reconstruction, in general, achieved similar
results, despite a tendency to underestimate the
significant height and peak period. It is noted
that this tendency was more evident in the
highest values of Hs and Tp.

Model performance in extreme situations

To understand the WW3 model behavior in
extreme situations, the previously statistical
methods used were applied in two different
ways. The first was a model-buoy analysis
considered the extreme events resulting from
the WW3 model and aims to understand the
possible failures (or bias) of the model. The
second analysis (buoy-model) aimed to evaluate
the model’s behavior in the face of situations of
extreme events measured by the buoy. Due to
the imposed time window between the extreme
cases (approximately 9 days), just 102 cases were
selected from both analyses.

Model x buoy

The difference in values between model and
buoy data range from -1.47 m to 0.91 m for
Hs (Figure 4a-yellow bars). Larger values of
underestimation occurred in cases where waves
bigger than 4 m were recorded by the buoy
(Figure 4a, c).

Moreover, the overestimation performed by
the model tended to be for values less than
3.5 m recorded by the buoy. Two events with
large disagreement between model and buoy,
are highlighted in Figure 4a, both with significant
heights greater than 6 m in the two time series.
Through the statistical parameters (Table III),
the bias value near zero informs that, despite
the high RMSE value, the cloud point shown in
Figure 4c tends to be distributed around the

perfect fit (y = x). Another interesting fact is given
to the high value of SS, showing a reasonable
performance of the model.

Table III. Statistical parameters for extreme event
analysis: Model x Buoy.

RMSE Bias SI SS Samples

Hs (m) 0.451 -0.010 0.126 0.985 102

Tp (s) 1.564 -0.814 0.156 0.916 102

For Tp (Figure 4b, d), it was observed among
the 102 waves cases that only 18 cases were
overestimated by the model, the other 84 were
underestimated, again indicating the general
result of underestimation by the model, which
was confirmed by the SS value (SS < 1). It
is noteworthy that the Tp values ranged from
6.01 s to 13.68 s in modeled cases and 6.24 s to
14.22 s between the measured cases. The more
pronounced overestimation happened when the
recorded buoy data were greater than 8 s.

Buoy x model

Underestimation of Hs by the model for most
of the selected records from the buoy with
only 3 cases above the perfect concordance
line, are shown in Figure 5a (green bars). The
values presented by statistical parameters RMSE,
SS and SI point out that the values measured
by the buoy exceed the modeled (Table IV),
this underestimation becomes larger with higher
values of Hs, confirming the negative bias
(Figure 5c).

For the peak period analysis (Figure 5b, d),
the SI indicates only a small deviation from the
ideal comparison (y=x). However, the SS and bias
values show a considerable underestimation by
the model, higher than the previous analysis
from Model x buoy. The two analysis (buoy x
model and model x buoy) revealed that the
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Figure 4.Model x Buoy. Figure (a) and (b) the blue/pink and black dots indicated the 102 extreme cases predicted by
WW3 and measured by Minuano buoy respectively, and the yellow bars are the difference between parameters
measured and predicted. In the (c) and (d) represent the scatterplot between parameters (Hs and Tp) modeled x
measured for the extreme events in the analysis Model x Buoy.

Hs underestimation became more evident when
compared buoy x model.

Table IV. Statistical parameters for extreme event
analysis: Buoy x Model.

RMSE Bias SI SS Samples

Hs (m) 0.805 -0.679 0.202 0.830 102

Tp (s) 1.491 -1.035 0.148 0.896 102

Extreme analysis

The extreme analysis presented here takes
into account only the Hs data from WW3
model, comprising the period from 1979 to
2009. All calculations were done through the
MATLAB software with WAFO toolbox (Wave

Analysis for Fatigue and Oceanography). The
first step was selecting a unique extreme event
per storm by POT. As mentioned previously,
the POT method requires the exceedances
to be mutually independent and identically
distributed, however, the wave data tend to
present successive dependent values. Based
on Iwabe (2009), there is a tendency for
secondary cyclogenesis to occur at the rear of
the main cyclone. Since it is the initial synoptic
configuration that generates the first center of
low pressure it was decided to set a time window
of 213 hours (approximately 9 days) to ensure
the independence of the wave data. This large
window enabled us to exclude cases, where
waves are generated by secondary cyclogenesis
or extremes that occur close to one another.
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Figure 5. Buoy x Model. Figure (a) and (b) the blue/pink and black dots indicated the 102 extreme cases predicted by
WW3 and measured by Minuano buoy respectively, and the green bars are the difference between parameters
measured and predicted. In the (c) and (d) represent the scatterplot between parameters (Hs and Tp) modeled x
measured for the extreme events in the analysis Buoy x Model.

