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X-ray fluorescence spectrometry applied to
digital mapping of soil fertility attributes in
tropical region with elevated spatial variability
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Abstract: Portable X-ray fluorescence (pXRF) spectrometry offers valuable information
for prediction models of soil fertility attributes spatial variation, although this approach
is yet scarce in tropical regions. This study aims to predict and build spatial variability
maps of soil pH, remaining phosphorus (P-Rem), soil organic matter (SOM) and sum of
bases (SB) using pXRF results through stepwise multiple linear regression (SMLR) and
Random Forest (RF) in a highly variable tropical area. Composite samples from soil A
horizon were collected at 90 points throughout the campus of the Federal University of
Lavras, Minas Gerais, Brazil, for pH, P-Rem, SOM, SB and pXRF analyses. RF predictions
showed the highest accuracies, especially for P-Rem and SB (R² values of 0.66 and 0.55,
respectively). Attributes that showed higher R² in punctual predictions also exhibited
higher R² in spatial predictions. Data obtained from pXRF in tandem with RF can be used
to assist prediction models for soil fertility attributes, consequently enabling the digital
mapping of such attributes and helping to improve the knowledge about the spatial
variability of such attributes in soils of tropical climate. This technique can therefore
assist in the identification and orientation of adequate management practices in tropical
agricultural practices.
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INTRODUCTION

Modern agricultural systems search for
optimal efficiency in the utilization of the
necessary products and energy to guarantee
higher productivity with minimum or null
environmental impact (Lopes & Guilherme
2016). Therefore, the application of fertilizers
and amendments should be based on
soil analyses, correcting deficiencies and
avoiding excesses (Hedley 2015). Following on,
precision agriculture, when performed correctly,
promotes better management of agricultural

lands, compartmentalizing productive areas in
homogeneous zones according to soil type,
fertility, slope, etc. in order to both drive and
apply specific management practices suitable
to each zone (Mulla 2013). The development
and efficacy of precision agriculture were
only possible due to the introduction of new
technologies, like the Global Positioning System
(GPS), proximal sensors, Geographic Information
Systems (GIS) and the utilization of advanced
software and precise equipment (Hedley 2015).
Such technology is vital, as they offer fast and
robust information about soil attributes, plant
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nutrition and climate conditions. Also, they are
the foundation of decision-making and creation
of detailed maps (Mulla 2013, Mancini et al. 2019).
However, information about soil attributes is
based on traditional laboratory analyses.

Although larger number of samples
provides better soil characterization of the
area of interest, the number of samples
to be analyzed may be constrained since
conventional laboratory analyses are laborious
and time-consuming (Weindorf et al. 2014).
Furthermore, such methods require a large
quantity of reagents, which often demand
special attention regarding their adequate
disposal in order to avoid environmental
pollution (Weindorf et al. 2016). Under such
context, proximal sensors are being increasingly
used for the creation of soil attributes prediction
models that are faster and can work on a larger
scale (Mancini et al. 2019). One of these sensors
that has drawn soil scientist’s attention is the
portable X-ray fluorescence (pXRF) spectrometer
(Silva et al. 2017, Qu et al. 2019).

The pXRF identifies and quantifies the
elemental contents in a sample using the
principle of fluorescence induction in atoms.
According to this principle, when an X-ray beam
hits an atom, electrons from the inner shells
move towards the outer shells, and, when they
return to their original state, energy, thus named
fluorescence, is released (Weindorf et al. 2014,
Ribeiro et al. 2017, Silva et al. 2021). The kind
and intensity of the emitted wavelength are
directly related to unique characteristics of each
element, which permits their identification and
quantification in studied samples (from Mg to
U in the Periodic Table) (Sharma et al. 2014,
Weindorf et al. 2014, 2016). This process is fast
and non-destructive, requiring minimal sample
preparation (Zhu et al. 2011).

Elemental results delivered by pXRF can
be directly utilized to determine heavy metal

content in contaminated areas or agricultural
land (Hu et al. 2017), or even applied to
prediction models of diverse soil attributes, such
as pH (Sharma et al. 2014), cation exchange
capacity (Sharma et al. 2015), calcium sulfate
(Weindorf et al. 2013), texture (Zhu et al. 2011,
Silva et al. 2020), and soil classes (Benedet
et al. 2020b). Additionally, data obtained from
pXRF and resulting predictions can be spatialized
and used to generate maps, allowing for the
quantification of soil attributes in an area (Qu
et al. 2019, Duda et al. 2017), or along soil profiles
(Silva et al. 2018b, Hartemink et al. 2020).

Most of these analyses are performed by
utilizing statistical techniques and machine
learning algorithms. Common examples are the
multiple linear regression (MLR), which analyses
the effect of two or more independent variables
upon a dependent variable (Tabachnick & Fidell
1996); and Random Forest (RF), a non-parametric
technique based on the creation of several
decision trees to optimize the prediction
performance of models (Breiman 2001). Many
works have shown that the algorithm used in
the modeling process significantly influences
the prediction accuracy of soil attributes (Heung
et al. 2014, Weindorf et al. 2016, Mancini et al.
2019, Teixeira et al. 2018).

