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Abstract: The Snow Hill Island Formation (SHIF; late Campanian – early Maastrichtian) 
crops out in the northeast of the Antarctic Peninsula and constitutes the basal part 
of the late Campanian-early Maastrichtian sedimentary succession of the James 
Ross Basin (NG Sequence). Its major exposures occur at the James Ross and Vega 
islands. Several fossil-bearing localities have been identifi ed in the SHIF providing a 
valuable fauna of invertebrates and vertebrates, and fl ora. Our study focuses on the 
vertebrate fauna recovered at Gamma and Cape Lamb members of the SHIF. The marine 
vertebrate assemblages  include chondrichthyans, actinopterygians, and marine reptiles 
(elasmosaurid plesiosaurs and mosasaurs). A diverse terrestrial vertebrate as semblage 
has been reported being characterized by dinosaurs (sauropod, elasmarian ornithopods, 
nodosaurid ankylosaur, and a paravian theropod), pterosaurs and birds. Most SHIF 
dinosaurs share close affi nities with penecontemporaneous taxa from southern South 
America, indicating that at least some continental vertebrates could disperse between 
southern South America and Antarctica during the Late Cretaceous. The Snow Hill Island 
Formation provides the most diverse Late Cretaceous marine and continental faunas 
from Antarctica. The present study summarizes previous and new vertebrate fi ndings 
with the best actualized stratigraphical framework, providing a more complete fauna 
association and analyzing further perspectives.

Key words: Antarctic Peninsula, Late Cretaceous, NG Sequence, Snow Hill Island 
Formation.

INTRODUCTION
Upper Cretaceous vertebrate-bearing horizons 
occur in one unique region in Antarctica: the 
James Ross Basin (JRB). This basin, named 
after the eponymous archipelago, is located off 
northeastern part of the Antarctic Peninsula (Fig. 
1). The JRB provides the most extensive record 
of Upper Cretaceous strata known presently 
anywhere in Antarctica and preserves over 5000 

m of exposed Cretaceous strata of the Aptian-
Coniacian Gustav and the Santonian-Danian 
Marambio groups (Rinaldi et al. 1978, Olivero et 
al. 1986, Pirrie 1989, Crame et al. 1991, 1996, 2004, 
Pirrie et al. 1997). The fi ner-grained Marambio 
Group is well-exposed in outcrops in several 
islands of the archipelago (James Ross, Vega, 
Humps, Snow Hill, Seymour and Cockburn), and 
its stratigraphy has been recently summarized 
by Olivero (2012a). The Marambio Group has a 
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stratigraphic thickness of around 3000 m, with 
sediment supplied by a volcanic arc in the west 
deposited on a shelf prograding eastward into 
the Weddell Sea (Olivero, 2012a). Beginning 
in the 1970s and supported by the Instituto 
Antártico Argentino (Argentina), geologists of 
this institution have explored the James Ross 
Basin for stratigraphy and fossils.

The uninterrupted explorations and 
systematic study of the fossils recovered led 
to understand the Snow Hill Island Formation 
(SHIF) as one of the most significant sources of 
Late Cretaceous fossil vertebrates in Antarctica. 
The SHIF is included in the NG Sequence (after 

the ammonoid genera Neograhamites and 
Gunnarites of Olivero 2012b) of the Marambio 
Group together with the Haslum Crag Formation. 
The complete sequence is late Campanian–early 
Maastrichtian in age (Olivero 2012a, Milanese et 
al. 2020).

Since the beginning of the 1970s and 
supported by the Instituto Antártico Argentino 
(IAA), geologists of this institution have explored 
the James Ross Basin. The first fossil vertebrate 
remains from the Snow Hill Island Formation 
were discovered in 1975 (del Valle et al. 1977); 
plesiosaurs and mosasaurs were discovered 
in Vega and James Ross islands and the first 

Figure 1. Map showing distribution of Upper Cretaceous rocks of the Snow Hill Island, Haslum Crags formations of 
the NG Sequence (Olivero 2012a) in the James Ross Basin, Antarctic Peninsula. 
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Antarctic non-avian dinosaur was collected from 
the Gamma Member of the SHIF in James Ross 
Island (Olivero et al. 1986, Salgado & Gasparini 
2006). 

Over the last fifty years, geologists and 
paleontologists from multiple nations (e.g., 
Argentina, Brazil, Chile, Poland, the United 
Kingdom, the United States, Sweden, Czech 
Republic) have searched for Cretaceous fossil 
vertebrates in the James Ross Basin, on several 
islands (Seymour, Ross, Vega, etc.) adjacent to 
the northeastern tip of the Antarctic Peninsula 
(Reguero & Gasparini 2006, Reguero et al. 2013a; 
Fig. 1).

Since 2005 geologists and paleontologists 
of the IAA and Museo de La Plata (MLP) have 
developed a comprehensive field program 
(Antarctic field trips 2005, 2010–2020). Part of 
the explorations carried out have focused on 
late Campanian–early Maastrichtian strata 
of the Snow Hill Island Formation. The fossil 
vertebrates recovered are then studied, 
assessing their biostratigraphic, paleoecologic, 
and paleobiogeographic significance in the 
context of West Antarctica´s final break-up. A key 
point of the program is seeking fossils that might 
bridge Upper Cretaceous terrestrial assemblages 
of Antarctica, Australia, and southern South 
America. 

The present article is an update of the SHIF 
vertebrate fossil record (including new records). 
We discuss the stratigraphic and biogeographic 
implications of the vertebrates reported, as well 
as their further perspectives.

Institutional Abbreviations
AMNH, American Museum of Natural History, 
New York (FARB is for fossil amphibians, reptiles 
and birds), USA; BAS, British Antarctic Survey, 
London, England; BMNH, British Museum of 
Natural History, London, England; IAA, Instituto 
Antártico Argentino, Buenos Aires, Argentina; 

MLP, Museo de La Plata, La Plata, Argentina; MN, 
Departamento de Geologia e Paleontologia) of 
the Museu Nacional (MN) - Universidade Federal 
do Rio de Janeiro (UFrJ), Brazil; NHMUK, Natural 
History Museum, London, United Kingdom; SDSM, 
South Dakota School of  Mines and Technology, 
Rapid City, United States of America; UCMP, 
University of California Museum of Paleontology, 
United States of America.

Geographical Abbreviations—JRB, James 
Ross Basin; JRI, James Ross Island; LDB, López de 
Bertodano, Seymour Island; SMC, Santa Marta 
Cove, James Ross Island; SEY, Seymour Island; 
TNZ, The Naze, James Ross Island; VEG, Cape 
Lamb, Vega Island.

Other Abbreviations
MG, early Maastrichtian-Danian stratigraphic 
sequence of the James Ross Basin (Olivero, 
2012a), NG, late Campanian-early Maastrichtian 
stratigraphic sequence of the James Ross Basin 
(Olivero, 2012a).

GEOLOGICAL AND 
STRATIGRAPHIC SETTING
The Snow Hill Island Formation comprises five 
members of late Campanian-early Maastrichtian 
age: Gamma, Hamilton Point, Sanctuary Cliffs, 
Karlsen Cliffs, and Cape Lamb Member, and 
crops out at Vega, James Ross, Humps, Seymour, 
and Snow Hill islands (Supplementary Material 
– Figure S1).

The Snow Hill Island Formation constitutes 
the basal unit of the transgressive part of the NG 
Sequence (upper Campanian-lower Maastrichtian), 
which is widely exposed across the James Ross 
Basin (Fig. 2). The base of this sequence is well 
exposed in Santa Marta Cove, northwest James 
Ross Island where the inner shelf sandstones of 
the Gamma Member (upper Campanian to lower 
Maastrichtian) of the Snow Hill Island Formation 
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overlies in marked unconformity the Beta Member 
(lower-middle Campanian) of the Santa Marta 
Formation. In the distal part of the basin, towards 
the east-southeast of Santa Marta Cove, the inner 
shelf sandstones of the Gamma Member are 
replaced by transgressive offshore mudstones 
of the Hamilton Point Member of the Snow Hill 
Island Formation, which are transitionally covered 
by mudstones and fine-grained silty sandstones 
of the Sanctuary Cliffs Member (mostly lower 

Maastrichtian) exposed in Snow Hill Island. In Vega 
Island, the Cape Lamb Member is unconformably 
covered by transgressive mudstones of the middle 
to upper Maastrichtian López de Bertodano 
Formation (MG Sequence). In Snow Hill Island, 
the Karlsen Cliffs Member is separated by a high-
relief unconformity from the overlying Haslum 
Crag Sandstone (lower Maastrichtian) which is 
interpreted as a forced regressive package of tidal 
sandstones (Olivero 2012a: Fig. 2). 

Figure 2. Chronostratigraphic 
scheme of the Marambio 
Group and upper Hidden 
Lake Formation (modified 
from Milanese et al. 2020). 
Reference polarity time 
scale from Ogg et al. (2016). 
The vertebrate groups of 
the NG Sequence (Olivero 
2012a) recorded in Santa 
Marta Cove and The Naze 
(James Ross Island), Cape 
Lamb (Vega Island) of the 
Snow Hill Island Formation 
and Haslum Crags Formation 
(Seymour/Marambio Island) 
are indicated.
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In Santa Marta Cove, the Gamma Member 
consists of ca. 200 meters of inner-shelf 
sandstone and coquina. The sandstones are 
mostly fine-grained, well-sorted, forming 
massive or parallel-laminated beds, with 
occasional wave and current ripple lamination. 
The trace fossils are dominated by Ophiomorpha 
nodosa and Tasselia ordamensis. Gyrolithes and 
Taenidium are locally abundant in restricted 
horizons (Olivero & López Cabrera 2010). 