After applying this method, it was found
1276 extreme events during the 31 years
analyzed (approximately 41.16 events/year), with
respectively 8.37 m and 1.58 m of maximum and
minimum significant wave height. Waves with
the significant height between 2.5 m and 5 m
were predominant (Figure 6a). The average of
this dataset is 3.69 m and the standard deviation
is 0.95 m. Figure 6b shows the distribution of Nu
with u. According to Lin (2003), Belitsky & Moreira
(2007) and Campos et al. (2012), this graph
provides important information for choosing the
threshold, u. It gives us information about the
size of the tail, which influences the variance
of the estimators to be used. In line with these
authors, the percentage of the tail data should
be around 10 to 15%. In the present study, these

probabilities of occurrence corresponding to u
with values between 4.6 and 4.9 with Nu between
191 and 127 cases.

Based on the MRL graphic (Figure 7a), it is
possible to see the end of the concave shape
of the data between the threshold of 4 m and
5 m, which means that this region could be
approximated by a straight line. Considering the
variance, the ML estimator indicated the best
performance and was chosen for calculating
the scale and shape parameters. Figure 7b, c
represent the shape and scale parameters of
GPD within the confidence interval, which is
proportional to the variance and highlight the
increase in these parameters from u = 5 m.

Figure 7d shows the return value as a
function of u, where the blue line indicates

An Acad Bras Cienc (2021) 93(1) e20190011 10 | 17



DEBORAH F. AGUIAR ET AL. EXTREME ANALYSIS IN SOUTH BRAZIL

Figure 6. (a) Histogram of occurrence (%) versus Hs. (b) Nu versus u, red and green point correspond 15% and 10% of
the data, respectively.

Figure 7. (a) MRL- mean residual life over u versus u. (b) Shape parameter with 95% confidential interval (red dashed
line) for ML estimator versus u. (c) Scale parameter with 95% confidential interval (red dashed line) for ML
estimator versus u. (d) Return values/levels (100, 50, 31 and 10 years) versus u.
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Figure 8. Diagnostic Plots. (a) QQ-plot – empirical values versus GPD modeled points. (b) Probability Plot- empirical
values versus GPD modeled points, (c) Density Plot. (d) Return values (meters) versus return periods (years).

the return values associated with return period
equal to 31 years, which corresponds to the
same duration of the wave hindcast from WW3.
Considering the variance of the estimators, the
linearity of MRL and the expected return value
for 31 years, i.e. the maximum wave height found
in the data, the optimum threshold was found to
be u= 4.78 m.

Therefore, the GDP based on the ML
estimator was fitted for u = 4.78 m, which
corresponded to 5.29 extreme cases per year
on average, with ξ = 0.0286 and β = 0.6561.
The diagnostic plots for assessing the accuracy
between theWW3 extremewave data fitted to the
GPD model are shown in Figure 8. The quantile
and probability plot (Figure 8a, b) do not give
cause to doubt the validity of the fitted model;
each set of plotted points is near linear. Finally,

the density estimate plot (Figure 8c) seems
consistent with the histogram of the data.

Based in the previous sections it was
possible to perceive that the model can capture
the evolution of extreme events measured
by the buoy. However, with the statistical
analysis, it became clear there were mean
differences between measured and modeled
extreme events, shown mainly by the high
value of bias. Taking into account the statistical
analysis performed between extreme events
measured by the buoy and modeled by WW3, in
this work it was chosen to normalize the Figure
8d with the bias.

In practical terms, the normalization of bias
makes the model reproduce more realistically
the wave height measured. The bias for POT was
calculated on Model x buoy section and added
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to return values, in this case, the shape and rate
between tail points were maintained. Table V
and Figure 9 shows the return values with the
bias-corrected.

Table V. Return values for periods of 5, 20, 50 and 100
years.

Return
5 20 50 100

Periods (year)

Return WW3 7.03 8.05 8.74 9.28

Values (m) WW3corrected 8.47 9.70 10.54 11.18

Figure 9. Return values (meters) versus return periods
(years). The blue line represents the return values
based only in the extreme data from WW3. The green
line indicated the return values based on the extreme
data from WW3 with bias correction.