In spite of the increasing use of pXRF in
the prediction of soil attributes, few studies
extend its applications to spatial predictions
(Duda et al. 2017), especially in tropical soils.
The growth of precision agriculture in Brazil
favors the development and adoption of
proximal sensors in search for faster estimation
of soil attributes and their temporal and
spatial distribution, contributing to a low-cost
and correct application of fertilizers and
amendments. Therefore, this study aims to
evaluate the capacity of pXRF data to predict pH,
remaining P (P-Rem), soil organic matter (SOM)
and sum of bases (SB) via stepwise MLR (SMLR)
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and RF in an area with very high spatial variability
of soils and land uses in order to map the
intricate distribution of these attributes across
tropical landscapes. The thorough knowledge
of the distribution of soil fertility parameters
permits the precise identification of optimal
fertilizer input requirements in each specific
area, thus contributing to decision making
concerning precision agriculture, at lower
costs due to the use of proximal sensors. We
hypothesize that pXRF in tandem with machine
learning algorithms will allow for reliable spatial
predictions, enabling the adequate mapping of
soil fertility attributes and further leading to the
optimization of tropical crop management.

MATERIALS AND METHODS

Study area

This study was conducted at the Federal
University of Lavras’ campus, located at the city
of Lavras, Minas Gerais state, Brazil, between
latitudes 21°13’07’’ and 21°14’27’’S, and longitudes
44°59’24’’ and 44°57’29’’W, comprising an area of
314.5 hectares (Fig. 1). This area presents very
high spatial variability regarding soil classes,
parent material, relief and land uses (Curi
et al. 2017) (Fig. 1). Soil composite sampling
encompassed areas with annual plantations,
pasture, coffee plantations, candeia plantations,
orchards, eucalyptus and pinus plantations,
areas with native vegetation, riparian forest and
non-vegetated areas (Ferreira et al. 2013).

According to the Köppen classification
system, climate in the region is Cwa with mean
annual temperature of 20.4°C and mean annual
rainfall of 1460mm (Alvares et al. 2013). The study
area has altitude of 920 m, approximately, and
is characterized by high-altitude tropical climate
with hot and humid summers and dry and mild
winters.

Sampling and soil analyses

For the current study, 90 composite samples
from A horizon (0-20 cm) were collected at the
study area in a regular grid (Fig. 2). Samples
were air-dried and homogenized, and passed
through a 2 mm sieve (air-dried fine earth). Next,
samples were submitted to laboratory analyses
to determine the following soil attributes: soil
organic matter (SOM) (Walkley & Black 1934), pH
in water (soil solution ratio of 1:2.5), remaining
P (P-Rem) (Alvarez et al. 2000), exchangeable
Ca2+, Mg2+ and Na+ contents (McLean et al.
1958), and available K+ extracted with Mehlich-1
(Mehlich 1984). The SB was determined by
summing the K+, Ca2+, Mg2+ and Na+ contents.

pXRF analyses

A Bruker S1 Titan LE pXRF was used to determine
the elemental contents in the air-dried fine
earth (ADFE) samples used for prediction of the
results obtained in laboratory. This equipment
contains 50kV and 100 µA X-ray Rh tubes. The
high energy X-rays emitted by pXRF hit the
atoms, displacing electrons from inner to outer
orbits. As they return to their original orbit, they
emit energy as fluorescence. Since the atoms of
each chemical element has unique fluorescence
characteristics, a silicon drift detector present
in the pXRF unit is able to identify the atoms
contained in the analyzed material, according
to the type of fluorescence emitted, and the
amount of each element, due to the intensity
of each fluorescence (Weindorf et al. 2014).
Moreover, this analysis require minimal sample
preparation, is fast (30 to 90 seconds, in general)
and does not produce chemical waste (Weindorf
et al. 2014, Ribeiro et al. 2017). Due to the
ease of such procedure, pXRF analysis has
been increasingly adopted across the world for
multiple purposes (Silva et al. 2021). From the
analyzed elements, 20 were above the limit of
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Figure 1. Geographic location of the study area, at the city of Lavras, state of Minas Gerais, Brazil, soil classes and
land uses. CX – Haplic Cambisol, GM – Melanic Gleysol, GX – Haplic Gleysol, LA – Yellow Latosol, LV – Red Latosol, LVA
– Red-Yellow Latosol, NV – Red Nitosol, OX – Haplic Organosol, PA –Yellow Argisol, PV – Red Argisol, PVA –
Red-Yellow Argisol, RR – Regolithic Neosol.

Figure 2. Sampling points used
for modeling and validation
collected from the study area
located at Lavras, state of Minas
Gerais, Brazil.

detection for all the samples: Al, Si, P Cl, K, Ca, Ti,
V, Cr, Mn, Fe, Ni, Cu, Zn, As, Rb, Zr, Sr, Nb, Pb, which
were utilized to create the prediction models.
All analyses were performed in triplicate. The
utilized software was the GeoChem, configured

in dual soil mode (Trace), for analyses during 60
seconds each (Weindorf et al. 2016).