The coquinas have erosive bases and 
form complex beds dominated by bivalves and 
gastropods. Otherwise, fossil invertebrates are 
rare, and only a few specimens of the cephalopods 
Neograhamites primus, Anapachydiscus sp. 
and Eutrephoceras sp. have been recovered 
in the sandstones. Toward the top of the 
Gamma Member, invertebrate fossils are more 
common, and the ammonites Anapachydiscus 
sp., Neograhamites cf. N. kiliani and Gunnarites 
antarcticus, the latter only at the very top of the 
member, have been recovered (Olivero 2012a, 
b). Based on the stratigraphic position of the 
member, which is distally replaced by offshore 
mudstones, its marked basal unconformity with 
the Beta Member of the Santa Marta Formation, 
and sedimentary and ichnological features, 
it is interpreted that the Gamma Member 
represents inner-shelf deposits, probably lower 
to mid shoreface, located at the base of the 
transgressive part of the NG Sequence.

Crame et al .  (2004) presented a 
chronostratigraphy for the thick Maastrichtian 
succession in the James Ross Basin integrating 
ammonite biostratigraphy and isotopic 
information. They placed the base of the 
Maastrichtian at the basal part of the Cape 
Lamb Member in Vega Island, corresponding 
to the absolute strontium isotopic date 
of 71 ± 0.2 Ma and ca. 81-96 m above the 
base of the Gunnarites antarcticus fauna. 
Nonetheless, more accurated dating, based on 

magnetostratigraphy, places the base of the 
Maastrichtian near the basal Sanctuary Cliffs 
Member or the upper Gamma Member, within 
the Ammonite Assemblage 8.2 (Neograhamites 
cf. N. kiliani), nearly 200 m below the first 
appearance datum of the genus Gunnarites in 
the Ammonite Assemblage 9 (Milanese et al. 
2020). Stratigraphically above this horizon, other 
Maastrichtian ammonites that occur within the 
Gunnarites Ammonite Assemblage 10 of Olivero 
(2012a) are Diplomoceras lambi, Jacobites crofti 
and probably Kitchinites darwini (Crame et al. 
2004, Olivero & Medina 2000).

The sequence stratigraphic framework 
established for the Santonian-Danian of the 
James Ross Basin probably represents a low 
cyclicity frequency of second or third-order 
cycles (Olivero 2012a). The time involved is 
probably of the order of 7-8 Ma for the N 
Sequence, Santonian to mid Campanian; about 
8-9 Ma for the NG Sequence, late Campanian- 
early Maastrichtian; and about 5 Ma for the MG 
Sequence, early Maastrichtian-Danian (Olivero 
2012a, Milanese et al. 2020).

Snow Hill Island Formation and the Late 
Cretaceous break up of West Gondwana: 
paleobiogeographic remarks
The break-up of Gondwana started in the 
Late Jurassic, and by the beginning of the 
Late Cretaceous (~99.6 Ma) the fragmentation 
of several smaller plates grouped in West 
Antarctica between South America, Australia, 
East Antarctica, i.e., Antarctic Peninsula and 
Ellsworth-Whitmore Mountains crustal blocks, 
and conformed a large-scale system of “Noah’s 
arks” (McKenna 1973) whose biotas rifted and 
moved away. The drifting of these arks throughout 
latitudinal climate zones was the first-order 
cause for environmental changes to which the 
biota, living on the drifting Gondwana fragments, 
was subjected, and then geographically isolated 
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from one another showing increasing degrees of 
endemism over time (Krause et al. 2019, Reguero 
& Goin 2021).

Since the Campanian the Antarctic Peninsula 
crustal block has long occupied an enigmatic 
position in plate reconstructions (Lawver et al. 
1992). By the Late Cretaceous-early Paleogene 
break-up and the migration of these plates 
established the timing of the paleogeographic 
history of the geographical isolation of South 
America (Hervé et al. 2006, Jordan et al. 2020; 
Reguero & Goin 2021) (Figure S2).

MATERIAL AND METHODS
Prospection, extraction, and preparation of 
vertebrate remains

Marine reptiles

The fossiliferous horizons yielding marine 
reptiles were first discovered by geologists of the 
IAA (Rodolfo del Valle and collaborators) in 1973. 
At the time of the discoveries, only few skeletal 
elements with plesiosaurian affinities weathered 
out and detached from the quarry were known. 
Three field campaigns (January-February 1993, 
January-February 1998, and January-February 
2005) to Vega Island revealed the presence of 
an almost complete elasmosaurid specimen 
(holotype of Vegasaurus molyi, MLP 93-I-5-1) 
associated with hexanchid shark teeth, as well as 
numerous invertebrates (ammonites, nautiloids, 
and lobsters). The marine reptile skeletons from 
localities VEG IAA 2/93 (MLP 93-I-5-1) and 5/93 
(MLP 98-I-10-20 and MLP 15-I-7-6) were extracted 
using jack hammer pneumatic drill and heat 
guns and hot air tools (against frozen sediment 
and permafrost).

During the extraction of the holotype of 
Vegasaurus molyi (MLP 93-I-5-1), the position of 
each element was photographed and mapped, 

using a quarry diagram divided into 0.25-
m2 quadrants (Figure S3). The quarry covers 
approximately 3 m2 on the slope. The skeleton 
was collected semiarticulated and lying with 
its right side up. The specimen is about seven 
meters in length. Numerous small (~1 cm in 
diameter) rounded, polished stomach stones 
(gastroliths) were found concentrated within the 
abdominal cavity, indicating that stomach stones 
were ingested, even by juvenile plesiosaurs.

Marine reptiles recovered in the XXI´ 
century (Antarctic field trips 2005, 2010–2020) 
were exhumed and studied by geologists and 
paleontologists of the IAA and MLP under a 
comprehensive field program developed in 
different islands within the James Ross Basin 

Chondrichthyans and osteichchtyans

The specimens were studied with a stereoscopic 
microscope (Zeiss Stemi 2000-C), using 
different magnifications, at the laboratory of 
the División Paleontología de Vertebrados 
of MLP. Photographs of specimens reported 
herein were taken with digital cameras Canon 
PowerShot G10 (under microscope) and Canon 
Rebel T2i with a compact macro lens Canon EF 
50 mm f/2.5. Drawings were done based on both, 
photographs (using a Wacom tablet over high-
resolution photographs) under Adobe Illustrator 
and Photoshop.

Several kilograms of sedimentary rocks 
were dissolved in acid and sieved, but no 
chondrichthyan remains were recovered. Other 
actinopterygians reported here were found in 
concretions and prepared using needles under 
a binocular microscope and consolidated with 
B-72 diluted in acetone al 25%.

Terrestrial vertebrates

 The holotype (MLP 86-X-28-1) and currently the 
only individual known of Antarctopelta oliveroi 
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includes some semiarticulated elements 
encased in hardly concressioned sandstones 
and isolated material, all first collected from an 
area of about 6 m2. Successive collecting works 
to the site expanded the prospected area up 
to 60 m2 and many other elements (maxillary 
and dentary teeth, a fragmentary maxilla, 
vertebral centra, a proximal end of a metatarsal, 
three pedal phalanges, one incomplete ungual 
phalanx, dermal scutes and many dermal 
ossicles) –that unquestionably correspond to 
the same individual– were recovered. In all this 
preparation process the material is consolidated 
with B-72 diluted in acetone from 15 to 30%.

In general, fossil material of marine and 
terrestrial vertebrates was partly extracted 
from their surrounding matrix using pneumatic 
vibro-tool in the laboratories of the MLP (La 
Plata, Buenos Aires); Museo Carmen Funes 
(Plaza Huincul, Neuquén); Museo Paleontológico 
Municipal Ernesto Bachman (El Chocón, 
Neuquén), and Fundación Félix Azara (Ciudad 
Autónoma de Buenos Aires).

Specimens are housed in the vertebrate 
paleontology collections of the División 
Paleontología Vertebrados of the MLP, La Plata, 
Buenos Aires, Argentina.

REVIEW OF THE VERTEBRATES 
OF THE SHIF (LATE CAMPANIAN-
EARLY MAASTRICHTIAN) FROM 
JAMES ROSS AND VEGA ISLANDS
Vertebrates from the Gamma Member

Marine vertebrates

Chondrichthyes and Osteichthyes recovered at 
Gamma Member mainly correspond to isolated 
teeth, vertebrae, caudal fin endoskeleton, fin 
elements, and fragmentary skulls.

Chondrichthyans- are represented by 
holocephalians (edaphodontids, chimaerids, 
callorhynchids, and rhinochimaerids) and sharks 
(Hexanchiformes, Lamniformes, Squatiniformes, 
Squaliformes, and Synechodontiformes) (Kriwet 
et al. 2006, Otero et al. 2014a, Gouiric-Cavalli 
et al. 2015), we include four new recods from 
SMC, (Table I; see also Fig. 5). Kriwet et al. (2006) 
reported the chimaerid, Chimaera zangerli from 
SMC; however, the specimen was not illustrated. 
To date, Edaphodon snowhillensis from JRI is the 
most complete fossil holocephalian reported in 
the Southern Hemisphere and one of the largest 
chimaeroid fish known (Fig. 3a-c, Table I; Gouiric-
Cavalli et al. 2015).

