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Abstract: To better understand the dispersion strategies of Triatoma infestans (Klug) 
(Hemiptera: Reduviidae, Triatominae), we evaluated the spatial effect of infested 
peridomicile and density vegetation cover in a historically endemic area for Chagas 
disease. The study was conducted in rural houses of the northwest of Córdoba province, 
Argentine, during 2012-2013. Active search of triatomines were made in domicile and 
peridomicile habitats. To characterize vegetation coverage, a thematic map was obtained 
considering fi ve types of vegetation cover (closed/open forest, closed/open shrubland 
and cultural land). From each house we extracted the area of vegetation coverage, 
housing density and infested peridomiciles density. We used generalized linear models 
to evaluate the effect of these variables on the occurrence of infested peridomicile. 
According to our results, the probability of a peridomicile to be infested increases by 
1.34 (95%CI [0.98; 1.90]) times more when peridomicile structures are in environments 
with higher housing density and by 1.25 (95%CI [0.84; 1.88]) more times when houses 
are surrounded by open shrublands. Among the multiple ecological determinants of 
peridomestic infestation, the infl uence of vegetation cover has been poorly studied. 
In this study we discussed the effect of the vegetation as a potential modulator of the 
dispersion strategies of T. infestans.
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INTRODUCTION

Chagas is one of the most important endemic 
diseases in Latin America. It is caused by 
the protozoan Trypanosoma cruzi, which is 
transmitted to humans and other mammals 
mainly via blood-sucking insects from the 
Reduviidae family, Triatominae subfamily (OMS 
2007).

In South America, Triatoma infestans is the 
vector of greatest epidemiological importance, 
characterized by its high adaptive capacity 
to human dwellings (Rabinovich 1972, Lent 
& Wygodzinsky 1979). They are found almost 

exclusively in domestic environments and 
peridomestic habitats such as chicken coops, 
goat pens, pig corrals and storerooms, which 
show optimum conditions for the establishment 
of colonies (OMS 2007). 

The Southern Cone Initiative to Control Chagas 
Disease (INCOSUR), launched in 1991, succeeded 
in reducing the distribution area of T. infestans to 
less than 1 million km2 through insecticide-based 
vector control, health education and house 
improvement program (Schofield et al. 2006). 
 The interruption of vector transmission of T. cruzi 
was achieved in Uruguay (2012), Chile (1999), two 
Departments of Bolivia (2011 – 2013), eastern 



MIRIAM CARDOZO et al.	 EFFECT OF VEGETATION ON TRIATOMINE INFESTATION

An Acad Bras Cienc (2021) 93(4)  e20191178  2 | 10 

region of Paraguay (2008) and Alto Paraguay 
(2013) as well as in eight provinces of Argentina 
between 2001 and 2013 (PAHO 2012).

Nevertheless, in arid Gran Chaco areas of 
Argentina, Paraguay and Bolivia, reinfestations 
of human dwellings continue to occur in several 
provinces or departments (Gürtler 2009). 
Many authors agree that the persistence of 
triatomine infestation in the Chaco region is 
due to the difficulty of eliminating the vector 
population in peridomestic habitats (Cecere 
et al. 1997). After the residual application of 
pyrethroid insecticides, chicken coops, goat 
pens, pig corrals and other potential habitat in 
the peridomicile are the first to be recolonized 
(Canale et al. 2000), because their complex 
structure not only prevent good penetration 
of insecticides (Gürtler 2009) but also provide 
optimal conditions for sustaining near domiciles 
abundant triatomines population (Cecere et al. 
2006). Hence, the active dispersal of T. infestans 
(flying and walking) plays an important role in 
the local propagation of triatomines within and 
between neighboring households (Vazquez-
Prokopec et al. 2004, Abrahan et al. 2011). 

Several studies conducted in semiarid 
regions of Argentina determine that at local 
scales, the spatial patterns of reinfestation 
of peridomicile and domicile habitats are 
determined by flight dispersal capacity, local 
abundance of triatomines and hosts, the spatial 
configuration of households and vegetation 
cover (Vazquez-Prokopec et al. 2004, McGwire et 
al. 2006, Abrahan et al. 2011). However, little is 
known about how vegetation cover surrounding 
houses affect the spatial distribution of 
infestations. Some authors mentioned that 
dense vegetation cover and high trees may act 
as a barrier for triatomine dispersal (Vazquez 
Prokopec et al. 2004). 

