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 Abstract: The use of  agrochemicals in agriculture may impact aquatic ecosystems, 
particularly infl uencing the stream insect communities. Among aquatic insects, the 
family Chironomidae is the most abundant and species-diverse insect group found in 
freshwater ecosystems. However, in the southern hemisphere, studies with Chironomidae 
are still sparse, compared to Europe and North America. The present study evaluates 
the responses of Chironomidae species (Insecta: Diptera) to pyrimethanil fungicide 
in a mesocosm experiment. Water contamination and chironomid community were 
monitored over 10 months. After fi ve months of monitoring, the pyrimethanil fungicide 
was completely degraded and there was a statistically signifi cant increase in the 
Margalef Richness and Shannon-Wiener Index (H’) in the control units when compared 
with the contaminated mesocosms (p = 0.003). Our results point out that the utilization 
of agrochemicals can be a harmful factor infl uencing negatively the Chironomidae 
populations. This fi nding has key implications for insect conservation strategies and 
ecological management environments.
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INTRODUCTION

Agrochemicals pollution from farming exerts a 
toxic impact in the soil in the adjacent areas and 
on freshwater macroinvertebrates, frequently 
causing loss of sensitive insect orders such as 
Plecoptera (stonefl ies), Ephemeroptera (mayfl ies) 
and Trichoptera (caddisfl ies) (Karouna-Renier 
& Sparling 2001, Crisci-Bispo et al. 2007, Corbi 
et al. 2013). The occurrence of agrochemicals 
in aquatic systems continues to create major 
risks to non-target aquatic species (Liu et al. 
2013, Shinn et al. 2015). Ecological disturbance 
caused by agrochemicals can potentially impact 
the microalgae community and therefore the 
system’s primary productivity (Ferraz et al. 2004). 
Species richness is similarly infl uenced by these 
anthropogenic disturbances, which may lead to 

losses of taxa and cause spatial discontinuities 
in expected gradients (Bojsen & Jacobsen 
2003, Okano et al. 2017). Numerous freshwater 
biomonitoring plans use the macroinvertebrate 
community, particularly aquatic insects, as 
indicators of pollution, habitat modification, 
and water quality (Rosenberg 1992, Cranston 
1995, Roque et al. 2000, Roy et al. 2003, Bonada 
et al. 2006, Carter et al. 2006, Hauer & Resh 2006, 
Corbi & Trivinho-Strixino 2008, 2017, Ferrington 
2008, Corbi et al. 2011, Molozzi et al. 2012, Nicacio 
& Juen 2015,  Vanacker et al. 2018, Dodds & Whiles 
2020).

In most freshwater benthic communities, the 
Chironomidae is the most abundant and diverse 
insect group in freshwater systems (Rosenberg 
1992, Cranston 1995, Roque et al. 2010, Corbi & 
Trivinho-Strixino 2017). Chironomids are one of 
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the most ubiquitous and species rich families 
of aquatic insects (Ferrington 2008, Merritt et 
al. 2008) and have received consideration by 
researchers worldwide due to their abilities 
as biological indicators of environmental 
conditions (Pinder 1986). A variety of chironomids 
have known tolerances to environmental 
gradients, which can be used to infer impacted 
ecosystems (Courtney & Merritt 2008, Tang et 
al. 2009, Roque et al. 2010, Eggermont & Heiri 
2012, Corbi & Trivinho-Strixino 2017, Corbi et al. 
2019). The status of chironomid responses to 
fluctuations in the aquatic systems could permit 
their utilization to monitor streams, lakes and 
ponds (Rosenberg 1992). However, as pointed 
out by Nicacio & Juen (2015), in the southern 
hemisphere, studies with Chironomidae are still 
sparse, compared to Europe and North America.

In recent years, the expansion of agricultural 
activities has resulted in increased use of 
pesticides and fertilizers (Corbi et al. 2006, 
2018). Among these substances, pyrimethanil – 
N-(4,6-dimethylpyrimidin-2-il)-anilin fungicide 
is widely used in several types of agricultural 
crops around the world, as sugarcane and 
citrus (Verdisson et al. 2001, Anfossi et al. 
2006, Seeland et al. 2013). The pyrimethanil 
(4,6-dimethyl-N-phenyl-2-pyrimidinamine) 
is one of the fungicides most widely used in 
monocultures and has been detected in aquatic 
ecosystems (Shinn et al. 2015, Araújo et al. 2015, 
Müller et al. 2019). According to EFSA (European 
Food Safety Authority 2006), pyrimethanil is a 
substance with minimal risk to human health, 
has poor water solubility and short degradation 
time, is not degraded by hydrolysis or photolysis 
in the aquatic environment. This fungicide can 
penetrate the plant cuticle where it is applied, 
acting to inhibit the secretion of fungal enzymes, 
which ultimately reduces dispersion of the 
fungus (EFSA 2006). 