Otero et al. (2014a p. 415) described 
Cretalamna sp. coming from the the Beta 
Member of Santa Marta Formation, however, 
in p. 417 those authors assign the specimen to 
Cretalamna appendiculata mentioning that the 
specimen came from Gamma Member.

Osteichthyans– are represented by several 
actinopterygian groups (Ichthyodectifomes, 
Alepisauriformes [elopomorphs], Enchodontidae, 
Albuliformes) as well as indeterminate Teleostei 
(Kriwet et al. 2006, Otero et al.2014b); here we 
include a new material from the site SMC IAA 
1/86 (Fig. 3d, Table I). 

Reptiles– are represented by scarce 
mosasaurs and abundant plesiosaurs (Table I). 
Mosasaurs are represented by the tylosaurinae, 
cf. Hainosaurus sp. (Martin et al. 2002; Table I) 
and Taniwhasaurus antarcticus (Novas et al. 
2002a, Fernández & Martin 2009, Fernández 
& Gasparini 2012, Martin 2006, Martin et al. 
2007a; Table I). The last, originally described 
as Lakumasaurus by Novas et al. (2002a) was 
later reassigned it to Taniwhasaurus (Table I) by 
Martin & Fernández (2007). To date, the holotype 
of T. antarcticus is the most complete mosasaur 
recovered from Antarctica.
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Plesiosaurs from the Gamma Member 
belong to the Elasmosauridae or are referred to 
Plesiosauria indet (O’Gorman 2012). No evidence 
of the presence of polycotylids, the other 
diverse family from the Upper Cretaceous has 
been collected until now. Among Weddellian 
elasmosaurids two morphotype of Weddellian 
elasmosaurids (i.e., Patagonia, Western Antarctica, 
and New Zealand) have been recognized. The 
Aristonectinae are characterized by a large 

cranium, increased number of teeth and short 
cervical centra (Gasparini et al. 2003, Cruickshank 
& Fordyce 2002; Otero et al. 2014b); the non-
aristonectine shows the tipical elasmosaurid 
features (small cranium; less than 30 teeth on 
each hemimandible; elongated cervical centra). 
Until now only non-aristonectine elasmosaurids 
are the more abundant and frequent, probably 
the only plesiosaurs in the SHIF (Otero et al. 
2014b, O’Gorman et al. 2019a). 

Figure 3. Chondrichthyes 
and Osteichthyes 
from Snow Hill Island 
Formation strata of the 
JRB, Antarctic Peninsula: 
(a–d.) and Vega islands 
(e–g.): (a-c.), Edaphodon 
snowhilensis, MLP 13- 
I-26-1, holotype (); (a.), 
vomerine tooth plate; 
(b.), palatine tooth plate; 
(c.), mandibular tooth 
plate; (d.), Notidanodon 
dentatus (MLP 95-IV-1), 
lateral tooth embedded 
in the hosting rock; (e.), 
Ichthyodectiformes 
indet. (MLP 15-XI-7-11 in 
part), body scale patch; 
Teleostei indet. (MLP 
15-XI-7-20) isolated 
vertebral column; (f.), 
Teleostei indet. (MLP 
15-XI-7-12) caudal 
endoskeleton; (g.), 
interpretative drawing of 
MLP 15-XI-7-12 showed 
in (f.) (scale bars = 1cm). 
Abbreviations: UN, 
uroneurals; nsPU, neural 
spine of the preural 
centrum; PU1-4, preural 
centra 1–4; U1+2, ural 
centra 1+2; hsPU, hemal 
spine of the preural 
centra; Phy, parhypural; 
Hy1-2, hypural 1-2.
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Continental vertebrates

Fossil continental vertebrates from the Gamma 
Member are only represented by non-avian 
and avian dinosaurs (Table I). SHIF dinosaur 
record indicates the presence of at least four 
major taxonomic groups in the Late Cretaceous 
of the continent: Ankylosauria, early diverging 
Ornithopoda (Elasmaria?), Titanosauria, and 
non avian Theropoda, with associated partial 
skeletons being known for several taxa within 
these groups (primarily ornithischians).

The ankylosaur Antarctopelta oliveroi was 
the first dinosaur collected from Antarctica, 
in Santa Marta Cove (Fig. 4 a-d). The material 
was preliminarily discussed by several authors 
Gasparini et al. (1987, 1998) and Olivero et al. 
(1991) and described and analyzed in more detail 
by Salgado & Gasparini (2006) who provided a 
first glimpse to their phylogenetic relationships. 
The fragmentary nature of the specimen and the 
lack of informative cranial information prevent 
the possibility of establishing supported 
hypotheses about its phylogeny. Thompson et 
al. (2012) analyzed the ankylosaur phylogeny 
and, although they placed Antactopelta as the 
most basal nodosaurid, they also recognize the 
low support of that position. Arbour and Currie 
(2015) questioned the taxonomic validity of this 
taxon and considered Antarctopelta oliveroi as 
a nomen dubium, based on the assumption 
that the autapomorphy-bearing bones (i.e., 
caudal vertebrae) belong to marine reptiles 
(elasmosaurids and mosasaurs). However, 
Rozadilla et al. (2016) after the direct inspection 
and study of the specimen regarded that its 
caudal vertebrae do not belong to marine 
reptiles, but to an ankylosaur. The presence 
of some autapomorphies on caudal vertebrae 
(i.e., transverse processes of distal caudal 
vertebrae well-developed and anteroposteriorly 
expanded) indicate for these authors that 

Antarctopelta oliveroi should be considered a 
valid ankylosaur taxon (Rozadilla et al. 2021).

The majority of the SHIF early-branching 
ornithopods are referable to the Gondwanan 
clade Elasmaria (e.g., Calvo et al. 2007, Coria et 
al. 2013, Barrett et al. 2014, Rozadilla and Novas 
2016, Rozadilla et al. 2016, Cruzado-Caballero et 
al. 2019) which are the best-represented non-
avian dinosaurs in the JRB, and by extension, 
the Cretaceous of Antarctica. The ornithopod 
Trinisaura santamartaensis (MLP 08-III-1-1) is 
represented by a single, immature individual that 
was preserved partially articulated in sandstones 
concretions in the Locality SMC IAA 1/08, see 
Table I) and from a meter above stratigraphical 
level of Antactopelta (Coria et al. 2013, fig. 
1C). Coria et al. (2013) provided an anatomical 
description and phylogenetic analysis of the 
specimen that shows it as an ornithopod more 
derived than Thescelosaurus, and sister taxa of 
Anabisetia and more derived Euiguanodontia 
(Coria et al. 2013). Trinisaura is the first named 
ornithopod species from Antarctica although the 
group has been extensively recorded in several 
localities from the James Ross Basin (Hooker et 
al. 1991, Milner et al. 1992, Case et al. 2000, Novas 
et al. 2002b, Coria et al. 2007). Giving the fact 
that some of these records come from different 
stratigraphical levels than Trinisaura, the 
possibility of a radiation of Antarctic ornithopods 
(elasmarians, Rozadilla et al. 2016) cannot be 
ruled out. Recently Garcia Marsa et al. (2020) 
analyzed the biological implications of the bone 
microstructure Trinisaura santamartaensis. 

Two isolated ungual phalanges of 
ornithopods (MLP 07-III-2-1 and MLP 07-III-2-2) 
were found approximately 200 m west to the 
Antarctopelta site (Locality SMC IAA 1/07, see 
Table I and Fig. 4e-g) (Coria et al. 2007, fig. 2). 
These specimens were found on a draining 
creek, associated with elasmosaurid remains 
(Coria et al. 2007). The sizes of the specimens 
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suggest that they belong to a larger individual 
than the ornithopod Trinisaura. 

Coria et al. (2015) briefly described an 
associated partial tibia and astragalus of 
ornithopod from the Cape Lamb Member on 
Vega Island (MLP 15-I-7-1). 

The MLP 11-II-20-1 (Fig. 4h) was collected 
from the surface, in shallow marine shelf 
deposits, exposed in a site informally called 
Loma Verde (Green Hill, SMC IAA 1/11, see Table 
I, located 1km south the Antactopelta’s site, 
Santa Marta Cove, James Ross Island. The fossil-
bearing levels are stratigraphically around 30 m 
above the corresponding levels of Antarctopelta 
and Trinisaura (Coria et al. 2013, Ely & Case 

2019). MLP 11-II-20-1 consists in the right half 
side of a middle caudal vertebra. The procoelic 
condition of the centrum, which is interpreted 
by the inferred presence of a proximally located 
neural arch allowed Cerda et al. (2012) to identify 
the specimen as belonging to a lithostrotian 
sauropod. This interpretation is not supported 
by other authors that consider this condition 
of the posterior articular condyle seen in the 
specimen MLP 11-II-20-1 is not sufficient evidence 
to assure the identification as a Lithostrotia 
sensu stricto (see Lamanna et al. 2019).