DISCUSSION

Critical analysis of ocean wave model processes
validation for SBS localized on the Rio Grande
do Sul confirms that WW3 reconstruction, in
general, achieved similar values to the records.
Statistical results found in this study shows when
compared with Melo et al. (2010), a significant
model improvement to reproduce the wave
fields in that location as a consequence of a
better resolution of the surface wind used to

drive the wave model. However, the tendency
to underestimate the Hs and Tp in extreme
situations (Figure 2 and Table II) by the wave
model still being noticed and this results agree
with many other studies, (e.g. Ardhuin et al.
(2007) and Campos et al. (2012)).

The statistical results from model
performance in extreme situations selected a
extreme wave event every nine days, resulting
in 102 extreme events for both analysis (buoy
x model and model x buoy) being that only
21 events (20.58%) had concomitance, which
means that they occurred at the same time on
the buoy and the model, other cases appear
in different moment. It was observed that Hs
underestimation became more evident when
compared Hs and Tp peaks in buoy x model
analysis. On the other hand, the analysis
carried out between model and buoy shows
better values for the statistic parameters, which
provides evidence that the underestimation
of the data in part was equilibrated through
overestimation, making that the final result does
not show major differences for that area.

According to Chawla et al. (2013), Cox
et al. (2011), in a global context results of
underestimation in extreme situations can be
a consequence of the spatial and temporal
resolution of atmospheric reanalysis used as
input for wave models, which means that,
models still limited to reproducing extreme
conditions, as the extratropical cyclones that
frequently reach the Brazilian south-southeast
coast responsible for the incoming in the wave
energy in that location.

Chawla et al. (2013) also mentioned that
the underestimation of Tp, mainly in storm
events, could be associated with the Discrete
Interaction Approximate (DIA) parameterization
used in Tolman-Chalikov physics package for the
WW3, which reflects in a spectral peak not as
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intense in the model as in the data in extreme
situations.

However, in a focused study on the
Atlantic ocean, Rocha et al. (2004) highlight
that reanalysis winds NCEP/NCAR usually
presents, in that region, a larger deviation
in cases of large increases in the measured
wind intensity, providing wind fields with low
spatial and temporal resolution, associated slow
variations of the meteorological systems. As a
consequence, have a less dynamic wave field,
i.e., no rapid variations and smoothed extremes,
which explain the diference between Hs peaks
on buoy andmodel data. Also, Araujo et al. (2003)
and Melo et al. (2008), emphasize the difficulty
in estimating Tp by wave models in areas where
bimodal sea state conditions are significant,
such as the south and southeast Brazil.

The extreme analyzis to calculate the return
wave value was done in this study considering
the 31 years of Hs from WW3. Extreme events
chose by POT showed a good fit to the GPD,
presenting low variance of the ML estimator used
to calculate the scale and shape parameters.
The set of graphics to find the threshold
was clearly defined, as shown in Figure 6
and Figure 7. The Quantile-quantile (QQ) and
Probability-probability (PP) plots (Figure 8a, b)
confirm that the GPD model is fitted for the
data set. In both plots, the points are sufficiently
close to the diagonal line to lend support to the
fitted model, which means that GPD model is
reasonable for the data excesses.

It is important to highlight that the selection
of the wave threshold value is crucial for the
quality of extreme wave height analysis, Li et al.
(2012) and Far et al. (2018) demonstrated that
higher threshold value results in biased and
unstable predictions due small sample size and
lower threshold will violate the asymptotic basis
of the statistic model (Coles et al. 2001).

As previously discussed, wave modeled data
tends to underestimation wave parameters (Hs
and Tp) and can, therefore, lead to unrealistic
values. Taking into account this fact and based
in Campos et al. (2012), this study used the
bias from the model (calculated on the section
Model x Buoy) to normalize the return wave value
(Figure 8). In other words, the shape and the
rate between tail points were maintained the
same, just adding the hindcast bias related to the
underestimation.

Moreover, the measurement data used in
this study enabled one of the first assessment of
the quality of the WW3 (v3.14) output parameters
(Hs, Tp) for the Rio Grande region. Though, a
larger data record would be more adequate to
verify the model tendency and extrapolate.