To measure the equipment accuracy, two
materials certified by the National Institute of
Standards and Technology (NIST) were used

An Acad Bras Cienc (2021) 93(4) e20200646 4 | 21



LUCAS BENEDET et al. SOIL PROPERTIES SPATIAL PREDICTION IN BRAZIL

as reference 2710a and 2711a; additionally, a
standard sample (check sample – CS) provided
by the pXRF manufacturer was also tested.
Through the mentioned reference samples, the
pXRF recovery values were calculated for each
element according to the formula: recovery
value = content obtained by pXRF/certified
sample content. Each reference material has
its own unique chemical composition and
should guarantee that the equipment is
providing values comparable to the certified
materials. The recovery values (2710a/2711a/CS)
for the elements used in this study were
(zero values indicates that the equipment did
not detect the element or that the element
is not present in the certified reference
samples): Al (0.80/0.71/0.91), As (0.86/0.68/0),
Ca (0.39/0.46/0), Cl (0/0/0), Cr (0/1.11/0),
Cu (0.82/0.85/0.89), Fe (0.74/0.80/0.87), K
(0.55/0.51/0.88), Mn (0.70/0.68/0.83), Ni
(0/1.15/0.96), P (3.85/5.4/0), Pb (1.18/1.05/1.06),
Rb (0.92/0.89/0), Si (0.64/0.51/0.87), Sr
(1.11/0.83/0), Ti (0.78/0.75/0), V (0.78/1.15/0), Y
(0/0/0), Zn (0.95/0.78/0), e Zr (1.12/0/0).

Statistical analyses

Analyses were performed in four steps: a)
descriptive statistics of obtained data; b)
creation of prediction models for the studied
soil attributes using SMLR and RF; c) evaluation
of prediction results and their comparison with
laboratory results, in order to select the best
model to create soil attribute maps; and d)
spatial prediction and validation with laboratory
results. Results from pXRF and laboratory
analyses were submitted to descriptive statistics
to verify the position (minimum, maximum and
mean) and dispersion (standard deviation and
coefficient of variation) of the data.

Sample analyses were divided randomly in a
dataset for modeling purposes and a validation
dataset (Fig. 2). A total of 63 samples (70%)

were used to build prediction models and 27
(30%) were used for validation, i.e. the validation
samples have their observed value (obtained
in the laboratory via conventional analysis)
compared with the value predicted by the model
(estimated value based on both the prediction
models and the pXRF elemental results). The
separation of both datasets was completely
random.

For predictions by the SMLR, the backward
method was utilized through the software
Sigma Plot, with removal of the least important
variables from the model, with 95% probability.
This method adds all variables to the modeling
process at once, and removes the least
important variables, one by one, reaching a
final model yielding the best result. Also, this
method delivers a final equation that can
be used in the future for such predictions.
Conversely, RF models are an improvement of
decision trees. In this method, several trees
are generated (a forest), by randomizing and
resampling (out-of-bag) the variables present in
each tree (Breiman 2001). These models were
created using the R package “randomForest”
(Liaw & Wiener 2018) with the rf method. The
utilized parameters were: number of trees
(ntrees) = 1000; number of variables in each
node (nodesize) = 5; number of variables used
per tree (mtry) = one third of the number of
samples, as suggested by Liaw & Wiener (2018).
For RF models, the mean of squared error
(MSE) (Eq. 1) and the percentage of variance
explained (%Varex) (Eq. 2) were calculated using
the out-of-bag (OOB) methodology to determine
the importance of each variable in models. In
this method, for each interaction, only some
predictor variables are used to generate a tree,
based on the measure of the importance of
predictor variables. Thus, the algorithm can
identify the most important variables (Liaw &
Wiener 2018); that is, if a variable is removed
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from the model, resulting in more error and
less precision, such variable is considered more
relevant.

MSEOOB =
1

n

n∑
1

[yi – ŷ
OOB
i ]2 (1)

%Varex = 1 –
MSEOOB
σ̂
2
y

(2)

where n is the number of trees, yi is the ith
observed value; ŷOOBi is the average of the OOB
predictions for the ith observation; and σ̂2y is the
variance computed with n as divisor, instead of
(n – 1).

Finally, the parameters used to validate the
predictions delivered by SMLR and RF models
were the root mean square error (RMSE) (Eq. 3),
mean error (ME) (Eq. 4), along with the coefficient
of determination (R²) and the adjusted R² (R²adj).

RMSE =

√√√√1

n

n∑
1

(ei –mi)2 (3)

ME =
1

n

n∑
1

(ei –mi)
2 (4)

where, n is the number of observations; ei is the
ith predicted value; mi is the ith actual value.

For these calculations, independent data
that were not included in the modeling process
were used, comprising 30% of the number of
samples. The models with the best performance
for each predicted soil attribute were chosen
based on: highest R² and R²adj scores and lower
RMSE and ME values and used for creating the
maps of the soil attributes.