The northwest region of Córdoba Province, 
located in the south of the Gran Chaco region of 

Argentina, shows a heterogeneous scenario of 
T. cruzi transmission related with differences in 
vector control interventions, land use changes 
and socioeconomic factors in the last decades 
(Moreno et al. 2010, 2012). Previous reports on 
the area (Crocco et al. 2019), showed a high 
peridomiciliar infestation, strongly associated 
with the presence of chicken coops. This 
peridomestic habitat is the most frequent in 
the area and the most vulnerable to infestation 
because the materials of construction (sticks, 
wood, or cardboard) provide excellent refuge sites 
for triatomines. Soria et al. (2019) report within 
the same area a high percentage of combined 
blood meals (goat, chicken, dog and human) 
on feeding profiles of T. infestans collected in 
peridomicile. This record does not seem to be 
related to host-feeding source choice nor to the 
main host residing in the peridomicile, since 
most of the triatomines that recorded mixed 
blood ingestion were found in peridomiciles 
with only one type of host present. Hence, 
this study evidence a high dispersion of adult 
T. infestans between peridomiciles in natural 
conditions, which reinforces the importance of 
better understanding how environmental and 
spatial factors may modulate the dispersal 
strategy of triatomines.

The aim of our study was to evaluate the 
spatial effect of peridomestic infestation 
and density vegetation cover in a historically 
endemic area for Chagas disease, in order to add 
understanding on the dynamics of dispersion of 
T. infestans. We hypothesize that the density of 
the vegetation cover influences the dispersion 
of triatomines between nearby peridomicile 
by facilitating or preventing the transmission 
of physical and chemical signals from the 
peridomiciliary area.  Infrared radiation, thermal 
signals emitted by domestic hosts as well as the 
mixture of odor cues and lights can be perceived 
in a range of meters by T. infestans, and may 
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influence the appetitive searching and long-
range orientation (Guerensten & Lazzari 2009, 
Catalá 2011).

MATERIALS AND METHODS
Study area
The field work was conducted in six rural 
communities of Cruz del Eje and Ischilín 
departments, at northwest Cordoba province, 
Argentina, between latitudes -30° and -31° S and 
longitudes -64° and -65° O (Figure 1a-b). This 
region belongs to the Chaco phytogeographical 
province (Cabrera 1976), characterized by a 
subtropical dry climate with a summer season 
from October to March. The average monthly 
temperature is 26 °C, with absolute maximum 
temperatures that exceed 45 °C (Karlin et al. 2013).

Entomological data
The study was carried out in sixty-six rural 
houses that were visited between December 
2012 - November 2013 and were georeferenced 

in the field using GPS (Garmin Etrex 20). The 
communities and the houses visited were 
selected according to the recommendations of 
the National and Provincial Program of Chagas. 
The last insecticide spraying campaign by vector 
control personnel was carried out in these 
communities three years before this study. 

The man-hour technique was carried out 
in domicile and peridomicile -chicken coops, 
goat and pig corrals- for the active search of 
triatomines (Chuit et al. 1992). The captured 
triatomines were identified taxonomically 
according to the identification keys of Lent & 
Wygodzinsky (1979) and Brewer et al. (1983). 

Estimation of vegetation cover and spatial 
variables 
To identify the landscape coverage classes, it 
was used a Landsat 8 image generated by the 
OLI sensor, corresponding to scene 230-81, with 
an acquisition date of May 8, 2013, provided 
by the US Geological Survey (USGS) (http://
earthexplorer.usgs.gov/). The vegetation cover 

Figure 1. a) 
Location of the 
study area in the 
extreme south of 
the Gran Chaco 
region (shaded 
area). b) Location 
of rural houses 
evaluated in the 
six communities 
of Cruz del Eje 
and Ischilín 
departments, 
Córdoba 
province, 
Argentina.
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was characterized by obtaining a thematic 
map by supervised classification (maximum 
likelihood method) of the image. Subsequently, 
five types of coverage were defined: closed forest, 
open forest, open shrubland, closed shrubland 
and cultural land (comprising agricultural lands 
and small towns). Coverage classes were defined 
based on training sites that were registered in 
the field and considering the units defined by 
Cabido & Zak (1999) and Hoyos et al. (2013). To 
check the accuracy of the classification obtained, 
the confusion matrix method was used. The ENVI 
5.1 software (Environment for Visualizing Images, 
Research Systems, 2013) was used for the pre-
processing and processing of the images. 