This specimen is the first sauropod 
recognized from Antarctica. The existence of 
an Antarctic Cretaceous sauropod was already 

Figure 4. Non avian and avian dinosaur from 
Snow Hill Island Formation strata of the JRB, 
Antarctic Peninsula. (a-d.) Antarctopelta oliveroi 
Salgado & Gasparini 2006, MLP 86-X-28-1, 
holotype: (a.) left dentary in occlusal view; (b.) 
left dentary in medial view (scale bar = 50 mm); 
(c.) tooth II in lingual view (scale bar = 50 mm); 
(d.) posterior cervical vertebra in posterior 
view (scale bar 50 mm); (e.) Lithostrotian gen. 
et sp. indet., MLP 11-II-20-1: caudal vertebra 
centrum, right lateral view (scale bar = 50 mm); 
(f-h.) Ornithopoda indet., MLP 07-III-2-1, pedal 
ungual (f.) lateral; (g.) dorsal; (h.) proximal views 
(scale bar = 10 mm); (i-k.) Theropoda indet. 
(MLP 15-I-7-2), isolated pedal phalax (digit III?), 
(i.) proximal, (j.) lateral and (k.) dorsal views 
(scale bar = 10 mm); (l.) Imperobator antarcticus 
Ely & Case 2019, UCMP 276000, holotype, partial 
left hindlimb, ankle and foot (scale bar = 100 
mm) (modified from Case et al. 2007);  (m-o.) 
Neornithes indet., MLP 98-I-10-54, incomplete 
left tarsometatarsus in caudal (m.) distal (n.) 
and cranial (o.) views (scale bar = 10 mm); (p-r.) 
Antarcticavis capelambensis Cordes-Person, 
Acosta Hospitaleche, Case and Martin 2020 
(SDSM 78147), holotype: right scapula and 
coracoid in dorso-medial view (p.), halves of 
left humerus in caudal view (q.); synsacrum 
and right femur in right view (r.) (scale bar = 10 
mm); (s-u.) Neornithes indet., MLP 98-I-10–25, 
fragment of left tarsometatarsus in caudal (s.), 
distal (t.) and cranial (u.) views (scale bar = 20 
mm).



MARCELO A. REGUERO et al. VERTEBRATES FROM THE JAMES ROSS BASIN, ANTARCTICA

An Acad Bras Cienc (2022) 94(Suppl. 1) e20211142 15 | 35 

suspected due several hypotheses. The presence 
of basal sauropodomorphs in the Lower Jurassic 
of Antarctica (Smith & Pol 2007) could root the 
presence of a local lineage in this continent or 
could be indicating dispersal events of sauropod 
forms from Australia or South America to 
Antarctica. Nonetheless, the evidence provided 
by the specimen MLP 11-II-20-1 is extremely 
scarce to support either of these hypotheses.

Vertebrates from the Cape Lamb Member 

Marine vertebrates

Chondrichthyans– At Cape Lamb Member, 
chondrichthyans are represented by fragmentary 
and isolated material (Table I). Roberts et al. (2014 
p. 66) based on the previous report of Martin 
(2008), mention an undeterminate hexanchiform 
tooth. The authors disclose that the tooth was 
found in association with a plesiosaur; however, 
the material was not described nor illustrated 
in detail. Also, Roberts et al. (2014 p. 66) report 
partial jaws and tooth plates that they referred 
as cf. Callorhynchus sp. However, no illustration 
and/or description of the material is made 
in that publication. Moreover, the articulated 
vertebral centra illustrated by Roberts et al. 
(2014 fig. 6E) and referred to a chondrichthyan 
elasmobranch, seems to belong to a teleostean 
(i.e., due to the typical hourglass-shaped centra 
of the specimen figured). 

Osteichthyans– Previous to this study 
actinopterygians at the Cape Lamb Member 
were represented by a small, incomplete, and 
poorly-preserved specimen that lack its skull 
and the anterior part of the body. The specimen 
(DJ. 360.8) was briefly described and referred to 
cf. Sphenocephalidae (see Martin & Crame 2006 
p. 116, fig. 3G). The material was found at Hill 
177, False Island Point, Vega Island (see Martin 
& Crame 2006, Roberts et al. 2014). However, 
Reguero et al. (2013a, p. 30) mentioned that this 

specimen comes from the López de Bertodano 
Formation. Previous actinopterygian records 
also include material interpreted as belonging 
to chondrichthyans and/or plesiosaurs (see 
Roberts et al. 2014 fig. 6E–F). All these material 
needs to be carefully reviewed.

The new material reported herein was 
briefly presented by Reguero et al. (2015), it 
consists of poorly preserved actinopterygians. 
This material was collected from levels that also 
yielded marine and continental vertebrates (i.e., 
plesiosaurs, mosasaurs, and dinosaurs) together 
with marine invertebrates (i.e., ammonoids, 
nautiloids, bivalves, gastropods, bryozoans, 
crustaceans, and equinoids), and palynomorphs. 

MLP 15-XI-7-11 (Fig. 3d) consists of a 
disarticulated and partially preserved opercular 
apparatus, scales, and part of a vertebral 
column. The operculum is large and ornamented 
with fine radiating lines. The preoperculum is 
triangular and have at least thirteen sensory 
tubules branching from the main preopercular 
sensory canal. Tubules are moderately wide, 
closely arranged, and seem to reach the ventral 
margin of the preopercle. The interoperculum is 
broken. The suboperculum is large. The scales 
are large, cycloid type, and oval-shaped; they 
are preserved in situ and are disposed highly 
imbricated. The scales have numerous concentric 
circulii and scarce radiating radii plus a central 
focus with numerous central pits. Lateral line 
scales have a large central pit. Remains of 
branchiostegal rays are preserved but their 
total number remain unknown. MLP 15-XI-7-11 is 
assigned to Ichthyodectiformes due to similarity 
in the scales and preopercle morphologies. 
Ichthyodectiformes is an extinct group of basal 
teleosts that appeared in the Middle Jurassic, 
became diverse and successful during almost 
all the Cretaceous. The group includes big-sized 
taxa (e.g., Xiphactinus, Cladocyclus), medium 
sized forms (e.g., Allothrissops, Thrissops) and 
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small ones (e.g., Ascalabothrissops). They have 
been reported from marine deposits of North 
America, Europe, Lebanon, Australia, South 
America, Asia, Antarctica, and Africa (e.g., Goody 
1976, Patterson & Rosen 1977, Murray 2000, 
Arratia et al. 2004, Cavin et al. 2013).

MLP 15-XI-7-12 (Fig. 3f–g) is a caudal 
endoskeleton composed of four caudal vertebrae, 
three preural centra, and one compound ural 
centra. The vertebrae are heavily ossified, 
ornamented, and strongly constricting the 
notochord. The dorsal flexure of the tail begins 
in the mid-posterior part of the ural centra. There 
are two hypurals, the first is well developed and 
the second is comparatively much reduced. Both 
hypurals are separated by a marked diastema. 
There are at least three partially preserved 
uroneurals. The specimen is under study and 
correspond to an indeterminate teleost. 

MLP 15-XI-7-19 and MLP 15-XI-7-20 are very 
poorly preserved and incomplete. MLP 15-XI-7-20 
is a vertebral column section that measures ca. 8 
cm long and 0.8 cm wide and corresponds to the 
posterior abdominal region of the body. There 
are at least 10 poorly preserved amphycoelus 
vertebrae. The notochord is strongly constricted 
by the autocentra. The autocentra are thick and 
have their external surface ornamented. There 
are few slightly posteriorly inclined and long 
neural spines preserved. The neural arch is 
positioned at the mid-posterior portion of the 
autocentra. MLP 15-XI-7-19 is an isolated vertebra 
composed by a thick amphycoelus autocentra 
that strongly constrict the notochorda. Nor 
hemal and neural arches neither its spines are 
preserved. A thick autocentrum that strongly 
constrict the notochord is present in most 
fossils above the phylogenetic level of Leptolepis 
coryphaenoides and in all extant teleosts. Thus, 
MLP 15-XI-7-19 and MLP 15-XI-7-20 are designed 
as belonging to an indeterminate teleost.

Remarks on previous findings
Roberts et al. (2014 fig. 6F) illustrate an isolated 
mandible and partially preserved cervical 
series (AMNH FARB 30877). The authors assign 
the specimen to an indeterminate plesiosaur. 
However, such assignation seems to be quite 
adventured, especially for the mandible. 
According with teeth size, shape and its 
disposition over the mandible (teeth slightly 
inclined forward), as well as the likely presence 
of a furrow –which could be an impression 
of a mandibular sensory canal of the lateral-
line-system– in the dentosplenial bone, the 
fragmentary mandible could be assigned to an 
actinopterygian. Moreover, from the illustration 
of the material presented by Roberts et al (2014) 
we cannot be certain about the designation of 
these impressions as an incomplete cervical 
series.

Marine reptiles

Marine reptiles of the Cape Lamb Member 
are referred to Mosasaurinae (Mosasaurus cf. 
Mosasaurus lemonnieri and Leiodon sp. Table 
I) and Tylosaurinae (juvenile specimen of 
Taniwhasaurus antarcticus: Martin et al. 2007a; 
Table I).

Also, remains of at least one medium sized 
and other small sized mosasaurs have been 
recovered near the elasmosaurid plesiosaur 
Vegasaurus molyi. Based on the textural aging 
of dorsal and caudal vertebral centrae, the 
vertebrae belong to a juvenile or maybe a just 
born specimen (Martin et al. 2007a). Moreover, 
the centra are assigned to T. antarcticus based on 
similar morphology and proportions (Fernández 
& Gasparini 2012).