Among the recent studies and research 
relating to this agrochemical, Seeland et al. (2012), 
evaluated the effects of pyrimethanil in aquatic 
macroinvertebrates through ecotoxicological 
tests and showed that thermal and 
multigenerational effects should be considered 
when evaluating the ecotoxicity of pesticides 
and concluded that acute pyrimethanil -toxicity 
on Chironomus riparius increased with high 
temperature. Müller et al. (2012), evaluated 
the environmental risk of pyrimethanil in the 
context of climate changes, in the C. riparius, 
and they demonstrated that not only the impact 
of climate change, but also low concentrations 
of pesticides may pose a reasonable risk for 
aquatic insects in future. Shinn et al. (2015) 
studied the effects of pyrimethanil in the 
growth of algae Selenastrum capricornutum and 
showed that the presence of pyrimethanil in an 
aquatic system can cause immediate impact if 
it reaches concentrations close to 1.0 mg L-1 and 
Araújo et al. (2014), studied avoidance of fish 
(Danio rerio) in different concentrations of this 
fungicide. In this context, Araújo et al. (2015), also 
demonstrates that pyrimethanil is potentially 
toxic for many aquatic species, affecting survival, 
reproduction, feeding, growth, and that it can 
disturb the environmental quality; Baglieri et 
al. (2016) analyzed the possible use of Chlorella 
vulgaris and Scenedesmus quadricauda 
microalgae to degrade pyrimethanil fungicide 
in water; Colombo et al. (2017) concluded that 
the pyrimethanil fungicide applications, in 
agriculture cultivation, may lead to a decrease 
in Chironomus sancticaroli genetic diversity 
and Müller et al. (2019), studied the impact of 
pyrimethanil in the aquatic primary producers 
and shows that the growth of key structural 
macroalgae and macrophytes was affected 
by the fungicide. However, even with these 
studies, little is known about the relationship 
and influence of pyrimethanil fungicide in the 
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structure and dynamics of the Chironomidae 
community. 

The present study aimed to evaluate, 
through experimental field units, the effects 
of pyrimethanil fungicide on Chironomidae 
(Insecta: Diptera) community structure. The 
present study hypothesizes that the application 
of the fungicide pyrimethanil in agricultural 
areas, causes changes in the Chironomidae 
community structure of adjacent aquatic 
environment.

MATERIALS AND METHODS
Mesocosms and water monitoring
The present study was conducted at the Center 
for Water Resources and Applied Ecology 
(CRHEA), School of Engineering of São Carlos 
(EESC), University of São Paulo (USP), Brazil. 

The mesocosm arrangement was composed 
of two treatments: non-contaminated controls 
and pyrimethanil treated tanks. Each mesocosm 
system consisted of 1500 L cylindrical tanks 
with 1.43/1.75 m (bottom/top) diameter and 
0.83 m height, separated by 2 meters each 
one. All mesocosms had a layer of natural 
sediment and were filled with water pumped 
from the Lobo Reservoir (Itirapina, SP, Brazil) 
22°10’0.5” (S) and 47°54”10.51” (O) (Shinn et al. 
2015). Throughout this same period (October 
2012) the water source was known to be non-
toxic to the fish Danio rerio and tadpoles of 
Leptodactylus latrans, Lithobates catesbeianus 
and Cladocera Ceriodaphnia silvestrii (Shinn 
et al. 2015). In order to avoid allochthonous 
material, the mesocosms were allocated 15 
centimeters above the ground level. Water was 
removed from the Lobo Dam using a suction 
pump. To minimize the risk of overflows due to 
precipitation, holes were drilled at the edge of 
each mesocosm, in order to allow surplus water 
to escape. Subsequently, specimens of aquatic 

macrophytes rooted in the sediment at the 
same volume in each mesocosms. 

The commercial formulation Mythos®, 
which contains 300 g.L-1 of pyrimethanil as active 
ingredient, was dissolved in distilled water and 
added to the treated mesocosms to a final 
nominal pyrimethanil concentration of 1 mg.L-1, 
which corresponds to the chronic LOEC (lowest 
observed effect concentration) for Daphnia 
magna species reproduction (Seeland et al. 2012). 
The mesocosms were organized in two groups, 
each with three replicates. Units 1, 3 and 4 served 
as treatments and the second group served 
as controls (units 2, 5 and 6). The mesocosms 
contamination occurred in October 20th, 2012 
(Figure 1). The use of the commercial formulation 
instead of pure active ingredient was preferred as 
we consider it the most environmentally relevant 
approach to be tested in outdoor mesocosm 
systems (Shinn et al. 2015). 