Spatial prediction of soil attributes

After selecting the best prediction models for
each soil attribute, these were used to predict
these attributes throughout the entire study
area. Elemental data from the pXRF analyses
were spatialized over the study area utilizing the
Inverse Distance Weighted (IDW) interpolation

method, using the SAGA GIS software. This
was necessary since sample data was only
available at the points where they were collected
and, in order to create maps, data need to
be available over all study area. Then, the
best prediction models were applied to the
interpolated maps, generating maps of the
predicted soil properties. These maps were
also validated by comparing pixel values with
those observed at the same place, using the
same validation samples mentioned above. The
accuracy of these maps was measured via R²,
RMSE and ME.

RESULTS AND DISCUSSION

Descriptive statistics

The descriptive statistics for SB, SOM, P-Rem and
pH obtained from laboratory analyses, including
modeling and validation datasets, are shown
in Table I. The values of SB, SOM and P-Rem
show higher coefficient of variation (CV), but not
surpassing 58.4%. The lowest CV was obtained
for pH, representing lower variability in studied
samples.

The study area presents high diversity of
soil types (Fig. 1), reflecting specific pedological
processes. Although climate and biologic
diversity are rather homogeneous, parent
materials, relief and soil formation time vary
considerably across the area, resulting in
physical and chemical attributes of differential
soils (Curi et al. 2017). Additionally, the different
land uses and management practices adopted
in the area (Fig. 1) influenced these attributes,
through tillage, vegetal cover (quality and
quantity of C input) and application of products
(liming and chemical and organic fertilizers)
(Triberti et al. 2016, Han et al. 2019).

According to Araujo et al. (2017), in areas with
similar native vegetation cover, the accumulation
of SOM is affected especially by altitude (>900
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Table I. Descriptive statistics of the soil attributes: pH, sum of bases (SB), soil organic matter
(SOM) and remaining phosphorus (P-Rem), obtained from laboratory analysis from soil
samples collected at Lavras, Minas Gerais, Brazil.

Modeling Validation

SB SOM P-Rem pH SB SOM P-Rem pH

cmolc dm-³ % mg dm-³ cmolc dm-³ % mg dm-³

Minimum 1.4 2.1 3.9 4.6 1.8 3.1 3.2 4.0

Maximum 26.6 14.1 35.1 7.2 13.3 11.2 36.1 7.0

Mean 6.2 6.2 22.8 5.8 6.9 6.3 22.7 5.8

SD1 3.6 2.4 7.0 0.6 3.2 2.2 7.9 0.7

CV2 (%) 58.4 38.3 30.9 10.7 46.4 35.6 34.7 11.7

1Standard deviation; 2Coefficient of variation.

m), surpassing even the influence of clay content
and parent material in soil C content. Higher
altitude zones present more SOM accumulation
due to the reduced microbiological activity
and vegetal material decomposition rate.
Therefore, it is logical to conclude that the
variation in SOM contents observed in the
study area is related to the difference in
vegetation and soil management practices,
which promotes alterations in soil C balance
(Cates et al. 2016). The conventional preparation
of soil and potential rupture of macro- and
micro-aggregates leave SOM unprotected from
biological activity, favoring its decomposition
(Gupta & Germida 2015). Additionally, vegetal
residues with low C:N ratio degrade faster, even
with high biomass input (Cates et al. 2016).

Obtained from the availability of bases in
soil (Ca2+, Mg2+, K+, and Na+), SB is a reliable
indicative of soil fertility and is related to the
capacity of organic and mineral components to
retain and furnish nutrients to the soil solution
(Khorshidi & Lu 2017). In a study by Vågen
et al. (2016) in Africa, SB values presented high
variability, ranging between 1 and 138 cmolc kg–1

(mean of 15 cmolc kg–1). These authors have also
observed higher values of SB in soils with higher

pH values and in regions where climate is drier.
Additionally, variation in SB values can also be
explained by liming and the use of fertilizers
in certain areas, due to the increase in Ca2+

contents (Han et al. 2019).

Contents of P-Rem vary between 3.2 and 36.1
mg dm–3, with mean of 22.7 mg dm–3. These
differences are caused by soil class variability,
reflecting the different capacities to adsorb
phosphates. This was observed by Bornø et al.
(2018), who evaluated P dynamics in multiple
soil types. Authors observed low maximum
adsorption capacity (211 mg P kg–1) and higher
content of available P (35.85 mg P kg–1)
in Spodosols, and high maximum adsorption
capacity (2242 mg P kg–1) and low available
P content (9.98 mg P kg–1) in Alfisols. Such
P sorption capacity is strongly influenced by
SOM content, texture and mineralogy of the clay
fraction (Fang et al. 2017, Bornø et al. 2018).

The pH variation tends to be smaller than
other soil attributes, as observed by Vågen
et al. (2016) in comparison to soil organic
carbon values (SOC), clay and SB in soils from
Africa. One of the reasons for this low variation,
especially in forest areas, is related to the
capacity of certain species to neutralize pH,
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reducing pH values of alkaline soils (>7.5) and
raising pH values of acidic soils (<5.0) (Hong
et al. 2018). Authors argue that soils’ original
pH can influence the liberation of root exudates
(HCO–3, OH

–, and H+) and the decomposition of
vegetal residues, promoting specific alterations
in pH. Concurrently, soil amendments present in
some areas of the current study also contributed
to higher homogeneity in pH values (Han et al.
2019).