The plesiosaurs from the Cape Lamb 
Member belong mostly to the non-aristonectine 
elasmosaurids (O’Gorman et al. 2019); as in 
Gamma Member aristonectines and polycotylids 
have not been recorded. Among the specimens 



MARCELO A. REGUERO et al. VERTEBRATES FROM THE JAMES ROSS BASIN, ANTARCTICA

An Acad Bras Cienc (2022) 94(Suppl. 1) e20211142 17 | 35 

collected, the holotype of Vegasaurus molyi 
is remarkable for its completness, lacking 
all the skull. Vegasaurus is a medium size 
Weddellonectia elasmosaurids of 6-7 meters 
length and medium elongated cervical vertebrae 
(O’Gorman et al. 2015). Also, from the same 
member a juvenile elasmosaurid (MLP 98-I-
10-20) was collected, the cluster of gastroliths 
associated were detaily analysed (O’Gorman 
et al. 2012). Additionally, another remarkable 
specimen was collected on the east coast of 
Cape Lamb. The specimen MLP 15-I-7-6 (Fig. 6n), 
a juvenile elasmosaurids with preserved skull 
material shows palatal structure that indicate 
weddellonectian affinities and represent the 
first non-aristonectine elasmosaurid with well 
preserve skull material (O’Gorman et al. 2018).

Pterosaurs - Flying reptiles are less known 
in Antarctica. The only known pterosaur 
reported outside JRB is a bone identified as a 
humerus mentioned by Hammer & Hickerson 
(1994, 1996) and subsequently figured (Hammer 
& Hickerson 1999, fig. 5) from the Early Jurassic 
Hanson Formation from Central Transantarctic 
Mountains. A SHIF pterosaur specimen was 
recovered from Vega Island (Kellner et al. 2019). 
The specimen (MN 7801-V) was found as a result 
of a surface collecting at the Cape Lamb area, 
close to the contact between the Snow Hill 
and the López de Bertodano formations and 
so, considered to came stratigraphically from 
the upper member of the SHIF (Kellner et al. 
2019). The bone was identified as metacarpal IV 
assigned to the Pterodactyloidea due to their thin 
bone cortex and to the Archaeopterodactyloidea 
since the small size. This finding, plus another 
another bone from a moraine at the Abernathy 
Flats (SMF) on James Ross Island, suggest a wide 
diverse ecosystem during the Late Cretaceous 
(Kellner et al. 2019).

Non-avian dinosaurs – four dinosaur taxa 
have been recovered from the Cape Lamb Member, 

the elasmarian ornithopod, Morrosaurus 
antarcticus, the paravian theropod, Imperobator 
antarcticus, the specimen MLP 15-I-7-1, and the 
Cape Lamb ornithopod NHMUK PV R 36760, are 
associated with invertebrates of the Gunnarites 
antarcticus faunal assemblage and are within 
the more restrictive 50 meters stratigraphic 
range of the ammonite, Diplomoceras lambi. 
A Sr/Sr datum corresponding to an age of 71.0 
Ma has been recovered from the upper part of 
the Diplomoceras lambi biostratigraphic range 
resulting in these three dinosaur taxa being 
earliest Maastrichtian in age (Ely & Case 2019, 
Lamanna et al. 2019).

The ornithopod Morrosaurus antarcticus 
has been proposed as a member of a South 
American monophyletic group, the Elasmaria 
(Rozadilla et al. 2016, Calvo et al. 2007) suggesting 
a southern Gondwanan diversification of non-
hadrosaurid Cretaceous ornithopods (see also 
Herne et al. 2018). Despite some relative recent 
published studies (Rozadilla et al. 2016) very 
little information has been communicated so 
far about the characteristics of these remains 
(Cambiaso et al. 2002, Novas et al. 2002b). 
Although unpublished data regard it as a 
related with some South American ornithopods 
like Anabisetia and Talenkauen (Cambiaso 
2007), which was confirmed by Rozadilla et 
al. (2016) in their description and naming 
of Morrosaurus. The inferred total size of the 
materials corresponds to an animal slightly 
bigger than Trinisaura. Therefore, besides 
the different stratigraphical and geographic 
provenance, several morphogical differences 
between Morrosaurus and Trinisaura, such as a 
spike-like lesser trochanter and a stouter femur 
with a better-defined intercondylar groove, 
supports a taxonomic distinction between both 
forms. Given its stratigraphical and geographic 
provenance, Morrosaurus is closely related to 
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Trinisaura and considered by Ely & Case (2019) 
as part of the same overall ornithopod fauna.

The “early-diverging ornithopod” NHMUK 
PV R 36760 (formerly BMNH BAS R.2450) from 
Vega consists in an incomplete although very 
informative specimen of a 5 m long ornithopod, 
likely related with Trinisaura. It is represented 
by cranial (i.e., near complete left and right 
dentaries and maxillae, isolated cheek and palatal 
elements, partial braincase) and post-cranial (i.e., 
cervical, dorsal and sacral vertebrae, parts of both 
scapulae, coracoids, humeri and iliac and ischial 
fragments) elements (Hooker et al. 1991, Thomson 
& Hooker, 1991) coming from  the west side of 
Cape Lamb, Vega Island (Locality VEG IAA 3/15, see 

Table I), Cape Lamb Member (late Campanian - 
early Maastrichtian), Snow Hill Island Formation 
(Thomson & Hooker 1991, Hooker et al. 1991, 
Olivero 2012a, Reguero et al. 2013b). Originally, this 
specimen was identified as a hypsilophodontid 
(Thomson & Hooker 1991, Hooker et al. 1991, Milner 
et al. 1992) with some features that linked it with 
the Dryomorpha, especially some pelvic features 
(A. Milner, pers. comm. 2014). The specimen sitll 
under study and has been now interpreted to 
be another elasmarian specimen, however its 
taxonomic affinity has not been specified yet 
(Barrett et al. 2014). 

The paravian theropod, Imperobator 
antarcticus, was found in the Naze, James Ross 

Figure 5. Diversity of vertebrates from the Snow Hill Island Formation: Gamma Member (a.) and Cape Lamb 
Member (b.), Antarctic Peninsula. The percentage of fauna refers to the synthesis carried out in Table I and the 
bibliography cited there. The numbers within each group indicate how many taxa at family indeterminate or 
genus level, identified in each unit. In the case of Aves Neornithes, the values refer to different specimens whose 
taxonomic assignment is not defined.
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Island at locality TNZ IAA 1/06 (see Table I), This 
specimen was previous regarded by Case et al. 
(2007) as a primitive dromaeosaurid based upon 
the presence of a metatarsal II with a lateral 
expansion caudal to metatarsal III; a metatarsal 
III proximally narrow distally wide; a distal end of 
metatarsal III with an incipient ginglymoid and a 
pedal digit II with a trenchant ungual phalanx. 
Ely & Case (2019) noted that particular character 
states of the Antarctic specimen, differ from the 
dromaeosaurid norm and referral to this family 
is not supported in the phylogenetic analysis 
based on distal hindlimb and pedal data. The 
lack of a distal, ginglymoid articular facet of 
metatarsal II signifies a placement at least within 
the Paraves, but not within Dromaeosauridae.

New Theropoda indet. MLP 15-I-7-2 from 
Cape Lamb, Vega Island, Cape Lamb Member, 
Snow Hill Island Formation (Coria et al. 2015). The 
isolated pedal phalanx probably corresponds to 
the first element of digit III ( 4i-j). The proximal 
articular surface is triangularly outlined and 
deep, the shaft is transverselly constricted, 
whereas the distal articular end bears deep 
gynglimoid fossae (Coria et al. 2015). Being 
highly neumatized, the bone is interpreted as 
belonging to a mid-sized, non-avian theropod 
dinosaur. Likely, this element is taxonomically 
related with the hind limb collected from the 
same stratigraphical horizon at the Naze, in 
James Ross Island.

Aves - The avian fossil record of the SHIF 
is limited to the Cape Lamb Member (Table 
I and Fig. 5) and suggests that several marine 
lineages of Neornithes were a successful group 
in Antarctica during the Late Cretaceous. Several 
bones have been assigned to Gaviiformes and 
Charadriiformes by different authors.

Hindlimbs bones of gaviiforms-like birds 
constitute an extensive and controversial record 
in VEG. Most of the material is isolated and 
fragmentary, and exhibit features compatible 

with foot propelled divers (Acosta Hospitaleche 
& Gelfo 2015). However, during the last decade, 
important discoveries (Clarke et al. 2016) have 
changed our conceptions for the assignment 
of these materials. These elements of variable 
size, quite common in Late Cretaceous strata 
(Reguero et al. 2013b, Roberts et al. 2014, Acosta 
Hospitaleche & Gelfo 2015), could belong to diving 
birds similar to the Antarctic Polarornis and the 
anseriform Vegavis (see Acosta Hospitaleche et 
al. 2019 for a further description and references). 
Unfortunately, their incompleteness precludes 
a confident assignment for many of these 
materials, which after a long discussion are still 
questionable.

Two previous reports of Charadriiformes 
(Case & Tambussi 1999, Cordes 2001, 2002) have 
been recently dismissed. The first one (MLP 98-
I-10-25) corresponds to a left tarsometatarsus 
without proximal and distal ends recovered at 
VEG IAA 3/98 (Reguero et al. 2013b) (Fig. 4s-u) that 
was assigned to a charadriiform in an abstract 
without any description or pictures. This record 
was ignored in posterior contributions until 
Reguero et al. (2013b) merely described it as the 
oldest neognathous bird from Antarctica. 

