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Abstract: Fire risk mapping is a basic planning and protection element. This study 
presents the application of fuzzy logic in a geographic information system (GIS) as an 
alternative multi-criteria analysis for determining the areas of highest risk of forest 
fi re in natural forest remnants in the Brazil. In the decision-making process, a set of 
factors that are relevant to fi re safety were identifi ed in the study area. For each input 
variable chosen for the model, a pertinence function was defi ned that best described its 
infl uence on fi re risk. Subsequently, the variables were combined for the presentation of 
the fi nal fi re risk map. Concluded in the study that an increased risk of fi re occurs at the 
wildland - urban interface. A strong relationship was observed between the fi re ignition 
points and proximity to roads and urban areas. The proposed model was effi cient to 
integrate the variables and determine areas of greatest risk.
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INTRODUCTION

Forests are an important natural resource 
with a role in maintaining environmental 
balance. Forest fires can significantly change 
natural ecosystems and affect Brazil and other 
countries with large extents of forest cover, such 
as the United States, Canada, Australia, and 
countries of the European Union and southeast 
Asia. Accordingly, concerns about the possible 
impacts of forest fires have shaped research 
interests over the last decade (Argañaraz et al. 
2015, Carvalho et al. 2014, Ikemori et al. 2015, 
Martins et al. 2012, Wu et al. 2014, 2015).

Studies that model the risk of forest fi res are 
important tools for planning the protection of 
natural resources, as they provide a visualisation 
of the spatial distribution of the areas that are 
most susceptible to the phenomenon of fi re and 
ensure that adequate resources and equipment 

are available for fire prevention and control, 
in accordance with the characteristics of each 
region.

Geographic information systems (GIS) are 
employed as an effective tools for forest resource 
management due to, among other things, its 
computer modelling capacity. A wide variety 
of techniques have been used for to model 
fire risk. When forest fire occurrence data is 
available, statistical models can be used to map 
risk areas. These models range from multiple 
linear regression (Oliveira et al. 2012, Syphard et 
al. 2008) to logistic regression (Catry et al. 2009, 
Martínez et al. 2009). More recently, machine 
learning algorithms were used to evaluate the 
predictive capacity of fi re occurrence, such as 
Random Forest (Arpaci et al. 2014, Wu et al. 2014), 
MaxEnt (Arpaci et al. 2014), Boosted Regression 
Trees (Argañaraz et al. 2015) and Classifi cation 
and Regression Trees (Juvanhol et al. In Press)
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However, in regions with no fire records 
maintained by fire agencies, the integration 
of factors considered influential in forest fire 
risk modelling and prediction is performed 
by application of subjective indexes. These 
methods that can incur in insufficient data 
standardization and have the difficulty of 
establishing weights consistent with reality 
(Eugenio et al. 2016, Omena et al. 2016, Tetto 
et al. 2012, Torres et al. 2017). Against these 
shortcomings, the integration of spatial multi-
criteria decision-making methods provide a new 
framework for addressing various environmental 
problems, including quantification of fire risk.

The need for frequent preliminary 
judgements, due to the complexity and 
uncertainty of the real world, prompts the 
incorporation of expert opinion into models. This 
is accomplished by employing a specific class of 
models know as specialist systems, which are 
designed to perform reasoning (Krueger et al. 
2012). The two uncertainty models most widely 
used are probability theory and fuzzy set theory. 
A probabilistic approach generally follows the 
Bayesian interpretation of probability; the latter 
is equivalent to possibility theory. Zadeh (1983) 
stated that probability theory does not provide 
a systematic basis to address the inherent 
imprecision of knowledge. Ross et al. (2008) 
considered possibility theory as more flexible 
and intuitive than probability theory for framing 
the opinion of experts.

Fuzzy logic consists of bringing the 
computational decision process closer to 
human decision-making, turning machines 
more capable of handling complex problems. 
This is done in such a way that the decision 
of a machine is coded not only a “yes” or “no”, 
but generating more nuanced responses such 
as “a little more” or “maybe” and many other 
types that represent decisions made by human 
beings. It is a way of inherently interconnecting 

analog processes that move across a continuous 
band to a computer, emphasizing the relative 
importance of alternatives and criteria with 
fuzzy instead of crisp numbers.

One of the main potentialities of fuzzy logic, 
when compared to other schemas that deal with 
inaccurate data such as neural networks, is that 
its knowledge bases, which are in the form of 
rules, are easy to examine and understand. This 
rule format also makes it easy to maintain and 
update the knowledge base.