Physical and chemical variables, such pH, 
temperature, conductivity and dissolved oxygen, 
were measured with the aid of a multiparameter 
water quality probe (Horiba® U10). Water 
monitoring was performed monthly over the 
period between October 2012 and August 2013. 
Pyrimethanil concentrations were confirmed 
and determined by high-performance liquid 
chromatography – (HPLC) according to Müller 
et al. (2012). The analyses for pyrimethanil 
determination concentrations were carried out 
at the Chemistry Institute of the University of 
São Paulo (IQSC/USP).

Chironomidae sampling
Chironomidae fauna were collected monthly, 
with a core sampler, during October 2012 and 
August 2013. Following the sampling procedures, 
the material collected was stored in 70% alcohol. 
Chironomidae were identified to morphospecies 
using appropriate keys (Trivinho-Strixino 
& Strixino 1995, Trivinho-Strixino 2011). The 
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individuals collected were quantified to determine 
the chironomids community structure present in 
each mesocosm. After characterizing the aquatic 
community, the Margalef richness and Shannon-
Wiener diversity index (H’) were assessed.

Statistical Analysis
The Margalef Richness Index and Shannon-
Wiener Diversity Index, which assessed 
differences between control and treatment 
mesocosms, were calculated using the PAST 
(Paleontological statistics) software, version 3.14 
(Hammer et al. 2001). We also applied a t-tests 
(α = 0.05), to analyze the significative differences 
in these indices between contaminated and 
control units. The comparison between the 
water variables was performed using t-tests (α = 
0.05), with the aid of software R Project, version 
3.3.1. (R Core Team 2016). 

RESULTS 
Water analyses and pyrimethanil concentration
The analysis related to the water variables 
showed no statistically significant differences 
between controls and treatment mesocosms. 
At the beginning of the monitoring, the 
pyrimethanil concentrations found in the three 
treatment mesocosms showed similar values 
to 1.40 (0.06) mg.L-1. The complete degradation 
of pyrimethanil occurred in the fifth month 
of monitoring (Figure 1). The p-values for pH, 
temperature, dissolved oxygen and conductivity 
were all higher than 0.05.

Chironomidae community
In total, 1263 individuals from two Chironomidae 
subfamilies were collected: Chironominae and 
Tanypodinae. Seven different genera from eight 
distinct species were identified. The individuals 
and their occurrence and distribution in the 
mesocosms are listed in Table I and Figure 2.
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Figure 1. Mean concentrations 
and standard deviation 
of Pyrimethanil fungicide 
decay in treated mesocosms. 
Measures obtained from 
October 2012 to May 2013.
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Figure 2. Chironomid species distribution (%) in the six mesocosms. Mesocosms 1, 3 and 4, with Pyrimethanil 
fungicide and mesocosms 2, 5 and 6, without Pyrimethanil.

Table I. Chironomidae abundance in the treated and control mesocosms, during the experiments.

Sample dates Oct./12 Nov./12 Jan./13 Feb./13 Mar./13 Apr./13 May/13 Jun./13 Jul./13

Taxa/Mesocosms* T C T C T C T C T C T C T C T C T C

Procladius sp. 1 4 1 3 2 0 0 0 4 5 1 2 1 2 1 5 0 0 3

Procladius sp. 2 0 2 0 0 0 1 0 1 0 0 0 4 0 4 0 2 0 1

Tanytarsus sp. 7 4 0 3 2 4 3 9 1 6 12 16 0 16 1 4 1 3

Ablabesmyia 
(Karelia) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1

Chironomus sp. 0 2 0 1 0 0 2 17 7 13 0 3 11 3 5 0 2 2

Polypedilum sp. 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0

Clinotanypus sp. 0 0 0 0 0 0 0 1 0 1 1 3 1 3 6 3 1 2

Tanypus sp. 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Margalef richness and Shannon-Wiener 
diversity (H’) in the treatment mesocosms were 
low at the beginning of the experiment when 
compared with the values of control mesocosms. 
After the complete pyrimethanil degradation, 
the metrics of treatment mesocosms began 

to increase with values like those obtained 
in the control’s units. The Margalef richness 
and Shannon-Wiener diversity (H’) values in 
mesocosms are presented in Figure 3 and Figure 
4, respectively.
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The t-test, applied to diversity and species 
richness indexes between the treatment 
and control mesocosms, showed significant 
differences (p = 0.003) among the units.