On the thematic map, a circular area with a 
radius of 200 meters was generated around each 
house, from which the class area (Ha.) of each 
kind of coverage was extracted. The Fragstat 4.2 
software (McGarigal et al. 2012) was used for 
extracting the class metrics.

For each rural house, additional variables 
were calculated in order to characterize the 
spatial dependence of infested peridomiciles: 
housing density (HD) in an area of 200 m 
radius (number of houses / Ha.) and infested 
peridomiciles density (IPD) in an area of 200 m 
radius (number of infested peridomiciles / Ha.).

Statistical analysis
Spatial heterogeneity of infested peridomiciles 
between rural communities was measured using 
SaTScan software v9.6 (Kulldorff 1997). We use 
spatial analyses with a Poisson model to detect 
clusters of significant high and low infestation 
within a maximum circular size equal to 50% of 
the entire area. 

To evaluate the effect of spatial dependence 
variables (HD and IPD) and vegetation cover 
variables on the occurrence of infested 
peridomiciles (binary variable) we used 
generalized linear models (GLM) with binomial 

error distribution, and logit link function. In 
order to avoid collinearity, correlation analyses 
among explanatory variables were performed to 
make a selection. 

We hypothesized that rural peridomiciles 
spatially located in environments with high 
density of housing and higher density of positive 
peridomiciles around will be more likely to be 
infested. In addition, since density vegetation 
cover was mentioned as a possible modulator 
of dispersion, it would be expected that houses 
surrounded by less dense vegetation cover (like 
open shrublands) will have more chances of 
peridomicile infestation than others surrounded 
by dense and higher vegetation.

The set of candidate models considered 
the individual effects of each predictor on 
the response variable as well as joint models 
evaluating the additive effects of the possible 
combinations. The best model was selected 
following Akaike’s information criterion (AICc), 
using the function aictab of the package 
AICmodavg in the R software version 3.4.3. 
Multicollinearity between the variables included 
in each developed model were also tested with 
the variance inflation factor (VIF) (Zuur et al. 
2007). The effect-size estimates for each variable 
was averaged, using the modavg function from 
the package AICmodavg in the R software version 
3.4.3, for all coefficients included in models that 
showed a difference in AIC values ≤ 2 with the 
model that showed the lowest AIC. The odd 
ratios for the binomial GLM were calculated 
for each predictor using the exponential 
transformation of the estimated coefficient 
(Zuur et al. 2009). Finally, the relative importance 
of the explanatory variables was determined by 
summing the weights/probabilities (aiccwt) of 
the models in which each predictor appears 
(Calcagno 2013).
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RESULTS
Entomological data
From the total of houses visited during the study, 
43.9 % (29) were infested only in peridomestic 
habitats and 1.5 % (1) was infested in both 
ecotopes (domestic and peridomestic habitats). 
A total number of 633 triatomines were collected 
during the active search, including 451 nymphs 
and 182 adults of T. infestans recorded in 
peridomestic habitat mostly in chicken coops 
and less frequently in goat pens. Table I report 
the values obtained. 

Estimation of vegetation cover and spatial 
variables 
The thematic map obtained from Landsat 8 
image with supervised classification is displayed 
in Figure 2a-b. The classification of the satellite 
image to obtain the thematic map had an 
accuracy of 93 % and a kappa value of 0.92, 
according to the confusion matrix. 

Of the five classes of vegetation cover 
defined in the study area, four were represented 
in the closest surroundings of the houses: open 
forest, closed shrubland, open shrubland and 
cultural land. The latter shows a strong negative 
correlation with the area of open shrubland 
(r = -0.80) and closed shrubland (r = -0.77). 
So, the cultural land effect on the response 

variable was evaluated in a single model, but 
it was not considered in the construction of 
the joint models, since the analysis focused 
on the vegetation cover classes as a possible 
dispersion modulator in order to contrast the 
hypotheses proposed. 