MLP 98-I-10-25 was reviewed in the context 
of an ongoing broader analysis. This has a 
slender shaft that narrows distally with a lateral 
edge constituting a crest extended distally. The 
shaft section is dorso-plantarly compressed at 
the proximal-most part, becoming triangular in 
the mid part, and cylindrical distally. The third 
trochlea is torsioned and laterally displaced 
from the central axis. The basis of the trochleae 
defines a rotated arch in which the trochlea 
III is latero-distally projected, the trochlea IV 
is caudo-laterally located with respect to the 
latter, and the trochlea II is medial and less 
distally extended than the others. The shaft 
morphology and the trochlear rotation resemble 
some extant taxa such as Fulica leucoptera and 
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specially Podylimbus podiceps. However, these 
similarities are only superficial, in MLP 98-I-10-25 
the trochleae rotate laterally, and the trochleae II 
and III are dorsal to the plantarly located trochlea 
IV (in Podylimbus and Gavia, the trochleae rotate 
medially, and trochlea III and IV are dorsal to 
the trochlea II). Besides, the foramen vasculare 
distale opens in a more distal position than in 
the modern taxa compared, and the base of the 
trochlea III in MLP 98-I-10-25 is dorso-lateral to 
the diaphysis, a feature not shared with the other 
taxa. MLP 98-I-10-25 would belong to a gracile 
bird, probably adapted to swimming. 

The MLP 98-I-10-54, an incomplete left 
tarsometatarsus (fig. 4m-o) from VEG IAA 2/98 
was identified by Acosta Hospitaleche & Gelfo 
(2015) as cf. Gaviiformes. This specimen is very 
similar to Gaviiformes due to the strong latero-
medial compression of the diaphysis and the 
ridges on the cranial face.

The second material previously assigned to 
a Charadriiform is a partial articulated skeleton 
of an Ornithuromorph recovered some 20 meters 
above the 71.0 Ma datum in the Cape Lamb Member 
on Vega Island, and at least 10 meters below the 
occurrence of the tarsometatarsus MLP 98-I-10-25 
above described. This makes the recently named 
Antarcticavis capelambensis (Fig. 4m-o) the 
geologically oldest known bird from Antarctica. 
Comparative and phylogenetic analysis are not 
supportive in the assignment of Antarcticavis to 
a neornithine bird (Cordes-Person et al. 2020). 
Discoveries of more complete and better-preserved 
specimens sould help to understand the precise 
phylogenetic position of this bird.

DISCUSSION
Snow Hill Island Formation vertebrates: 
systematics and paleobiogeography

Chondrichthyes and Osteichthyes

The fossil fish record of the Snow Hill Island 
Formation has been enriched through several 
publications (Kriwet et. al. 2006, Martin & Crame 
2006, Otero et al. 2014a, Roberts et al. 2014, 
Gouiric-Cavalli et al. 2015, Reguero et al. 2015). 
Particularly, the fossil record of chondrichthyans 
seems to be more abundant and taxonomically 
diverse in comparison with the actinopterygians 
(Table I), and that especially true comparing 
Gamma Member with Cape Lamb Member (Fig. 5). 
Many of the chondrichthyan described seem to 
be endemic (e.g., Clamydoselachus thompsoni, 
Paraorthacodus antarcticus, Edaphodon 
snowhillensis). 

Here, we describe actinopterygian material 
previously reported by Reguero et al. (2015), 
discuss some previous assignations (i.e., those 
made by Roberts et al. 2014) and include new 
material from SMC and VEG. In the present state 
of knownledge, and due preservation quality, 
the new material described herein can only be 
assigned to high hierarchy levels. 

The fish diversity scenario and morphological 
disparity at the NG sequence of the SHIF higlights 
the need of more exploration in order to look 
for more and better-preserved material that 
allows a more precise taxonomic assignations 
and further enriching discussion. Fish record at 
SHIF is more diverse than it was presumed but 
several questions remain unclear such as there 
are affinities (taxonomic and/or phylogenetic) 
among taxa from NG sequence with those 
present in other coeval units worldwide? 

Remarks on fish paleobiogeography

During the late Mesozoic, marine actinopterygian 
taxonomic diversity and morphological 
disparity is outstanding. Some Antarctic 
Cretaceous elasmobranch taxa have a bipolar 
distribution (e.g., Notidanodon, Paraorthacodus, 
Protosqualus, Edaphodon). 
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An increase in the diversity of the teleosts 
is observed in the Late Jurassic (Arratia 2004). 
However, the group shows a marked explosion 
of diversification in Late Albian to Cenomanian. 
Yet, “ichthyodectiforms show a rather constant 
diversity from the Late Jurassic to the end of the 
Cretaceous and seem not to have been affected 
by the factors that triggered diversification of 
other marine teleosts in the mid-Cretaceous” 
(Cavin et al. 2013, p. 173). Noteworthy, 
ichthyodectiforms and aulopiforms (Enchodus), 
together with several chondrichthyan species 
(Clamydoselachus thompsoni, Paraorthacodus 
antarcticus ,  Edaphodon snowhillensis , 
Callorinchus torresi, Chimaera zangernli) 
became extinct at the Cretaceous–Paleogene 
boundary (Cione et al. 2018).

Chondrichthyans and actinopterygians 
recovered from the Gamma Member are 
abundant consisting mainly of isolated scales, 
teeth, and tooth plates; those of the Cape 
Lamb Member are fewer in abundance and 
taxonomic diversitlow diversey, but they are 
better preserved consisting of more articulared 
but incomplete specimens. The difference in 
abundance among these two members of the 
SHIF (Fig. 5) might be arise as collection bias; 
thus, further, and comprehensive fieldwork with 
focus on chondrichthyans and osteichthyans 
is needed to evaluate this scenario. Morevover, 
differences in actinopterygian preservation 
among Cape Lamb and Gamma members of the 
SHIF need to be explored in detail.

Marine reptiles

The Antarctic plesiosaur discoveries have occurred 
in the James Ross Basin at the northeastern tip of 
the Antarctic Peninsula (Fig. 1). 

The phylogenetic affinities of the 
elasmosaurids from Antarctica are currently 
under study that has some difficulties due the 
absence of well-preserved cranial material 

and more complete articulated postcranial 
specimens. However, in the last decade the 
knowledge has been continually improved. 
The description of Vegasaurus molyi, the first 
non-aristonectine from Antarctica represented 
by an adult well preserved specimen allows a 
first a first attempt to recognized phyogenetical 
affinities of the non-aristonectine from 
Antarctica (O’Gorman et al. 2015). O’Gorman 
et al. (2015) recovered V. molyi as sister group 
of Kaiwhekea and Aristonectes showing a 
possible relation between the aristonectine 
and non-aristonectine elasmosaurids from the 
Weddellian Province. A phylogenetic analysis 
performed by O’Gorman (2016) recovered 
Vegasaurus molyi in a clade formed by the 
aristonectine (Aristonectes spp. and Kaiwhekea 
katiki); Morenosaurus stocki; Kawanectes 
lafquenianum. This reinforces the idea between 
the aristonectine and non-aristonectine from the 
Weddellian province, adding Patagonian genera 
to the analysis (Kawanectes lafquenianum) 
and shows some affinities with Morenosaurus 
stocki, an upper Maastrichtian a genus from 
California. Finally, a new clade Weddellonectia, 
comprising Aristonectes spp., Kaiwhekea katiki, 
Morenosaurus stocki; Kawanectes lafquenianum 
and Vegasaurus molyi, was erected by O’Gorman 
& Coria (2017) and the same clade was recovered 
in a large-scale phylogenetic analysis (O’Gorman 
2019). 

This  background shows that  the 
disappearance of the polycotylids in post 
Santonian levels of the Marambio Group 
(Novas et al. 2015) and the first apearence of 
aristonectines in Antarctica (upper Maastrichtian, 
O’Gorman et al. 2019b) indicates a large-scale 
plesiosaur faunal turnover in Antarctica during 
the Campanian-lower Maastrichtian. This faunal 
turnover could be correlated with the cooling 
trend of the end of the Cretaceous (O’Gorman 
et al. 2019b). 
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New Zealand records shows a similar 
picture, aristonectines such as Kaiwhekea katiki 
appears in the record near the limit between 
lower Maastrichtian and upper Maastrichtian. 
Additionally, although Upper Cretaceous 
plesiosaurs have been collected in New 
Zealand since the 19th century, and the record 
comprises a large number of elasmosaurids, 
only few vertebrae are positively recognized 
as polycotylid (Wiffen & Moisley 1986, Welles & 
Greeg 1971). The South American record shows 
an almost mirror image. In the Atlantic margin, 
aristonectines appears in the record at the upper 
Campanian-lower Maastrichtian Allen Formation 
and Aristonectes parvidens is recorded in the 
upper Maastrichtian horizons of the Lefipán 
Formation and additionally a large number of 
non aristonectine elasmosaurids are recorded 
in the mentioned Allen Formation and the upper 
Maastrichtian levels of the Jagüel Formation. 
Additionally, Aristonectes quiriquinensis 
is recorded on the Quiriquina Formation 
(Maastrichtian), Chile (Otero et al. 2014b). In 
summary the main feature is the presence of 
the polycotylid Sulcusuchus erraini in the upper 
Campanian-lower Maastrichtian levels of the 
La Colonia Formation and polycotylids indet. 
from the Allen Formation (O’Gorman et al. 
2011, Gasparini & de la Fuente 2000, O’Gorman 
& Gasparini 2013). These differences could be 
related with the marine marginal environment 
of Allen and La Colonia Formation that acts 
as a shelter for polycotylids that at the same 
time were absent or remains relictual in other 
Weddellian localities.