A detailed review of the basic concepts of 
fuzzy sets and their integration using GIS can 
be found in Robinson (2003). The integration 
of fuzzy logic with GIS in a decision-making 
structure has been used for different purposes 
in environmental studies, including geotechnical 
disaster risk management (Machado et al. 2018), 
landscape analysis (França et al. 2014), analysis 
of environmental degradation in rivers (Lopes 
et al. 2016, Vidal et al. 2015), forest planning 
(Boyland et al. 2006, Diaz-Balteiro & Romero, 
2008), and more specifically, the modeling of the 
risk of forest fires (Güngöroğlu 2017, Mehta et al. 
2018, Semeraro et al. 2016, Sharma et al. 2012). 
Thus, many studies have been carried out using 
fuzzy logic integrated with GIS, demonstrating 
that the methods are robust and valid. However, 
none of these studies used fuzzy logic integrated 
with GIS to quantify fire risk in tropical forests in 
southeastern Brazil. 

In this study, the direct and indirect causes 
of fires at a landscape scale were considered, 
using a fuzzy decision making model in a GIS 
environment that is capable of predicting 
future fire threats as a function of biophysical 
and socioeconomic conditions. The presented 
method integrates a participatory decision-
making structure together with fuzzy logic to 
quantify the fire risk in an important remnant 
of Atlantic forest in the state of Espírito Santo, 
Brazil.
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MATERIALS AND METHODS
Study area
Recognised as a Natural Heritage Site in 1999 by 
The United Nations Educational, Scientific and 
Cultural Organization (UNESCO), the Vale Natural 
Reserve (Reserva Natural Vale - RNV) is one of 14 
centres of high diversity and endemism of plant 
and animal life in Brazil and one of the best 
protected conservation areas in South America 
(Gentry et al. 1997, Peixoto & Silva, 1997). With 
22 thousand hectares, it is the second largest 
reserve of the Mata dos Tabuleiros or Costal 
Zone (Hiléia Baiana) of the Espírito Santo state 
(Martin et al. 1993). It is located in the northern 
region of the state in the municipalities of 
Linhares, Sooretama and Jaguaré, between the 
geographical coordinates 18° 58’ and 19° 16’ 

S and 39°50’ and 40°7’ W (Figure 1). The area 
surrounding the reserve, which determines 
the range of monitoring and protection of the 
reserve performed by the park employees, is 
represented by a 3 km radius that extends the 
entire length of the reserve and a small part 
of the Biological Reserve (Reserva Biológica - 
REBIO) of Sooretama, which is bordered by 
federal Highway BR-101. The total study area 
encompasses 68,243 thousand hectares.

Model development
For this research, a specialist system model was 
employed to determine the areas of greatest 
risk of occurrence and spread of forest fire. The 
first step to achieve this is to identify relevant 
criteria. Five factors were considered: biological 
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Figure. 1. Location of the area of study. The RNV consists of four matrices: (a) Jaguaré, (b) Linhares, (c) Imbiribas 
and (d) Rancho Alto. The surrounding area includes a small part of the REBIO of Sooretama (e), which is bordered 
by federal Highway BR-101, which traverses the study area.
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factors (land use and occupation), physical 
factors (relief orientation and slope) and 
socioeconomic factors (proximity to roads and 
proximity to residences). The selected variables 
were determined according to the procedures 
described in the Supplementary Material - 
Supplementary Appendix.

Fuzzy logic was applied for the integration of 
the variables. This multi-criteria analysis can be 
used to aggregate precision in the mathematical 
model of classical sets with the inaccuracy of the 
real world. Classical set theory only identifies 
if an element belongs to a given set. Zadeh 
(1965) proposed a broader characterization that 
attributes a degree of pertinence, which can 
vary on a scale from 0 (element not belonging 
to the set) to 1 (element completely belonging 
to the set). Therefore, fuzzy logic is a form of 
managing uncertainties by the expression of 
terms with a degree of certainty in a numerical 
range [0,1]. Thus, a fuzzy relevance vector is also 
referred to as a possibility vector or a possibility 
distribution.

The central concept of fuzzy set theory is 
the function of association, which represents 
the degree to which an element belongs to a 
set. A fuzzy subset A of a universe of speech U is 
characterized by a function of association μA (x), 
as shown in equation (1).