Regarding pXRF analyses, 20 elements
were determined in studied samples (Table II).
Elements found in highest concentrations were
Al, Si, P, K, Ca and Fe. The high contents of these
elements, especially Al, Si, K and Fe are related
to the chemical composition of the minerals
present in such soils (Curi et al. 2017). While
Si can be found mostly in quartz (SiO2) and
muscovite (KAl2(Si3Al)O10(OH,F)2 dominantly in
the sand fraction and kaolinite (Al2(OH4)Si2O5)
in the clay fraction, Al can be found in gibbsite
(AlOH3) as well as in muscovite and kaolinite
(Silva et al. 2018a, Benedet et al. 2020a, Silva
et al. 2020). Fe is generally associated with the
presence of Fe oxides that are very common in
these soils, such as hematite (Fe2O3), goethite
(FeOOH), magnetite (Fe3O4) and maghemite
(γ–Fe2O3¬) (Curi et al. 2017). In the case of K and
Ca, these elements are mobile in soil, although
they can be found in some minerals, such as
micas and feldspars (Batista et al. 2018). With
the exception of muscovite, other micas as well
as feldspars were not commonly found in the
soils of the study area. Additionally, although
P is naturally provided by soil parent material,
its contents tend to be low in the studied soils
under natural conditions, due to their intense
degree of weathering-leaching, as reported by
Silva et al. (2018b) and Ribeiro et al. (2010).
This fact explains the low values of this element
(Table II). Therefore, P high contents obtained by
pXRF are associated with the areas under some

anthropic influence, such as the application
of fertilizers for agriculture (Weihrauch & Opp
2018).

The variability of elemental contents
obtained by pXRF is in accordance with
previously described results obtained for SOM,
pH, P-Rem and SB, reflecting the multiple soil
types, mineralogy, texture, parent material and
land uses that comprise the study area (Curi et al.
2017).

Calibration of prediction models

Stepwise Multiple Linear Regression

The equations generated by SMLR (Table III) were
promising since the best results were achieved
for P-Rem and SB, presenting R² values of 0.85
and 0.95, respectively. SOM and pH predictions
achieved R² scores of 0.75 and 0.67, respectively.
Although performance was lower for pH, the R²
represents sufficient prediction capacity of pXRF
data for this attribute. Sharma et al. (2014), for
instance, reached R² values of 0.57 and 0.77 from
two different datasets using soil samples from
USA. Additionally, results obtained in this study
were superior to those obtained by Silva et al.
(2017) in areas of the Brazillian Cerrado for the
same attributes using SMLR.

The equations created to predict pH and
SOM used the highest number of variables: 8
and 6, respectively (Table III). Equations that
used a small number of variables were those
created for SB and P-Rem, using 4 and 3
variables, respectively. In these equations, the
most highlighted variables were Ca, V, Ni and
Si, with 3 occurrences each. The Ca variable
was not present only in pH prediction equation,
but was present in all others. These results
differ from those obtained by Sharma et al.
(2014), where Ca data were present in simple
and multiple linear regression equations for
pH predictions. This demonstrates that variable
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Table II. Descriptive analysis of data obtained via pXRF for soils sampled at
Lavras, Minas Gerais, Brazil.

Minimum (ppm) Maximum (ppm) Mean (ppm) SD1 (ppm) CV2(%)

Al 103111 245797 178631 32240 18.0

Si 119532 414752 267958 74750 27.9

P 0 2671 708 510 72.0

Cl 95 935 523 150 28.7

K 801 34101 3217 4421 137.4

Ca 219 66013 5481 7538 137.5

Ti 2428 18308 9583 3654 38.1

V 0 462 114 112 98.2

Cr 0 5910 583 881 151.1

Mn 129 2153 617 397 64.3

Fe 15902 187076 80872 44844 55.5

Ni 0 750 715 118 16.5

Cu 10 140 36 24 66.7

Zn 15 123 41 21 51.2

As 0 9 1 2 200.0

Rb 0 138 11 17 154.5

Sr 0 158 15 19 126.7

Zr 98 332 216 49 22.7

Nb 0 25 7 7 100.0

Pb 0 53 16 15 93.8

1 Standard deviation; 2Coefficient of variation.

Table III. Prediction equations for sum of bases (SB), remaining P (P-Rem), soil organic
matter (SOM) and pH obtained by SMLR from soil samples collected at Lavras, Minas Gerais,
Brazil.