Dinosaurs

The Snow Hill Island Formation yields, at present, 
the highest record of non-avian dinosaurs 
recorded from Antarctica. Representatives of 
this taxonomic level have been collected from 
the Lower Jurassic (Hammer & Hickerson 1994, 

Smith & Pol 2007) and Upper Cretaceous (Molnar 
et al. 1996, Case et al. 2000) formations. Yet, the 
non-avian dinosaur diversity recorded from both 
members, the Gamma Member and the Cape 
Lamb Member, constitute the currently highest 
record of this group, including semiarticulated 
skeletons and isolated elements. The diversity 
includes both saurischian and ornithischian taxa, 
with the later taxon being represented by the 
ankylosaur Antarctopelta and the ornithopods 
Trinisaura and Morrosaurus. The saurischians 
are, in turn, represented by less informative 
evidence, including an isolated caudal vertebra 
of a Lithostrotia sauropod, and limb elements of 
the paravian theropod, Imperobator.

Due the fragmentary nature of most 
individuals, the available osteological 
information is limited. Therefore, current 
phylogenetic hypotheses are constrained by 
the great amont of missing data. At least for 
the Antarctic elasmarian ornithopods, they 
seem to be more closely related with South 
American forms (Coria et al. 2013, Rozadilla et 
al. 2016) than with the Australian ones. Although 
Bell et al. (2018) phylogenetic analysis placed 
an Australian elasmarian, Weewarrasaurus, 
within a group of South American elasmarian 
ornithopods.  Thus, previous morphological 
differences of the Antarctic taxa which once 
supported certain degree of provincialism for 
the Cretaceous of this continent (Rozadilla et 
al. 2016) may not be as greater as it seemed 
when there were fewer ornithopods on all three 
continents.

Antarctopelta is considered by Thompson 
et al. (2012) to be the most basal nodosaurid. In 
many features it appears intermediate between 
the ankylosaurid and nodosaurid conditions 
(Salgado & Gasparini 2006).
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Aves

Neornithine birds in the Late Cretaceous JRB 
are more diverse than it was presumed. Until 
now, all records come from the Cape Lamb 
Member. Although still controversial regarding 
its taxonomic assignment, remains assigned 
to gaviiform-like birds are abundant and 
widespread. These bones would belong to 
median birds whose hindlimb bones were 
adapted for the propulsion under water, in a 
similar way to what is seen in the Pied-billed 
grebe Podylimbus podiceps today.

Aside from these gaviiform-like birds, 
the other bird recorded in VEG correspond to 
Antarcticavis capelambensis. This bird is known 
from a partial skeleton that exhibits clear 
differences with the Maastrichtian Vegavis 
and Polarornis, was unambiguously assigned 
to a derived Ornithuromorpha, probably an 
Ornithurae, and constitutes the geologically 
oldest bird from Antarctica.

Taphonomical remarks of some vertebrate 
bearing horizons of the Snow Hill Island 
Formation
The close scrutiny of the fossil assemblages and 
stratigraphic horizons of the Gamma and Cape 
Lamb members of the Snow Hill Island Formation 
indicates that at least two different subsets of 
articulated skeletons are present throughout 
this sequence and have probably different 
taphonomic histories (including bone abrasion, 
scavenging, completeness, and sorting). Thus, 
allochthonous skeletons, ie., dinosaurs and 
birds, transported from continental fluvial 
systems are differentiated from autochthonous 
skeletons (actinopterygians and marine 
reptiles) that were buried by the same bearing 
stratigraphic horizon. 

The prel iminary  sedimentological 
interpretations are consistent with that much of 

the vertebrate remains accumulated in shallow 
coastal waters via attritional mortality aquatic 
and terrestrial taxa. However, bird remains from 
Cape Lamb Member exhibit significantly higher 
weathering and abrasion states. Also consistent 
with local sedimentology, these fossils have 
different preservational attributes, having been 
reworked from overlying sandstone bodies, and 
represent the skeletal remains of taxa that may 
have been introduced into the water bodies by 
overland transport during flood events.

Some skeletons of dinosaurs (Vega “early-
diverging ornithopod” NHMUK PV R 36760, 
Trinisaura, Morrosaurus) collected from horizons 
within the Snow Hill Island Formation exhibit 
low degrees of both surface weathering and 
abrasion. Using classical interpretations of such 
taphonomic parameters (e.g., Behrensmeyer, 
1978; Fiorillo, 1988; Cook, 1995), these data 
would indicate that most fossil material has 
undergone minimal transport, reworking and 
subaerial weathering. No taphonomical data 
is known of the skeleton of the ankylosaur 
Antarctopelta oliveroi. According to the model 
of ankylosaur taphonomy proposed by Mallon 
et al. (2018) ankylosaur carcasses become 
reworked into fluvial or marine settings where 
they bloat and overturn prior to their final 
deposition. These authors regarded a differential 
floating behaviour between ankylosaurids 
and nodosaurids could have implications in 
the occurrence of the nodosaurids in marine 
depositional environments and demonstrated 
that ankylosaur specimens occur more 
frequently upside-down than not.

Two taphonomic and depositional settings 
were analyzed in: 1) articulated skeletons 
of marine reptiles from Santa Marta Cove, 
the Naze, and Cape Lamb (Taniwhasaurus 
antarcticus; Vegasaurus molyi, and several 
other elasmosaurid skeletons) with evidence of 
having been scavenged by hexanchid sharks and 
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nautilods; and 2) dinosaurs recovered articulated 
from the same horizon of Santa Marta Cove 
(Trinisaura santamartaensis and Antarctopelta 
oliveroi), associated to abundant plant 
debris share distinctive taphonomical history 
characterized by preservation of articulation and 
with no evidence or little of scavenging, only in 
Antarctopelta was found a tooth of the hexanchid 
Notidanodon on a vertebra. Associated with the 
skeleton of Antarctopelta oliveroi were found at 
locality SMC IAA 1/86 teeth of hexanchid and cf. 
Scapanorhynchus sharks, a dental plate of the 
chimaeroid Callorhynchus, and remains of an 
ichthyodectiform teleostean (Table I).

Other isolated bones of dinosaurs (i.e., a 
sauropod vertebra), have signs of being deposited 
in marine sediments after dismemberment 
and transportation from the peninsula. More 
complete stratigraphic and taphonomical 
analyses of vertebrates are now available for 
the late Campanian-early Maastrichtian Snow 
Hill Island Formation, now with better possible 
the interpretation of the local environments and 
correlations through the Upper Cretaceous of 
West Antarctica with other Gondwanan areas.

The taphonomic attributes of the 
elasmosaurid specimens vary between isolated 
elements (e.g., single vertebra) to almost 
complete skeletons (MLP 93-I-5-1 and SDSM 
78156) (see Figure S4) and shows that the 
articulated or sub-articulated specimens are 
not rare and at least one specimen preserves 
gastrolith in natural position indicating almost 
not disturbing. However, other specimens show 
severely bone erosion that indicates time before 
the burial.

The juvenile skeleton (SDSM 78156) was 
discovered in the Sandwich Bluff area of Vega 
Island from Late Cretaceous (Maastrichtian) 
marine deposits from the upper Cape Lamb 
Member of SHIF (Martin et al. 2007b). The bearing 
bed has grayish-green color and consists 

of generally massive, fine-grained muddy 
sandstones to sandy mudstones. Isolated and 
mostly rounded volcanic pebbles and cobbles are 
commonly present. Ammonoids, Eutrephoceras 
subplicatum (nautiloid), crustaceans, bivalves 
(including Pinna), serpulid worms (Rotularia), 
various gastropods, and fossil wood are common 
in this horizon.

From the same area, relatively numerous 
juvenile mosasaurs were collected (Fig. 6e-
h). These specimens, in conjunction with the 
articulated juvenile plesiosaur, suggest that the 
shallow marine environment may have been a 
protected area where marine reptiles had their 
young. 

Snow Hill Island Formation vertebrate levels 
and their associated floras
Wood fragments, twigs and some leaves in 
concretions were found in the Gamma Member. 
Some of them with an exquisite anatomical 
preservation at high magnifications, and 
several materials were collected form the same 
source of sediments from where several of the 
dinosaurs were found, speculatively from the 
same current that transported the continental 
remains. This material is under study and will 
provide new taxa for the late Campanian in the 
Antarctic Peninsula.

Wood fragments, twigs with attached leaves 
and a ovulate cone of conifers (Araucariaceae 
and Podocarpaceae) are known from the Cape 
Lamb Member of the Vega Island (Locality A, 
63°53’40.7” S; 57°35’49.1” W) described by Césari 
et al. (2001, 2009). An ornithopod dinosaur and 
birds were unearthed from a nearby locality at 
the same stratigraphic level (Pirrie et al. 1991). 
Although the presence of the Araucariaceae 
and Podocarpaceae are generalized in the 
Upper Cretaceous records of the JRB (Dettmann 
& Thomson 1987, Askin, 1992, Barreda et al. 
1999, Torres et al. 2012, Pujana et al. 2017, 
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2018), Barreda et al. (2019) recognize a strong 
fall in gymnosperm and fern diversity (44 % 
and 68 % respectively) based on continental 
palynology at the late Campanian and early 
Maastrichtian (Cape Lamb Member). Flower 
plants (angiosperms) were similarly affected 
(36 %) but maintaining a high diversity by new 
taxa (8 spp.). Among the angiosperm families 
identified by Barreda et al. (2019) for Gamma 
Member: Aquifoliaceae, Arecaceae (=Palmae), 
Cassuarinaceae, Chloranthaceae, Gunneraceae, 
Lauraceae, Malvaceae, Myrtaceae, Nothofagaceae 

(8 spp.), Olacaceae, Poaceae, Proteaceae (16 
spp.), Symplocaceae, Trimeniaceae?, plus other 
indeterminate eudicots (33 spp.) and monocots 
(4 spp.).