[ ]1,0:)x( →UAµ  (1)

where μA (x) is the association of x in A; i.e. 
μA serves as the association function by which 
a fuzzy set A is defined (Bellman & Zadeh 1970). 
This function associates each x element of U 
with a number μA(x) in the interval [0,1]. This A 
fuzzy set can be formally written as:

( ) ( ) ( ){ }1 1 2 2 n nA x / x , x / x ,......x / xµ µ µ=  (2)

For all of A, μA(x) assumes the values 
between and including 0 and 1. All numbers 
within a percent error will have a membership 
factor of 1, and all the others a factor of 0 (Figure 
2a). For the precise case, the pertinence factor 
is 1 only for the exact number, being 0 for all 
the others (Figure 2b). When a number is more 
a member of a set than another it is possible to 
express the pertinence factor through several 
types of fuzzy pertinence functions. Several 
methods can be used to determine membership 
values, depending on the amount of information 
available a priori. For example, to express the 
idea that a temperature has its value around 25, 
a triangular pertinence function (Figure 2c), with 
the peak at 25, can be used to suggest the idea 
that the closer the number to 25, the more it 
identifies with the concept represented.

In this sense, in the computer program 
ArcGIS/ArcINFO 10.2, for each fuzzy set that was 
represented by the matrix image of the input 
variable, a function of pertinence that best 

Figure 2. Pertinence 
functions (Gomide & 
Gudwin 1994).
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described the influence of each variable on 
forest fire risk was defined. The greatest risk of 
fire was indicated when the value of the variable 
was 1, and the risk was null when the value of 
the variable was 0.

The variable land use and occupation was 
classified in relation to the influence of each 
class on the risk of forest fire, as it is a discrete 
variable, and applied to the fuzzy Gaussian 
pertinence function. The value assigned to each 
class in the matrix image was defined according 
to the type and characteristics of the vegetation, 
such as composition, stage of development 
and type of management, or by the use of the 
natural resources in the region. The opinions 
of researchers and environmentalists were 
considered for selecting the value of the mapped 
class (Table I).

The fuzzy Gaussian function (Eq. 3) defines 
a Gaussian or normal distribution around a 
midpoint indicated with a slope value of the 
curve, which may range from 0.01 to 1. The 
reclassified variable with values from 0 to 21 had 
a median point value of 11 and a slope of 0.05 
(adjusted) in the function (Figure 3a).

( ) ( ){ }2µ σ= − −A x exp x a  (3)

where σ  is the parameter that determines 
the slope of the curve, x is the land use and 
occupation class in the matrix image and a 
corresponds to the value at the midpoint, which 
defines the central point for the function, in 
which μA(x) is 1.

To represent the influence of the proximity 
to roads with regards to fire risk, the variable 
was modelled as a function of the fuzzy small 
pertinence function (Eq. 4). This function 
represents the variation in the degree of 
relevance of the matrix image with smaller input 
values, which are more likely to be a member 
of the set and assume a value of 1. The value 
defined at the midpoint gives a degree of 
pertinence of 0.5 in the function with a degree 
of propagation of the curve from 1 to 10, which 
determines the shape and characteristic of the 
transition zone.

( ) ( ){ } 1/1 /µ = + b
A x x c  (4)

where x is the value of distance (meters) to the 
roads in the matrix image, b is the parameter 
that determines the slope of the curve and c 
corresponds to the value at the midpoint, 
defining the centre point for the function at 
which μA(x) is 0.5.

Table I. Land use and occupation classes reclassified as a function of the potential for risk of forest fires.

Class of land use and 
occupation Reclassified value Class of land use and 

occupation Reclassified value

Water course 0 Native grasslands 11

Primary forest / Riparian 
forest 1 Pasture 13

Mussununga forest 3 Forestry 15

Sand extraction 5 Oil extraction 17

Area under regeneration 7 Periodically flooded area 19

Agricultural cultivation 9 Marsh and swamp forest / 
urban area 21
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The input values in the function for the 
variable were defined according to Rodríguez-
Silva et al. (2010) and Soto (2012) to obtain 
a parameter for the occurrence of forest fires 
based on the distance to various types of roads. 
According to the characteristics of the roads 
and how they are presented in the study area, 
a distance of 300 m for the road network was 
defined at the midpoint and a curve slope value 
of 3 (adjusted) was defined in the function; thus, 
shorter distances assumed a greater degree of 
pertinence in the fuzzy set (Figure 3b).

The slope was best described by the 
fuzzy large pertinence function (Eq. 5), which 
represents the variation in the degree of 
pertinence of the matrix image with higher input 

values, which are most likely to be a member 
of the set and assume a value of 1. The value 
defined at the midpoint provides a degree of 
pertinence of 0.5 in the function with a degree 
of propagation for the curve from 1 to 10, which 
determines the shape and characteristic of the 
transition zone.

( ) ( ){ }1/1 /µ −= + d
A x x e  (5)

where x is the value of slope (degrees) in the 
matrix image; d is the parameter that determines 
the slope of the curve and e corresponds to the 
value at the midpoint, which defines the centre 
point for the function at which μA(x) is 0.5.