In summary, this analysis has shown
that although numerical ocean wave models
are widely used in simulating ocean wave
conditions with reasonable accuracity (Chawla
et al. 2013, Stopa & Cheung 2014), in the
extreme analysis undertaken in this study, in
situ measurements were necessary to quantify
the model performance in extreme situations
and correct biases in the return values. It should
be noted that the bias corrections applied are
specific to the vicinity of the point analyzed and
not more widely applicable.

CONCLUSIONS

The present article describes the evaluation
of the NOAA wave hindcast and consequently
the performance of WW3 model (v3.14) over the
southernmost Brazilian region with respect to
29-month of in situ wave records. Also, extreme
value theory has been used to estimate the
return periods of extreme wave heights for the
study area.

Statistical analysis between model and
measurements highlighted the satisfactory
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representation of the wave fields by WW3.
However, a tendency to underestimate the
significant height and peak period were noted
and this behavior became more evident in the
highest values of Hs and Tp. These results are
in good agreement with others studies, (e.g.
Arthuin et al. 2007, Chawla et al. 2013). This
underestimation in extreme values of Hs is
typically attributed to an underestimation of
reanalysis winds fields of NCEP/NCAR (Cox et
al. 2011).

Indeed, studies from Cox et al. (2011) support
that even with higher spatial resolution as
present in the Reanalysis II, the CFSR still
has limitation, in reproduce hurricane, tropical
and extratropical storms. The proportion of
this loss becomes more marked in the South
Atlantic Ocean due to the absence of historical
wind records to validate atmospheric model
results, which in turn, results in wind fields with
low spatial and temporal resolution, associated
with low dynamic and slow variability of
meteorological systems. The result is, therefore,
that the wave model reproduces some but not
all extreme events.

On the other hand, the underestimation of
Tp in storms events could be associated with two
different factors: (1) more broadly, from discrete
interaction approximate parameterization
adopted for building the hindcast and (2)
interference more locally, due to the bimodal
sea state being significant in the south and
southeast Brazil.

Though a large data record is necessary
to verify the model biases more broadly, the
measurement data used in this study provides
a preliminary assessment of the quality of the
WW3 (v3.14) for southern Brazil. These results
clarify the limitations of the hindcast and
quantify the biases near the location of an
available wave buoy. Considering the biases that
were found in extreme wave heights, caution is

needed in using this product more broadly in this
region. Since the diagnostic plots for assessing
the accuracy between the hindcast extreme
wave data fitted to GPD showed consistency,
the bias-corrected extreme wave data were
extrapolated to estimate return values.

Although this study has focused on a
particular area, this work contributes to the
evaluation of the applicability of the WW3
hindcast in studies of extreme events, and
also highlights the fundamental importance of
wave records to assess model biases in extreme
events thereby allowing the correction of the
extreme wave return levels. The work presented
will help with adaptation planning where the
information about extreme sea state is required
in south Brazil.

Acknowledgments
The authors would like to thank the Universidade Federal
do Rio Grande and Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior (CAPES) for the financial
support and The Commonwealth Scientific and Industrial
Research Organization (CSIRO), Division of Marine and
Atmospheric Research for physical support for research
during the first author volunteer fellow.

REFERENCES

ARAUJO CES, FRANCO D, MELO E & PIMENTA FM. 2003. Wave
regime characteristics of the southern Brazilian coast. VI
COPEDEC 97: 1-15.

ARDHUIN F, HERBERS T, VLEDDER G, WATTS K, JENSEN R & GRABER
H. 2007. Swell and slanting-fetch effects on wind wave growth. J
Phys Oceanogr 37: 908-931.

BALKEMA A & DE HANN L. 1974. Residual life-time at great age.
Ann Probab 2(5): 792-804.

CALLIARI LJ, TOZZI HAM & KLEIN AHF. 1998b. Beach morphology
and coastline erosion associated with storm surges. An Acad
Bras Cienc 70: 232-247.

CALLIARI LJ, SPERANSKI N & BOUKAREVA I. 1998a. Stable focus of
waves rays as a reason of local erosion at southern Brazil coast.
J Coast Res 26:19-23.

CAMPOS RM, PARENTE CE & DE CAMARGO R. 2012. Extreme Wave
Analysis in Campos Basin (Rio de Janeiro – Brazil) Associated

An Acad Bras Cienc (2021) 93(1) e20190011 15 | 17



DEBORAH F. AGUIAR ET AL. EXTREME ANALYSIS IN SOUTH BRAZIL

with extra-tropical cyclones and anticyclones. XXXI OMAE, Rio de
Janeiro, p. 71-80.