Equation R²

SB = 2.58000 + 0.000731*Ca + 0.00397*V + 0.0156*Ni - 0.0324*Cu 0.95

P-rem = 3.338 + 0.0000601*Si + 0.001*Ca - 0.0208*Ni 0.85

SOM = 20.931 - 0.0000212*Al - 0.0000307*Si + 0.000228*Ca + 0.00854*V - 0.0000644*Fe + 0.00819*Ni 0.75

pH = 3.063 + 0.00000717*Si - 0.000206*K+ 0.00314*V -0.00029*Cr - 0.0011*Mn + 0.0000121*Fe + 0.0705*Rb + 0.0283*Sr 0.67

SB = cmolc dm-3 ; SOM = dag kg1 ; P-rem = mg dm-3.
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importance might change according to the
dataset and the studied region. The different Ca
importance in both studies can be explained:
soils with low pH values are commonly deficient
in Ca2+, and liming (CaCO3) usually results
in a positive relation between pH increase
and the increase in Ca2+ content (Behera &
Shukla 2015, Vågen et al. 2016, Teixeira et al.
2018). However, Ca2+ has little effect upon pH
alteration in soils, and is more related to an
increase in SB, CEC and base saturation, and
reduces toxicity by Al3+, favoring the cellular
stability of plant roots (Indrasumunar et al. 2012,
Anikwe et al. 2016). Although it is important to
note that Ca elemental content values obtained
via pXRF represent total contents, which does
not represent the element’s availability in soil
(Weindorf et al. 2016). However, Brazilian soils
tend to have low amount of Ca in the crystalline
structure of minerals (Resende et al. 2014), thus,
most of the Ca determined by pXRF is related to
the exchangeable Ca2+ (Silva et al. 2019).

According to Imtiaz et al. (2015), the presence
of V in soils is associated especially with the
presence of titanium-magnetite, since in its
crystalline structure Fe can be replaced by V
through isomorphic substitution. Besides being
present in minerals, V can be adsorbed or be a
part of Fe oxides and other clay minerals, having
its geochemical behavior highly influenced by
pH. Additionally, V has high attraction by
SOM and C deposits have highest V contents
than other deposits. This helps to explain the
importance of this variable when predicting
SB, SOM and pH. Regarding Si, its positive
participation in P-Rem predictions is mainly
related with the lower sorption capacity of P
in soils with high sand content (Resende et al.
2014). Soils with higher quartz content present
less specific surface area and adsorption sites,
restricting their capacity to retain P. Additionally,
the positive participation between Si values in

the pH equation suggests a positive relation
between these variables. Therefore, higher pH in
soils with higher Si contentsmay indicate lower P
sorption capacity due to the increase in negative
charges (Bornø et al. 2018, Weihrauch & Opp
2018).

The capacity to adsorb P can also be related
to the importance of Ni in the equations. Ni
availability in soils is strongly related to texture,
type of clay, CEC, SOM, pH and ionic force.
Therefore, soils with more adsorption sites are
able to retain more Ni, especially those rich
in organic groups, due to their high affinity
with Ni (Elbana et al. 2018). Notably, such
soils tend to present higher SB and SOM. This
relation between organic groups and minerals
with Ni was also observed by Sun et al.
(2018). These authors observed an increase in
Ni prediction accuracy when utilizing spectral
bands associated with clay and SOM.

Random Forest

The highest MSEOOB scores for RF models were
obtained in the order: P-Rem>SB>MOS>pH (Fig.
3), and this same pattern was observed for Varexp
values. MSEOOB scores ranged between 0.3 (pH)
to 20.7 (P-rem), and Varexp values from 19.5% (pH)
to 57.5% (P-rem). Results were similar to those
achieved byWiesmeier et al. (2011), who obtained
72.64 MSEOOB and 61.9% Varexp values when
predicting SOM via RF. Interestingly, despite the
low MSEOOB scores in SOM and pH predictions,
values of %Varexp were also low, which denotes
a reduced predictive capacity of models. Such
results differed from those attained by Silva et al.
(2017), who achieved models with high %Varexp
and low MSEOOB. This favored higher R² scores
for the prediction of Ca2+, pH, Al3+, P-rem,
effective CEC and base saturation via RF in their
work. Thus, low %Varexp values obtained for SOM
and pH in this study indicates the difficulty of
models to predict these attributes.
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Figure 3. Mean square error
(MSEOOB) and variance
explained (Varexp) values from
Random Forest models trained
to predict SB, SOM, P-Rem and
pH from soil samples collected
at Lavras, Minas Gerais, Brazil.

Analyzing the variables importance for
each prediction attribute (Fig. 4) it can be
observed that Ca was the most important
variable for the SB model. Considering that this
variable had also contributed significantly in the
SMLR model, this strengthens its importance
in SB prediction, independently of the utilized
algorithm. Additionally, Cu was also a relevant
variable for both SMLR and RF. This might be
related to the sorption capacity of soils, as
Cu presents high affinity with organic groups
and soil minerals (Elbana et al. 2018). Variable
contribution was more homogeneous in P-Rem
predictions, but Si and Ca were again relevant,
along with Ni. This strengthens the relation
of P-Rem with soil reactivity. In such context,
sandy soils should be highlighted for having
low capacity to adsorb phosphates, resulting
in higher P-Rem contents (Bornø et al. 2018,
Weihrauch & Opp 2018).