Spatial analysis and multi-model inference
The spatial analysis of infested peridomicile 
resulted in three non-significative clusters 
showing that the infestation was homogeneously 
distributed between rural communities in the 
study area.

To analyze the predictors of infested 
peridomicile occurrence, we built fourteen 
candidate models (Table II) considering the 
individual effects of each predictor on the 
response variable as well as joint models 
evaluating the possible combination between 
variables in agreement with the alternative 
hypothesis. From the fourteen candidate models 
of the multimodel inference approach, four of 
them described equally well the results (ΔAICc 
≤ 2.0). These four-best fitting GLMs included the 
housing density in combination with infested 
peridomicile density and open shrubland area 
as predictors. The most parsimonious model 
for explaining the occurrence of infested 
peridomicile was the one that included only the 
housing density as an explanatory variable (AICc 

Table I. Entomological data collected during 2012-2013 on rural communities in Northwest of Córdoba province, 
Argentina.

Rural community Evaluated houses Infested domicile Infested peridomicile
Triatomines

Nymphs Adults

Puesto Torrado 5 0 2 38 1

Villa Lujan 2 0 0 0 0

Palo Parado 15 1 7 74 24

El Simbolar 26 0 9 71 22

La Concepción 3 0 2 4 44

Villa de Soto 15 0 9 264 91
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= 91.17). However, the model including housing 
density and open shrubland area also had good 
explanatory power with a slightly higher AICc 
(92.12).

No multicollinearity was found between 
the explanatory variables in the four-best fitted 
GLMs (VIF<1.81).

In line with the alternative hypothesis, the 
model-averaged estimate reveals that housing 
density and open shrubland have a positive 
effect on peridomestic infestation with an 
estimated log-odd value of 0.35 (95%CI [-0.04; 
0.75]) and 0.22 (95%CI [-0.17; 0.62]) respectively. 
Whereas the infested peridomicile density 

estimated log-odd value shows a negative effect 
on the response variable (-3.53; 95%CI [-9.99; 
2.93]) though with a high unconditional standard 
error (SE= 3.29) and a wide confidence interval. 
The estimated odd ratios for housing density 
were 1.34 (95%CI [0.98; 1.90]) and for open 
shrubland and infested peridomicile density 
were 1.25 (95%CI [0.84; 1.88]) and 0.02 (95%CI 
[0.00; 16.68]) respectively.

Finally, the AIC weights of the models 
(Table II) revealed that the housing density had 
the higher relative importance supporting the 
models followed by the open shrubland area. 

Figure 2. a) Thematic map of estimated vegetation covers in the study area. References on the map. b) Detail of 
the circular area of influence with a radius of 200 m from which the class area of each kind of coverage and spatial 
variables were calculated. The detailed area corresponds to the area indicated by the arrow in figure 2.a.
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DISCUSSION

Entomological data recorded in this study shows 
high peridomestic infestation (43.9 %) and very 
low domestic infestation (1.5 %) by T. infestans 
in rural houses of the northwest of Córdoba 
Province during 2012-2013. Previous reports 
published within the same area, pointed out 
that low domestic infestation was related with 
the improvement of housing construction and 
that the risk of peridomestic infestation was 
strongly associated with the presence of chicken 
coops (Crocco et al. 2019). Since rural houses 
were visited after a three year-period without 
chemical control, the levels of peridomestic 
infestation recorded supports the fact that 
without a sustainable control campaign the 
populations of T. infestans remain far from 

the elimination objectives proposed by the 
Southern Cone Initiative (Segura 2002). 

The results obtained in this study show that 
the probability of a peridomicile to be infested 
by T. infestans in the study area increased by 1.34 
times more when peridomicile structures are 
in environments with higher housing density. 
The effect of housing density as a predictor of 
infestation status for peridomestic structures 
as well as domicile had already been observed 
by McGwire et al. (2006) in similar rural areas 
of northwest of Córdoba province. Given that 
local livestock economy in the area is based on 
smaller-scale poultry and goat production, a 
higher density of housing is related to a higher 
density of chicken coops and goat pens. This 
means greater chances of triatomine dispersion 

Table II. Model set. Results of the multi-model inference analysis of all GLMs considered in this study to explain 
the occurrence of peridomestic infestation (Y) in rural houses of the northwest of Córdoba province, Argentina.