The input values for the slope variable in 
the function were defined by a literature review 
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Figure 3. Diagrams of the 
fuzzy pertinence functions. 
(a) Land use and occupation - 
fuzzy Gaussian; (b) Proximity 
(meters) to roads - fuzzy 
small; (c) Slope (degrees) 
- fuzzy large; (d) Relief 
orientation (degrees) - fuzzy 
generalised bell; (e) Proximity 
(meters) to residences - fuzzy 
linear.
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of studies on fire behaviour as a function of the 
increase in slope (Chandler et al. 1983, Luke & 
McArthur 1978), considering a slope value of 15° 
at the midpoint and a propagation value of 3 
(adjusted) in the function for a greater control 
of the slope of the curve (Figure 3c).

The relief orientation was modelled by the 
fuzzy generalised bell pertinence function (Eq. 6), 
which defines a bell-shaped distribution around 
a midpoint that is indicated with a propagation 
value in the function and a value to control the 
amplitude at the midpoint. The value defined 
in the midpoint of the set assumes a degree of 
pertinence of 1. Values that fall between the two 
limits are observed in the transition zone of the 
set and assume a degree of pertinence of equal 
value.

( ) ( ){ }2
1/1 /µ  = + − 

h
A x x g f  (6)

where x is the relief orientation value (degrees) 
in the matrix image; f is the parameter that 
determines the slope of the curve; g corresponds 
to the value at the midpoint, which defines the 
centre point for the function at which μA(x) is 
1; and h controls the amplitude at the central 
point.

The influence of the relief orientation on 
the risk of fires was programmed in the language 
Python in ArcGis/ArcInfo 10.2, in which the 
northern face (O° and 360°) has the highest risk 
and the southern face (180°) has the lowest risk 
(supplementary material 2). For intermediate 
aspects, the fuzzy generalised bell was utilised. 
The slope of the curve was adjusted to 45°, and 
a value of 1 was used for amplitude control of 
the central point (Figure 3d).

The variable proximity to residences was 
modelled by the fuzzy linear pertinence function, 
in which the largest euclidean distance was 
considered for the minimum value in the fuzzy 
set and the shortest distance for the maximum 
value. The minimum value produces a degree of 

pertinence of 0 (min μA(x) = 0), and the maximum 
value is assigned a pertinence of 1 (max μA(x) = 1) 
for ∈x U  (Figure 3e). This means that A is in the 
fuzzy set, based on the proximity to residences x 
in a continuous universe of discourse U.

Fuzzy overlay

In modelling fire risk in a GIS environment, the 
variables that influence the onset and spread 
of fire should be combined by an overlap 
analysis to indicate the potential of a cell of the 
matrix image for one variable to be a member 
of each fuzzy set of the remaining variables 
by multiple input criteria. Thus, the type of 
overlap indicates the method that enables the 
data to be combined based on an analysis of 
the set theory, and not simply combined using 
a subjective importance ranking. The overlay 
method selected for the matrix image input was 
the fuzzy gamma operator, which is an algebraic 
product of the fuzzy sum operator and the fuzzy 
product operator; both operators are raised to 
the power of the gamma coefficient (Eq. 7).

( ) ( )
1

1 1

1 1 *
δ δ

µ µ µ
−

= =

   
= − −   
   

∏ ∏
n n

A i i
i i

x  (7)

where μi represents the fuzzy association values 
for i=1, 2, ..., 5; n corresponds to the raster data 
layer, i.e., the number of variables in the study; 
and δ  is the coefficient with values between 0 
and 1.

The coefficient δ  was defined by the 
standard value of 0.9 to achieve the combined 
effect between the total and the gamma product. 
The fuzzy gamma enables the increasing effect 
of the fuzzy sum and the decreasing effect of the 
fuzzy product to be combined. It establishes the 
relationships among the various input criteria 
and does not simply return the value of a single 
fuzzy set. 
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The Jenks natural breaks classification was 
used to discriminate different levels of fire 
risk, both to minimize each mean deviation of 
the class (Jenks, 1967) and to determine the 
best arrangement of values of fire risk in three 
different classes: low, medium and high.

Measuring the neighbourhood effects by 
spatial autocorrelation
Statistical analysis of spatial correlation was 
used to measure the neighbourhood effects 
of the locations of high-risk of forest fires 
in the study area and the corresponding 
land use and occupation class. Given a set of 
characteristics and an associated attribute, a 
spatial autocorrelation tool evaluates whether 
the distribution of the attribute is clustered, 
dispersed or random. A positive spatial 
autocorrelation exists if the occurrence of one 
spatial phenomenon event tends to attract 
similar events in its neighbourhood, which 
usually produces a group distribution pattern. If 
the occurrence of a spatial phenomenon event 
tends to prevent these events from occurring in 
the immediate vicinity, it produces a dispersed 
distribution pattern, and the phenomenon 
exhibits a negative spatial correlation. Neither 
of the two extreme types may dominate the 
distribution, which produces a pattern of 
relative random distribution. In this case, the 
spatial correlation is not significant.