Regarding SOM predictions, Al was the most
important variable. Such result might be related
to the contribution of minerals that contain Al
in protecting SOM from degradation through
chemical bonding and/or the occlusion of the
organic material (Sarkar et al. 2019). Variables Sr

and Cr were also considered important in SOM
predictions. This may be related to the dynamics
of these elements in soil, strongly influenced by
soil properties. Availability and mobility of these
elements are determined by the content and
type of clay mineral and SOM, along with pH and
ionic force (Lawson et al. 2016, Choppala et al.
2018).

Strontium is considered mobile in soil,
behaving similarly to Ca2+, present in its
exchangeable form, especially when there is an
increase in its concentration in soils (Smičiklas
et al. 2015, Lawson et al. 2016). Thus, the
concentration of superficial negative charges
at the reactive fractions of soils determines
their adsorption capacity. However, decrease in
pH, the increase in competition for adsorption
sites, SOM oxidation and the flow of water
can promote Sr desorption and loss in soils
(Smičiklas et al. 2015). Considering that all these
processes also influence SOM (Cates et al. 2016,
Triberti et al. 2016, Araujo et al. 2017), the
differences in Sr contents in soil might be
related with SOM contents. Other motive for
Sr importance may be related to Ca contents
(Lawson et al. 2016). This was observed by
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Smičiklas et al. (2015), who stated that Sr
also presents affinity to carbonates. Therefore,
considering that Ca contents were important to
predict these attributes, the relation between Ca
and Sr may have contributed for this importance
of Sr especially when predicting SB, P-Rem and
SOM.

In pH predictions, the Ca variable was not
present in the SMLR equation, but was the
most important in the RF model. Recall that Ca
contents do not have direct relation with pH, but
with SB (Indrasumunar et al. 2012, Anikwe et al.
2016). However, subareas where amendments are
applied present higher Ca and pH values (Behera
& Shukla 2015, Vågen et al. 2016), explaining the
importance of this variable.

It is important to recall that variables
considered important by models tend to show
high correlation with predicted attributes.
Therefore, variability in values of such variables
should be considered. However, soil use and
management alter chemical, physical and
biological attributes, and may influence the
quality of predictions (Resende et al. 2014,
Teixeira et al. 2018, Lopes & Guilherme 2016).

Validation of SMLR and RF models

Analyses of the comparison of R², R²adj, RMSE
and ME between observed and predicted data
by statistical methods are shown in Figure 5.
Differences can be observed between SMLR
and RF results, with predictions by RF models
showing better performance. This was expected,
since decision trees perform non-additive
modeling, and work with non-linear relations
(Greve et al. 2010). Similar results were obtained
by Andrade et al. (2020) when predicting Ca2+,
Mg2+ and K+. The authors obtained more robust
models by utilizing RF in comparison to stepwise
generalized linear model (SGLM), with R² values
increases of 9.23% (Ca2+), 13.73% (K+) and 62.16%
(Mg2+).

In this current study, prediction models
that presented best results with RF were those
for P-Rem and SB, with R² scores of 0.66
and 0.55, respectively. Predictions for SOM and
pH presented lower R² scores (0.47 and 0.26,
respectively). This variation in predictive capacity
between attributes was also observed by Silva
et al. (2017) when utilizing RF with pXRF data
obtained from tropical soil samples in Minas
Gerais state, Brazil. These authors have also
obtained low R² scores when predicting de K+

(0.39) and potential CEC (0.38), but observed high
accuracy for pH (0.89), effective CEC (0.94), Ca2+

(0.96) and Al3+ (0.86). This also demonstrates
the variation of predictive capacity according to
the study region and sample variability, which
encourages tests in different circumstances.

Models obtained in the current study
can be considered of intermediary predictive
capacity. However, several works reveal difficulty
in predicting SOM and pH, as noted by
Zhang & Hartemink (2020). Sharma et al.
(2014) obtained intermediary results for pH
prediction studying USA soils, with models
presenting R² scores ranging between 0.43 to
0.80, with latter result being obtained after the
addition of several auxiliary variables to the
models (sand, silt and clay contents and SOM).
Therefore, the incorporation of variables that
represent relations with predicted attributes
can increment the models accuracy (Sharma
et al. 2015). Additionally, other works have shown
intermediary results, i.e., R² score of 0.47 for CEC
prediction via RF (Chagas et al. 2018), and R²
score of 0.33 for SOC using diffuse reflectance
spectroscopy data via RF (Bhering et al. 2016).
Both works concluded that the application of RF
in the estimation of soil attributes is promising,
agreeing with results obtained in this current
study.
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Figure 4. Most important variables for sum of bases (SB), remaining P (P-Rem), soil organic matter (SOM) and pH
predictions via Random Forest from data of samples collected at Lavras, Minas Gerais, Brazil.
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Digital mapping of soil attributes and
validation

Models with highest accuracies were utilized
for spatial prediction of studied soil attributes
and are shown in Figure 6. Analyzing the SOM
spatial distribution, it can be observed that
lower values are located in pasture subareas
with uncovered soil. This happens because
such subareas have lower vegetal biomass
accumulation and nutrient cycling in comparison
to other subareas, which are occupied by
eucalyptus plantations or native forests. These
different land management systems interfere
in the organic matter accumulation in soils
(Conceição et al. 2005). However, it is important
to notice that some studies demonstrate a
positive effect from pasture, with adequate
management, in accumulation and conservation
of SOM compared to annual plantations (Cates
et al. 2016), but this was not observed in the
studied area.