Model Model structure AICc ∆AICc AICcWt

m 1 Y (HD) 91.17 0.00 0.23

m 12 Y (HD + Open Shrubland) 92.12 0.95 0.14

m 7 Y (HD + IPD) 92.19 1.02 0.14

m 13 Y (IPD + HD + Open Shrubland) 93.20 2.03 0.08

m 4 Y (Open Shrubland) 93.30 2.14 0.08

m 3 Y (Cultural Land) 93.91 2.75 0.06

m 6 Y (Open Forest) 94.30 3.13 0.05

m 14 Y (IPD + HD + Closed Shrubland) 94.45 3.29 0.04

m 2 Y (IPD) 94.57 3.40 0.04

m 5 Y (Closed Shrubland) 94.62 3.45 0.04

m 10 Y Open Shrubland + Open Forest) 94.63 3.47 0.04

m 11 Y (IPD + Open Shrubland) 95.39 4.22 0.03

m 9 Y (Open Shrubland + Closed Shrubland) 95.50 4.33 0.03

m 8 Y (Open Shrubland + Closed Shrubland + Open Forest) 96.66 5.49 0.01

Null Model Y (1) 99.02 7.85 0.00
Abbreviations: HD housing density, IPD infested peridomicile density. ΔAICc, represents the difference in the value of the 
Akaike´s information criterion (AIC) with respect to the AICc value of the best candidate model. AICcWt represents the relative 
likelihood of a model.
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among ecotopes in search of food, as it was 
recorded in the same area by Soria et al. (2019).

Although the infested peridomicile density 
variable has an unexpected negative effect on 
the probability of a peridomicile to be infested, 
this may be due to the fact that the number of 
rural houses visited around each positive house 
for T. infestans was not always constant because 
some inhabitants were absent or were reluctant 
to participate, preventing us to do the search of 
triatomines.

Based on the models carried out in this 
study, it can be observed that the probability of 
a peridomicile to be infested also increases by 
1.25 more times when houses are surrounded 
by open shrubland. In general, studies that 
consider vegetation as a variable related 
to the presence of T. infestans, evaluate its 
indirect effect on temperature and precipitation 
using temporal series of NDVI (Gorla 2002) 
or landscape metrics to reflect the livestock 
productivity in the area (Porcasi et al. 2011). 
However, little it has been mentioned of the 
possible effect of local vegetation around the 
house as a potential modulator of dispersion 
of triatomines between neighboring ecotopes. 
According to Vazquez-Prokopec et al. (2004) the 
spatial heterogeneity generated by the effects of 
landscape and vegetation cover may affect the 
spatial distribution of T. infestans infestations 
and the risk of house invasion. Scarce vegetation 
cover around houses can facilitate dispersion 
between nearby peridomicile because physical 
and chemical signals from the peridomiciliary 
area can be sensed in a greater range and they 
can be used as an orienting cue (Guerensten & 
Lazzari 2009, Catalá 2011). 

Multiple factors are determining the chances 
of peridomestic infestation among which the 
structural characteristics of the peridomestic 
structures and its distance to the house, as 
well as the density of hosts and the history of 

vector control interventions in the area strongly 
influence the occurrence of infestation (Gurevitz 
et al. 2011, Cecere et al. 1997, Lopez et al. 1999). 
However, we should also consider the effect 
of landscape surrounding the house and its 
potential role as a barrier (in the case of dense 
and high vegetation) or dispersion facilitator (in 
the case of low and scarce vegetation).

In order to better understand the factors 
that modulate the dynamics of dispersion and 
reinfestation of triatomines at local scales, it is 
relevant to reinforce the study of the ecological 
determinants that favor the dispersion of 
triatomines between habitats, since dispersing 
triatomines can colonize habitats treated with 
insecticide, initiating new cycles of colonization 
and disease transmission (Schofield & Matthews 
1985).
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