Moran’s “I” coefficient (Moran 1948 – 
Equation 8) was adopted to evaluate the 
neighbourhood effects.

( )
2

W X X (X )NI
W (X )

∑∑ − −
=
∑∑ ∑ −

ij i j

ij i

x
x

 (8)

where N is the number of geographical units, Xi is 
the observed value of the variable X for the unit 
i, and Wij are the elements of the normalised 
matrix of spatial proximity. According to Cliff 
and Ord (1981), the expected value of Moran’s “I” 

under the assumption that the random variable 
X is normally distributed is given by Eq. 9:

( ) ( )/ 1= −E I I N  (9)

The expected value is always negative and 
approaches zero as the number of polygons 
tends towards infinity. The variance is given by 
Eq. 10:

( ) ( )
2 2

1 2
2 2

3( )
( ) 1
− + ∑∑

=
∑∑ −

ij

ij

N S NS W
VAR I

W N
 (10)

where

( ) 2
1 1/ 2 ( )= ∑∑ +ij jiS W W  and 2

2 ( )= ∑ ∑ +∑ij jiS W W  

The normal standard deviation Z, which is 
based on the mean and variance of Moran’s 
“I”, is suitable for significance tests of spatial 
correlation (Eq. 11).

( ) / = −  IZ I E I d  (11)

where di indicates the standard deviation of I.

Model validation
Many areas of the world frequently affected by 
fires do not have reliable spatially explicit long-
term records of fire occurrence. Global satellite 
systems are a major source of information 
for these data-poor regions. To evaluate the 
accuracy of the proposed fire risk model, were 
used a database of hotspots from the satellites 
for fire monitoring in the landscape under the 
supervision of the National Institute for Space 
Research (INPE 2019). Database of hotspots 
from 2001 to 2014 were used to evaluate the 
frequencies of hotspots in the different risk 
classes. Due to the dynamic and temporal nature 
of fire events, this undertaking is considered the 
starting point for understanding the predictive 
capacity of the fire risk map.

In this context, the extract values to point 
function was applied to determine the number 
of hotspots in each fire risk class. To analyse the 
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possible differences between the observed and 
expected frequencies in the number of hotspots 
and the percentage of area corresponding 
to each fire risk class, the nonparametric 
hypothesis test chi-square (X2) was used (Eq. 12).

( )2

2

,

χ
−

=∑ ij ij

i j ij

O E
E

 (12)

where Oij is the observed frequency for each 
class, and Eij is the expected frequency for each 
class.

RESULTS

The main factor that affects the propagation 
of a forest fire is the type and characteristics 
of vegetation, which represent the amount of 
fuel available for a fire. The results of this study 
indicated that water courses comprise the class 
of lowest fire hazard (0.0024), as they are natural 
barriers against fire (Fig. 4). The natural forest 
and urban area represent a low risk of fire; for 
this reason, a value of 0.0067 in the fuzzy set is 
assumed. Equally insignificant to the risk of fire, 
the class of Mussununga forest and areas with 

periodic flooding assumed a risk value of 0.04, 
whereas sand and oil extraction sites presented 
a value of 0.16. Forest plantations and natural 
forest regeneration areas assumed a value 
of 0.44 in the fuzzy set, and the agricultural 
crops and pastures assumed a high risk with 
a value of 0.81, a function of the use of fire in 
soil preparation and renewal of pasture. Native 
grasslands was considered to have the highest 
risk of fire, with a value of 1.

Considering proximity to roads, the 
concentration of the risk of fire values, as shown 
in Fig. 5a, primarily corresponds to areas at the 
wildland - urban interface. As a result of this 
grouping value, the areas of risk are considerably 
larger than in more distant areas (Fig. 5b). In the 
fuzzy set, 45.72% or 3119977 pixels were found 
to be 0.91 and 1, which indicates that the study 
area represents a high risk of fire for the variable 
proximity to roads.