DISCUSSION

The present study hypothesizes that the 
application of the fungicide pyrimethanil 
in agricultural areas, causes changes in 
the Chironomidae community of adjacent 
aquatic environments. The understanding 
of anthropogenic stressors effect, such as 
pyrimethanil fungicide, in the Chironomidae 
organism’s distribution and abundance is 
fundamental to the evaluation of impacts on 
aquatic environments (Carter et al. 2006), 
especially in streams adjacent to agricultural 
crops. Other studies also pointed to the loss of 
Chironomidae diversity and richness species in 
areas with agriculture impacts in Neotropical 

streams (Corbi & Trivinho-Strixino 2006, Kleine 
et al. 2011, Corbi et al. 2018). 

The low species richness observed in the 
six mesocosms and great homogeneity can 
be explained in several ways. According to 
Bojsen & Jacobsen (2003), water bodies located 
in open areas without riparian vegetation, 
have characteristics favoring the increase of 
periphyton biomass, due to the high incidence of 
light and the absence of organic matter, providing 
the presence of scrapers groups. Despite the 
low Chironomidae richness observed in the six 
mesocosms, the units without contamination 
presented higher richness. Caquet et al. (2000) 
showed in their experiments with mesocosms 
simulating lentic environments, that the 
spontaneous colonization of insects can 
require several months to occur. On the other 
hand, in the following months of pyrimethanil 
degradation, there was continuous recovery of 
the Chironomidae community. 
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Figure 3. Margalef 
Richness index mean 
values in mesocosms 
and Pyrimethanil 
concentration mean. 
Measures obtained 
from October 2012 to 
July 2013.
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The environmental monitoring conducted 
in the six mesocosms, linked to methodologies 
and approaches of ecotoxicology, can provide 
insights into the mechanisms that act on 
the Chironomidae community dynamics and 
structure, especially when evaluating the effects 
of a harmful substance on groups of great 
environment importance (Ferrington 2008). This 
study showed a decrease in the chironomid 
community in experiments contaminated 
with pyrimethanil fungicide. The loss of 
Chironomidae diversity in aquatic environments 
can result in loss of different functions in 
these environments, such as the reduction fish 
species and nutrient cycling in this environment 
as suggested by several researchers (Cranston 
1995, Trivinho-Strixino & Strixino 1995, 
Roque et al. 2000, Ferrington 2008). A study 
conducted by Colombo et al. (2017), showed that 
pyrimethanil fungicide can reduce the genetic 
diversity of Chironomus sancticaroli species 
(Diptera: Chironomidae) exposed to different 

pyrimethanil concentrations. In this study, 
the authors concluded that the pyrimethanil 
applications in agriculture cultivation, may lead 
to a decrease in aquatic biota genetic diversity. 
This condition may begin the disappearance 
of species in the long term-exposure, common 
situations in Brazilian agriculture and would 
have significant consequences for conservation 
plans and ecological managing.

The high temperature observed in the 
tropical regions can also be determinant to the 
low Chironomidae diversity in the pyrimethanil 
contaminated sites. Similar observations were 
made by Seeland et al. (2012), who found that 
pyrimethanil -toxicity on Chironomus riparius 
increased with elevated temperature. Similarly, 
Seeland et al. (2013) also stated that the life-stage 
specific temperature-dependent ecotoxicity of 
pyrimethanil demonstrate the complexity of 
pesticide-temperature interactions, especially 
considering global climate change predictions.
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Figure 4. Shannon-
Wiener diversity 
index mean values 
in mesocosms 
and Pyrimethanil 
concentration mean. 
Measures obtained 
from October 2012 to 
July 2013.
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This research demonstrates the negative 
effects of pyrimethanil fungicide, which may 
contaminate streams adjacent to agricultural 
areas, via runoff process. In Brazil, it’s also 
knows that the application of agrotoxics, as 
Pyrimethanil, together with the problem of 
the devastation of riparian vegetation, has led 
to different impacts on the water resources 
of the neighboring areas. The present study 
contributes to the evaluation of dynamics of the 
Chironomidae community structure in relation 
to contamination by Pyrimethanil, extensively 
used in the agriculture fields around the 
world. Our results point out that the utilization 
of agrochemicals can be a harmful factor 
influencing the Chironomidae populations. 
This finding has important implications for 
insect’s conservation strategies and ecological 
management environments.
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