Among the angiosperm families identified 
by Barreda et al. (2019) for the Gamma Member, 
can be indicated: Aquifoliaceae, Arecaceae 
(=Palmae), Cassuarinaceae, Chloranthaceae, 
Gunneraceae ,  Lauraceae ,  Malvaceae , 
Myrtaceae, Nothofagaceae (8 spp.), Olacaceae, 
Poaceae, Proteaceae (16 spp.), Symplocaceae, 
Trimeniaceae?, plus other indeterminate 

Figure 6. Marine reptiles 
(Mosasauria and Plesiosauria) 
from Snow Hill Island 
Formation strata of the 
JRB, Antarctic Peninsula: 
(a-c.) Caudal vertebra of 
Taniwhasaurus antarcticus 
(MLP 98-I-10-14) (a.), dorsal; 
(b.) anterior; (c.) lateral 
views (scale bar = 10 mm); 
Mosasauridae indet., MLP 
93-I-3-7 (d.) tooth referred to 
cf. Taniwhasaurus antarcticus 
(scale bar = 10 mm); juvenile 
vertebrae of Mosasauridae 
indet., MLP 98-I-10-80 in (e.) 
anterior and (f.) posterior 
views, and MLP 98-I-10-81 in  
(g.), anterior and (h.), posterior 
views (scale bar = 10 mm); 
Vegasaurus molyi (MLP 93-I-
5-1), holotype (i-k,) cervical 
vertebrae in (i.) left lateral, 
(j.) posterior, and (k.) ventral 
views; (l.) left humerus in 
dorsal view, (m.) right femur in 
ventral view; Weddellonectia 
indet (MLP 15-I-7-6), skull 
material, (n.) palate in ventral 
view (scale bar = 20 mm).  
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eudicots (33 spp.) and monocots (4 spp.). 
Among the angiosperm families identified 
by Barreda et al. (2019) for only two levels in 
the Cape Lamb Member, can be indicated: 
Aquifoliaceae, Cassuarinaceae, Ericaceae/
Epacridaceae, Fabaceae?, Gunneraceae, 
Malvaceae (Bombacoideae), Nothofagaceae (8 
spp.), Proteaceae (10 spp.), Symplocaceae, plus 
others indeterminate eudicots (15 spp.). 

Sphagnaceae (peat moss maker) are 
common though the sequence. The presence 
of Sellaginellaceae, Lycopodicaeae, Ericaceae/
Epacridaceae also coincide with wet areas 
possible like peat bog environments (Fig. 6).

Barreda et al. (2015) reported the presence 
of several pollen grains of Asteraceae 
(sunflowers and daisies) preserved in dinosaur-
bearing deposits from the Late Cretaceous of 
Antarctica that drastically pushes back the 
timing of assumed origin of the family. Reliably 
dated to ~76–66 Mya, these specimens are about 
20 million years older than previously known 
records for the family (in Patagonia). Other 
important records to certificate are the possible 
records of Poaceae and Fabaceae.

CONCLUSIONS
The Snow Hill Island Formation is the basal 
section of the NG Sequence (late Campanian-
early Maastrichtian) and bears the most 
diverse Late Cretaceous marine and continental 
vertebrate faunas yet known in Antarctica (see 
Fig. 5). Historical (70´s) and recent field seasons 
(January/February 2013, 2014, 2015, 2017, and 
2020) proved the potential of this geologic unit 
as a valuable source of fossil vertebrates.

The Gondwanan signature of the Snow Hill 
Island Formation fauna provides key data on the 
Cretaceous vertebrate diversity and biogeographic 
relationships of the southern-most continents of 
deep Gondwana (Fig. 5 and 7).

In the Late Cretaceous (Campanian/
Maastrichtian) of Antarctica a significant 
diversity of non-avian dinosaurs and marine 
reptiles has been documented. The dinosaur 
record of the Upper Cretaceous of JRB is 
composed by several clades (basal ornithopod, 
ankylosaurs, titanosaurs, basal paravians and 
birds. Reguero & Goin (2021) recognized a West 
Weddellian Terrestrial Biogeographic Province 
as geographical unit restricted to Antarctica and 
the southern part of South America spanning 
through the Late Cretaceous (Campanian) to the 
Early Paleogene (Paleocene).

The percentage of taxonomic vertebrate 
representation in these members of the Snow 
Hill Island Formation is mostly conservative (Fig. 
5). Some changes in taxonomic composition 
could be related to a modification in 
paleoecological roles. Among the diversity of 
marine predators, Chondrichthyes decrease their 
number from Gamma to Cape Lamb Member, 
while Mosasauridae and Plesiosauria become 
the dominant forms. In contrast, the absence 
of Pterosauria and Aves in Gamma Member 
could be easily explained due to a sample bias, 
rather than different paleoecological conditions 
between both units. The same observation can 
be applying to the few terrestrial taxa recorded 
from Gamma Member. They are only represented 
by four herviborous non-avian dinosaurs, so the 
absence of Theropoda, which were recorded in 
Cape Lamb, is probably an artifact sample or a 
taphonomic consecuence, and not a real image 
of the vertebrate land representation.

The floral composition, habitat and climate 
reconstruction is presented for the emergent 
volcanic arc in the Maastrichtian of JRB. On the 
coastal lowlands, a cool to warm temperate 
rainforest is envisaged growing in a riverine 
landscape, with both wet (river margin, pond) 
and relatively dry (interfluve, canopy gap) 
habitats. Diverse podocarps trees grew alongside 
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Figure 7. (a.) Terrestrial and marine environments and vertebrate assemblages of the Late Cretaceous (late 
Campanian-early Maastrichtian) Snow Hill Island Formation, Antarctic Peninsula based on the paleontologic 
evidence from the Gamma and Cape Lamb members. In this reconstruction we are exercised a degree of artistic 
license to assemble these species together; (b.) The vertebrates, invertebrates, and plants depicted in this 
figure are the following: 1- Dicksonia sp. (fern); 2- Gunnera sp. (rhubarb); 3- Imperobator antarcticus (theropod); 
4- Sphagnum sp. (moss); 5- Cycas sp. (gymnosperm); 6- Pterosaur Pterodactyloidea ; 7- Lithostrotia indet. 
(titanosaur); 8- Araucaria sp. (evergreen coniferous); 9- Trinisaura santamartaensis (ornithopod); 10- Neornithes 
indet. (bird); 11- Morrosaurus antarcticus (ornithopod); 12- Arecaceae (palm); 13- Nothofagus sp. (Southern 
beech); 14- Antarctopelta oliveroi (ankylosaur); 15- Antarcticavis capelambensis (bird); 16- Gunnarites antarcticus 
/ Neograhamites primus (ammonite);17- Clamydoselachus sp. (shark); 18- Eutrephoceras subplicatum (nautiloid); 
19- Vegasaurus molyi (plesiosaur); 20- Sphenodus sp. ( shark); 21- Taniwhasaurus antarcticus (mosasaur);  
22- Notidanodon sp, (shark); 23 Edaphodon snowhillensis (holocephalian)-; 24- Squatina sp. (shark) ; 25- 
Clamydoselachus thompsoni (shark); 26- Hoploparia equinata (lobster) ; 27-  Hoploparia stokesi (lobster).
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angiosperm herbs and shrubs in mean annual 
temperatures of ~ 10 – 15°C (Bowman et al. 2014).

Based on the change in flora composition 
between Gamma Member and the Cape Lamb 
members (Dettman & Thomson 1987, Askin 
1992, Barreda et al. 2019), it seems to be a clear 
major change in the continental biomas (Fig. 
7). This change is coincident with the drop in 
temperatures described for the late Campanian-
early Maastrichtian by (Li & Elderfield 2013).

Further perspectives include more 
exploration in the area and the study of the 
specimens with the consequent increase in the 
taxonomic diversity of the Cretaceous biota.
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SUPPLEMENTARY MATERIAL
Figure S1. Snow Hill Island Formation. a. Panoramic 
view of the Gamma Member exposure at Santa Marta 
Cove, James Ross Island, Antarctic Peninsula; b. 
Panoramic view of the Cape Lamb Member exposure 
at Cape Lamb, Vega Island, Antarctic Peninsula; c. 
Panoramic view of the Cape Lamb Member exposure at 
The Naze, James Ross Island, Antarctic Peninsula.
Figure S2. Schematic tectonic setting of the 
Magallanes-Austral, Larsen, and Byers’s basins with 
extant continental borders during the Late Cretaceous 
(Campanian) (Hervé et al. 2006; Jordan et al. 2020). 
The red star indicates the location of JRB (SHIF). 
Abbreviations: AP, Antarctic Peninsula, MR, Magallanes 
Region, PAT, Patagonia, TI, Thurston Island.
Figure S3. (a.) Sketch diagram of Vegasaurus molyi 
(MLP 93-I-5-1) skeleton in the quarry, based on field 
and preparation notes and photographs; (b.) First field 
photograph of the study site (locality VEG IAA 2/93).
Figure S4. Bar chart showing the percentage of 
elasmosaurid specimens (n= 48) from SHIF that 
preserve different skeletal elements: a) ribs 
and gastralia; b) girdle bones; c) phalanges and 
metapodials; d) tarsal / carpals elements; e) propodio; 
f) caudal vertebrae; g) dorsal and sacral vertebrae; 
h) cervical and pectoral vertebrae; i) cranium and 
mandible and j) teeth.
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