The increased risk of fire determined by the 
slope was restricted to areas surrounding the 
reserve (Fig. 5c), with the highest value of the set 
presenting lower pixel frequencies (Fig. 5d). The 
highest concentration of pixels was observed for 
the lowest values, with 49.39% or 2775926 pixels 

0 5 102,5 kmÜ
Universal Transverse Mercator Projection

Ellipsoid: Sirgas 2000
Zone 24 S

Fuzzy value [0,1]
Use and occupation of land

0.0024
0.0067
0.0408
0.1653
0.4493
0.8187
1

Figure 4. Effect of the fuzzy 
Gaussian function on fire risk 
probability in different land use 
and occupation classes. Lower 
values in the set are primarily 
represented by natural forests, 
and higher values are primarily 
represented by the pastures, 
monocultures and native 
grasslands.
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exhibiting a fuzzy value in the range of 0 – 0.2, 
which indicates that the study area presents a 
risk of fire that ranges from medium to low for 
this variable. In this case, the slope of the terrain 
exerts a minimal influence on the intensity and 
the direction of fire propagation.

For the relief orientation, the values 
presented in the histogram (Fig. 5f) showed the 
highest pixel concentration for the lower values 
of the set, with 73.57% of the pixels in the fuzzy 
value range of 0 – 0.3. Although the study area 
presents a low fire risk, which is associated 
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for proximity to 
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with the surfaces with low exposure to solar 
radiation, the results indicate that the highest 
values in the fuzzy set, in the class of greatest 
risk (0.91 – 1), correspond to 13.77% of the 
pixels, which are primarily associated with the 
north face. Therefore, knowledge of the relief 
orientation in the forest landscape is important 
for establishing management plans for areas 
that are at risk of fire.

The proximity to residences is important 
in the distribution of forest fires. The modelled 
risk of fire by the variable revealed an increased 
risk within the limits of the reserve (Fig. 5g). 
The grouping of values in the fuzzy set, which 
were showed by a histogram (Fig. 5h), indicated 
that the highest values in the set (0.71 – 1.0) 
represented 69.31% of the pixels. Thus, the 
results indicate that the variable proximity to 
residences is the main factor that influences 
the risk of forest fires in the study area by the 
distance from the wildland - urban interface.

Risk of forest fire
The risk of forest fire determined by the 
combination of variables presented areas of 
greatest risk, especially at the wildland - urban 
interface (Fig. 6a). Medium-risk areas surround 
the reserve and are conditioned by the land use 
and occupation, and internal roads. The lowest 
risk is represented by the natural Tabuleiro 
forest areas, where human access is managed 
or relatively limited. Locations of medium 
risk and low risk predominate with 38.33 and 
33.12%, respectively (Fig. 6b). Although high risk 
areas have the lowest percentage (28.55%), a 
significant area is under risk (19,429 ha).

The main regions at high risk are occupied 
by agricultural cultivation (6,408.55 ha), forestry 
(5,063.06 ha) and pasture (5,051.37 ha). Note 
that the natural forest of the reserve is under 
threat from fire in the native grasslands (1,503.57 
ha), primary forest (148.64 ha) and Mussununga 
forest (139.54 ha), as shown in Table II.

The spatial autocorrelation of the high-
risk of forest fire areas indicates a distribution 
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pattern in clusters relative to the classes of land 
use and occupation, as observed in Table III. The 
risk of fire is positively spatially autocorrelated, 
i.e., in adjacent areas of high risk, there is 
potential for increased risk of fire. An important 
implication of the results found in this study 
is that a spatial dependence term to represent 
the neighbourhood effects is needed to better 
represent the risk of forest fire.

Model validation
A high number of hotspots were observed in the 
high-risk class from the years 2001 to 2014. The 
percentage of hits from the total of hotspots 
observed in medium and high risk areas is 78%. 
The best performances were observed in the 
years 2005, 2011, 2012 and 2014, with 100% of hits 
(Fig. 7). 

The X2 test showed that there are no 
divergences between the observed and expected 
frequencies in relation to the evaluated 
parameters (Table IV). Therefore, the results 
were quite proficient in describing the potential 
delineation of fire risk zones in the study area.

DISCUSSION

In investigating forest fires, the type of vegetation 
and the differences that can cause changes in 
the development of fires should be considered. 
Goldammer (1982) suggested that the natural 
forest, particularly in moist areas or valleys, 
works as a natural barrier against fire. Studies 
by Uhl et al. (1990) in the region of Paragominas, 
Pará, Brazil, affirmed that protected forests of 
the humid tropics are not typically at risk of fire, 
as they preserve high moisture levels. However, 
in the surrounding grasslands that are employed 
for cattle pasture, the maximum air temperature 
may be 10 °C higher than the temperature inside 
the forest, and the relative humidity decreases 
from 86 to 51%, which significantly increases the 
incidence and propagation speed of fire.

An important activity for forest management 
in the area is to prevent the edges of production 
forest stands from directly contacting areas of 

Table II. Main areas of high risk for the land use and 
occupation classes in the study area. 