CHAWLA A, SPLINDLER DM & TOLMAN HL. 2013. Validation of a
thirty-year wave hindcast using the Climate Forecast System
Reanalysis winds. Ocean Model 70: 189-206.

COLES S, PERICCHI LR & SISSON S. 2003. A fully probabilistic
approach to extreme rainfall modeling. J Hydrol 273(1): 35-50.

COX AT, CARDONE VJ & SWAIL VR. 2011. On the use of the climate
forecast system reanalysis wind forcing in ocean response
modeling. XII International Workshop on Wave Hindcasting and
Forcasting and III Coastal Hazards Symposium, Hawaii, p. 20.

D’ANGREMOND K & VAN ROODE FC. 2004. Break Waters and
Closure Dams. Spon Press, 384 p.

DAVISON AC & SMITH RL. 1990. Models for exceedances over high
thresholds. J Royal Stat Soc Ser B Methodol 52(3): 393-442.

DE OLIVEIRA MMF, EBECKEN NFF, DE OLIVEIRA JLF & GILLELAND
E. 2010. Generalized extreme wind speed distributions in South
America over the Atlantic Ocean region. J Appl Meteorol Climatol
104: 377-385.

DILLENBURG SR, ESTEVES LS & TOMAZELLI LJ. 2004. A critical
evaluation of coastal erosion in Rio Grande do Sul, Southern
Brazil. An Acad Bras Cienc 76: 611-623.

FAR SS, WAHAB AKA & HARUN SB. 2018. Determination of
significant wave height offshore of the Federal Territory of
Labuan (Malaysia) using generalized Pareto distributionmethod.
J Coast Res 34(4): 892-899.

FERREIRA A & DE HAAN L. 2013. On the block maxima method in
extreme value theory. Ann Stat 43(1): 276-298.

FIGUEIREDO SA. 2013. Modeling climate change effects in
southern Brazil. J Coast Res 65: 1933-1938.

GODA Y. 2010. Random Seas and Design of Maritime Structures.
Advanced Series on Ocean Engineering, 2nd ed., Singapore:
World, 732 p.

GUIMARÃES PV, FARINA L, TOLDO E, DIAZ-HERNANDEZ G &
AKHMATSKAYA E. 2015. Numerical simulation of extreme wave
runup during storm events in Tramandai Beach, Rio Grande do
Sul, Brazil. Coast Eng 95: 171-180.

GUO L & SHENG J. 2015. Statistical estimation of extreme ocean
waves over the eastern Canadian shelf from 30-years numerical
wave simulation. Ocean Dyn 65(11): 1489-1507.

HOEKE RK, MCINNES KL, KRUGER JC, MCNAUGHT RJ, HUNTER JR
& SMITHERS SG. 2013. Widespread inundation of Pacific islands
triggered by distant-source wind- waves. Glob Planet Change
108: 128-138.

JAGGER TH & ELSNER JB. 2006. Climatology models for extreme
hurricane winds near the United States. J Clim 19(13): 3220-3236.

KAMPHUIS JW. 2010. Introduction to Coastal Engineering and
Management, 2nd ed., Singapore: World Scientific, 564 p.

LI F, BICKNELL C, LOWRY R & LI Y. 2012. A comparison of extreme
wave analysis methods with 1994–2010 offshore Perth data set.
Coast Eng 69: 1-11.

MACHADO AA, CALLIARI LJ, MELO E & KLEIN AHF. 2010. Historical
assessment of extreme coastal sea state conditions in southern
Brazil and their relation to erosion episodes. Pan Am J Aquat Sci
5(2): 277-286.

MELO E, HAMMES GR, FRANCO D & ROMEU MAR. 2008. Evaluation
of the performance of the WW3 model in Santa Catarina. In: III
SEMENGO, p. 1-20.

MELO E, ROMEU MAR & HAMMES GR. 2010. Extreme sea state
conditions off Rio Grande based on the WW3 model. In: IV
SEMENGO, p. 1-20.

MENDES B & LOPES HF. 2004. Data driven estimates for mixtures.
Comp Statist Data Anal 47: 583-598.

MENTASCHI L, BESIO G, CASSOLA F &MAZZINO A. 2013. Developing
and validating a forecast/hindcast system for theMediterranean
sea. J Coast Res 65: 1551-1556.

MOISELLO U. 2007. On the use of partial probability weighted
moments in the analysis of hydrological extremes. Hydrol
Process 21(10): 1265-1279.