Lowest P-Rem values were observed in
pasture and coffee plantations, whilst relatively
higher values occur under native forests and
pinus plantations. SB presented lowest values
in pasture, pinus plantations and native forests,
gradually increasing annual plantations and
reaching its peak contents in coffee plantations.
Such variation according to land use occurs
due to periodic application of fertilizers and
amendments at the cultivated subareas, which
increases SB contents (Triberti et al. 2016, Han
et al. 2019). In addition, the high values of
SOM and pH also contributed to the increase
in SB. The presence of SOM contributes to the
increase of adsorption sites in the soil, while
higher pH values indicate a greater presence
of negative charges in these sites, allowing
greater adsorption of cations (Sharma et al. 2015,
Smičiklas et al. 2015, Bornø et al. 2018). Values for
pH showed distribution similar to SB, having its

lower values under native forests and forest and
annual plantations, being likewise influenced by
antropic activities.

The R², R²adj, RMSE and ME score results
from spatial predictions of soil attributes were
similar to those observed in models validations
(Table IV). Best performances were achieved by
P-Rem and SB predictions, with R² scores of 0.66
and 0.54, respectively, although the values of ME
and RMSE were higher. Lowest R² values were
observed in SOM predictions (0.47), followed by
pH (0.28).

Results shown by maps demonstrate the
potential and benefits of the utilization of
proximal sensors such as pXRF in the assessment
of the spatial distribution of soil fertility
attributes. These maps offer a simple overview
of the variation of studied attributes, allowing
for the identification and orientation of practices
in each subarea. Thus, management and the
application of products can become more
efficient, resulting in economic, environmental
and social gain.

Table IV. Validation results of the maps generated for
soil fertility attributes from samples collected at
Lavras, Minas Gerais, Brazil.

SB SOM P-Rem pH

R² 0.54 0.47 0.66 0.28

R²adj 0.52 0.45 0.65 0.24

ME 2.74 2.10 19.85 0.31

RMSE 1.66 1.45 4.45 0.55

SB = cmolc dm-3 ; SOM = dag kg-1 ; and P-Rem = mg dm-3 .

The very high spatial variability of soil
classes, land uses (Fig. 1) and management
practices helps to explain the low scores in
validation results, requiring additional care in
the application of fertilizers and amendments in
soils. One of the recent advancements regarding
the use of proximal sensors for predicting
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Figure 5. Validation of soil attributes predicted by Random Forest (left) and stepwise multiple linear regression
(right) models, from soil samples collected in Lavras, Minas Gerais, Brazil.
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Figure 6. Prediction maps for soil attributes (0-20 cm) via Random Forest from pXRF data obtained from samples
collected at Lavras, Minas Gerais, Brazil. SOM: soil organic matter; SB: sum of bases; P-Rem: remaining P.

soil properties is the combination of sensors,
e.g., pXRF with visible near infrared diffuse
reflectance spectrometer (Vis-NIR DRS) and Nix
Pro color sensor, showing considerable increases
in prediction accuracy, although these works
are still rare in Brazil and in other tropical
countries (Benedet et al. 2020b, Wan et al. 2020,
Mukhopadhyay et al. 2020). This approach may
be very useful in conditions similar to this study
to improve the results.

CONCLUSION

Predictions of soil fertility attributes from pXRF
data showed higher accuracy when modeled via

the RF algorithm compared to SMLR models. In
the modeling process, variables Ca, Si and Al
were the most relevant for SB, P-Rem and SOM
predictions, respectively. Prediction results for
pH were less satisfactory.

Analyses performed by pXRF combined
with RF modeling were efficient in assessing
the spatial variability of soil fertility attributes
in the studied tropical area. Such novel
method can help improve crop management
at reduced cost, which is crucial especially
for tropical countries like Brazil, which face a
lack of financial resources for such activities.
The method presented by this work is

An Acad Bras Cienc (2021) 93(4) e20200646 16 | 21



LUCAS BENEDET et al. SOIL PROPERTIES SPATIAL PREDICTION IN BRAZIL

environmentally-friendly, preserves collected
samples, and results indicated high efficacy
in mapping relevant fertility parameters with
greater details and low cost. Although such
mapping process is expected to be more
difficult in areas with very complex and
variable distribution of soil classes, this work
demonstrated that this method is sufficiently
efficient even in areas with high soil variability.

Thus, this methodology can be applied
in the construction of prediction models for
soil fertility attributes from spatialized data,
allowing for the identification and orientation of
adequate management practices specifically for
each subarea, even in areas presenting very high
spatial variability conditions.
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