Land use and 
occupation 

class
Total 

area (ha)
Area of high 

risk (ha) %

Agricultural 
cultivation 7,974.34 6,408.55 80.36

Forestry 7,091.82 5,063.06 71.39

Pasture 8,302.73 5,051.37 60.84

Native 
grasslands 3,846.14 1,503.57 39.09

Regeneration 1,223.28 800.08 65.40

Periodically 
flooded area 5,840.28 197.51 3.38

Primary forest 25,387.32 148.64 0.59

Mussununga 
forest 2,186.21 139.54 6.38

Total 61,852.12 19,312.32 -

Table III. Spatial autocorrelation of the high fire risk 
in the study area and class corresponding of land use 
and occupation.

Global Moran’s I Summary

Moran’s Index 0.426001

Expected Index -0.000291

Variance 0.000904

Z-score 14.178807

p-value < 0.001
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adjacent pastures or the edges of roads that 
are usually dominated by grasses, which are 
highly susceptible to fire. This mitigation can be 
achieved by ensuring that the edges of forest 
stands are always protected by permanent 
corridors composed of fire resistant tree species. 
These permanent corridors not only improve the 
appearance of the landscape but also protect 
and prevent the spread of fire, as they always 
maintain a greater amount of moisture in their 
understory.

The role played by the Vale Natural Reserve 
for the conservation of tropical forests goes 
far beyond its territorial extension. It assumes 
the role of the greatest centers of diversity of 
species of the Atlantic Forest (Thomaz 2010), 
favored by the great diversity of environments 
in which this tropical forest developed (Lima & 
Capobianco 1997).

One of the most intriguing feature of 
Atlantic Forests is the presence of large forest-
grassland ecotone areas. According to De 
Oliveira & Passacantili (2010), two hypotheses 
were proposed to explain this occurrence, 
which occurs also in other brazilian ecosystems: 
natural origin of the grasslands and anthropic 
origin. The hypothesis of the anthropic origin of 

the grasslands permeated the brazilian scientific 
literature from the twentieth century. For Pillar 
(2003), which defends the anthropic hypothesis, 
the use of fire and land use for pasture are the 
main factors for the occurrence or at least for the 
maintenance of the ecotone forest-grassland in 
the Atlantic Forest domain.

A small factor analyzed in relation to the 
problem of the origin of the savanna islands, 
within forest areas, is the intensity and frequency 
of fires as determinants of vegetation type. In 
an analysis of charred particles, De Oliveira 
& Passacantili (2010) evaluated the impact of 
fires on the possible expansion of the grassland 
vegetation in the study area. According to the 
authors, the results indicate that, in recent 
times, fire had a large impact on the reserve, 
and although it is not the main and determinant 
factor of the grassland vegetation studied; it 
can contribute to the process of ecological 
succession and slow the forest regeneration.

This study also showed that tropical 
rainforests of the Atlantic Forest region, despite 
its location being in one the most humid areas 
of Brazil, where the average annual rainfall 
exceeds 1500 mm, suffer sporadically with fire. 
According to Hammond (2006), humid forest 

0

20

40

60

80

100

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

%
 O

F 
H

IT
S

YEARS

Medium and High Risk

Figure 7. Percentage 
of hits from the total 
of hotspots observed 
in the medium and 
high risk classes from 
2001 to 2014.



RONIE S JUVANHOL et al. MODELLING FOREST FIRE WITH FUZZY LOGIC AND GIS

An Acad Bras Cienc (2021) 93(Suppl. 3) e20190726 14 | 18 

frequently suffer with fire in the Guianas due 
to human impacts. Carcaillet et al. (2002) report 
that in the last 2000 years, in the Amazonia, fires 
were also present in the paleoenvironmental 
record associated with anthropic influence. 
The occurrence of anthropogenic forest fires in 
humid Amazonia, observed in forests by Nelson 
(1994), Nelson and Irmão (1998), suggests that 
without human presence, forest regions would 
hardly be naturally burned. Most Amazon forests 
are not expected to burn unless they are first 
cut and allowed to dry out, because of the high 
water content of the biomass and dampness of 
the litter layer. More recent studies in temperate 
forests have found similar results in large areas 
that transform from forest to shorter-statured 
or open-canopy vegetation under altered fire 
regimes in the face of climatic and land-use 
change (Paritsis et al. 2015, Tepley et al. 2016).