O’BRIEN L, DUDLEY JM & DIAS F. 2013 Extreme wave events in
Ireland: 14 680 BP–2012. Nat Hazards Earth Syst Sc 13: 625-648.

PARISE CK, CALLIARI LJ & KRUSCHE N. 2009. Extreme Storm surges
in the south of Brazil: Atmospheric conditions and shore erosion.
Braz J Oceanogr 57(3): 175-188.

PICKANDS J. 1975. Statistical inference using extreme order
statistics. Ann Stat 3(1): 119-131.

ROCHA RP, SUGAHARA S & SILVEIRA RB. 2004. Sea Waves
Generated by Extratropical Cyclones in the South Atlantic
Ocean: Hindcast and Validation against Altimeter Data. Weather
Forecast 19: 398-410.

SAHA S ET AL. 2010. The NCEP Climate Forecast System reanalysis.
Bull Amer Meteorol Soc 91(8): 1015-1057.

SILVA PG, KLEIN AHF, GONZALEZ M, GUTIERREZ O & ESPEJO A. 2015.
Performance assessment of the database downscaled ocean
waves (DOW) on Santa Catarina coast, South Brazil. An Acad Bras
Cienc 87: 623-634.

SPERANSKI N & CALLIARI LJ. 2001. Bathymetric lens and localized
coastal erosion in southern Brazil. J Coast Res 34: 209-215.

STOPA JE & CHEUNG KF. 2014. Intercomparison of wind and wave
data from the ECMWF Reanalysis Interim and the NCEP Climate
Forecast System Reanalysis. Ocean Model 75: 65-83.

An Acad Bras Cienc (2021) 93(1) e20190011 16 | 17



DEBORAH F. AGUIAR ET AL. EXTREME ANALYSIS IN SOUTH BRAZIL

VANEM E&WALKER SE. 2013. Identifying trends in the ocean wave
climate by time series analyses of significant wave height data.
Ocean Eng 61: 148-160.

WILLMOTT CJ & MATSUURA K. 2005. Advantages of the Mean
Absolute Error (MAE) over the Root Mean Square Error (RMSE)
in Assessing Average Model Performance. Clim Res 30: 79-82.

YOU ZJ, YIN B, JI Z & HU C. 2016. Minimization of the uncertainty
in estimation of extreme coastal wave heights. J Coast Res 75:
1277-1281.

YOUNG IR, ZIEGER S & BABANIN AV. 2015. Development and
Application of a Global Satellite Database of Wind and Wave
Conditions. XXXIV OMAE. Canada, p. 1-10.

How to cite
AGUIAR DF, MCINNES K, MELO FILHO E, ROMEU MAR & FONTOURA JAS.
2021. Extreme Wave Analysis Based on 31 Years Data from WW3 Model:
Study off Southern Brazilian Coast. An Acad Bras Cienc 93: e20190011.
DOI 10.1590/0001-3765202120190011.

Manuscript received on January 6, 2019;
accepted for publication on November 11, 2019

DEBORAH F. AGUIAR1
https://orcid.org/0000-0003-3502-6844

KATHLEEN MCINNES2
https://orcid.org/0000-0002-1810-7215

ELOI MELO FILHO1
https://orcid.org/0000-0002-7389-7475

MARCO ANTÔNIO R. ROMEU1
https://orcid.org/0000-0002-5957-2164

JOSE ANTÔNIO S. FONTOURA1
https://orcid.org/0000-0003-4300-4979

1Universidade Federal do Rio Grande, Escola de Engenharia, Av.
Italia Km 9, 29201-900 Rio Grande, RS, Brazil
2The Commonwealth Scientific and Industrial Research
Organization/CSIRO, Division of Marine and Atmospheric
Research, 107-121 Station Street, Postal code 3195, Aspendale,
Victoria, Australia

Correspondence to: Deborah Fonseca Aguiar

E-mail: deborahfa@icloud.com

Authors contributions
Deborah Fonseca Aguiar: worked in data analyses, methodology
and manuscript preparation. Kathleen McInnes: supervisor and
orientation. Eloi Melo Filho and Marco Antônio Rigola Romeu:
major supervisors, orientation, methodology, data analysis and
manuscript writing. José Antônio Scotti Fontoura, orientation
and data analysis.

An Acad Bras Cienc (2021) 93(1) e20190011 17 | 17