Mapping fire risk is critical for ecosystem 
management, including restoration efforts. The 
results of this study provide a contribution to the 
understanding of fire ecology in South America 
and in subtropical forests in general. The main 

causes of fires in the reserve are related to 
criminal activity that is associated with the 
threat of local fauna hunting. Rural property, 
human accessibility and population density 
were important determinants of the spatial 
location of fires, where locations close to roads 
(<150 m) were generally associated with a higher 
incidence of fire. There is a strong relationship 
between points of fire ignition and places of 
greatest risk in wildland - urban interface. 

The influence of roads on the spatial 
distribution of risk of fire presented similar 
values in the studies by Rodríguez-Silva et 
al. (2010) for the frequency of fire at different 
distances from roads for different road types. 
Soto (2012) also observed that the risk of fire 
does not follow a uniform spatial distribution in 
the trajectory for each type of road network, as 
the results attributed to the concentration of fire 
consider additional factors, such as population 
centres and agricultural and forestry activities 
in the area of direct influence. These arguments 
highlight the importance of effective monitoring 
in areas surrounding roads and along the entire 

Table IV. Observed and expected frequencies in the number of hotspots and the percentage of area corresponding 
to each fire risk class by the X2 test.

Risk class Observed 
hotspots

Expected 
hotspots

% area for each risk class 
observed

% area for 
each risk class 

expected
Total observed

Low 20 26.2323 33 26.7677 53

Medium 37 37.1212 38 37.8788 75

High 41 34.6465 29 35.3535 70

X2 parcials

Risk class Hotspots % area for each risk X2 value X2 tabulated (p<0.05, DF= 2)

Low 1.4807 1.4511 5.2395ns 5.991

Medium 0.0004 0.0004

High 1.1651 1.1418
ns: not significant.
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length of BR-101 due to the intense flow of 
vehicles and proximity to the reserve.

For protection plans, controlled burning in a 
region of great potential fire risk can be applied 
to minimise fire potential in the area and reduce 
the likelihood of fire in adjacent areas due to 
neighbourhood effects.

Changes in behaviour and lifestyle (e.g., 
increased recreational activity and urbanization 
in forest areas) are the main factors that drive 
the distribution of people in forest areas and 
the increase in fire events (Badia-Perpinyà & 
Pallares-Barbera 2006, Mundo et al. 2013, Paritsis 
et al. 2013). These alterations indicate a potential 
change in the nature of fire risk in the study 
area due to the urbanization of rural areas. The 
results of the predictive model indicate a strong 
relationship between points of fire ignition 
and proximity to urban areas. These results 
provide new insight into the spatial distribution 
of human-caused fires, as the human factors 
have received little attention in quantitative risk 
analysis. According to Rindfuss et al. (2004), the 
reasons for this lack of attention are diverse, 
but one of the most important is the difficulty in 
integrating socioeconomic and biophysical data 
for spatial analysis.

The proposed fuzzy logic approach 
demonstrates the predictive ability of the 
forest fire risk map given the highly dynamic 
and spatial nature of fires. The observed and 
expected frequencies of hotspots in the risk 
classes showed that the fuzzy model is suitable 
for determining a risk area by Chi-square test. 
When fire-fighting agency data are present and 
reliable, a brute-force analysis can be used 
to verify the best function of pertinence and 
degrees of pertinence.

The spatial modell ing approaches 
employed here provide useful tools to integrate 
socioeconomic and biophysical data, not only 
to analyse characteristics of fire risk, but also 

to explain the patterns of distribution fire risk. 
The results indicate the need for control plans 
and the allocation of resources for protection 
measures, as well as mitigation of major damage 
and the effects caused by fire in interface areas. 
In natural forests with a predicted high risk, 
measures such as inspection by motorized 
patrols, allocation of combat resources at 
strategic points, construction of preventive 
firebreaks and road construction for rapid 
access to risk sites are important protective 
mechanisms that will aid firefighting.

Finally, it is possible to infer that rapid 
protocols can be developed and expanded to 
include the representation of local population 
in assessing the forest sustainability. Although 
these specific results are not expected to be 
extended to other regions, fuzzy modelling of the 
risk of forest fire can be applied in other areas 
with sufficient information about the factors 
that can influence in the forest fires events.

CONCLUSIONS

The results reveal an efficient model for 
estimating the risk of fire; fuzzy modelling 
efficiently analysed the influence of different 
variables on the risk of fire in the study area. 
The method can be employed to evaluate the 
possible changes in the risk of fire occurrence in 
response to any type of proposed treatment and 
changes to the landscape. The forest fire risk 
model can be expanded to include additional 
variables that are relevant to the start and 
spread of fire. The proposed methodology can be 
adapted to areas of other countries. When these 
data are available, the same model construction 
process can be performed and a more accurate 
distribution of the risk of fire can be obtained. 
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