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Abstract: Essential oils (EOs) or vegetable oils have become the focus of several studies
because of their interesting bioactive properties. Their application has been successfully
explored in active packaging, edible coatings, and as natural flavoring to extend the shelf
life of various types of food products. In addition, alternative methods of extraction of
EOs (ultrasound-assisted extraction, microwave-assisted extraction, pressurized liquid
extraction and supercritical fluid extraction) have been shown to be more attractive
than traditional methods since they present better efficiency, shorter extraction times
and do not use toxic solvents. This review paper provides a concise and critical view
of extraction methods of EOs and their application in food products. The researchers
involved in the studies approached in this review were motivated mainly by concern
about food quality. Here, we recognize and discuss the major advances and technologies
recently used to enable shelf life extension of food products.
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techniques.

INTRODUCTION

Growing consumer preference for safe, non-toxic
foods with increased shelf-life has stimulated
research on natural food preservatives (Wu et
al. 2019). In recent years, the use of essential oils
(EOs) has become a very useful technology due
to their wide range of natural biologically active
compounds, which are capable of aiding in the
preservation of food systems (Freitas & Cattelan
2018, Khorshidian et al. 2018).

The EOs have been studied mainly due to
their antioxidant, antimicrobial, insecticidal,
antitumor and antidiabetic properties, and have
been mainly applied in active packaging, edible
coatings, and as natural flavoring (Brahmi et al.
2016, Khorshidian et al. 2018, Periasamy et al.
2016, Yen et al. 2015).

In the food industry, the desire to offer
packaging that can protect food against external
factors and ensure the safety of the food has
stimulated studies about the development
of packaging incorporated with EOs. These
packaging systems, known as active packaging,
interact with the food and gradually release
bioactive compounds capable of minimizing
or eliminating the presence of pathogenic
microorganisms and even inhibiting lipid
oxidation (Ribeiro-Santos et al. 2017, Sirocchi et
al. 2017).

The incorporation of bioactive compounds
aims to benefit food products by extending their
shelf life. This has become the focus of several
studies, and the application of nanotechnology
has assisted in overcoming technical challenges,
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such as solubility and stability of the bioactive
compounds. Nanoemulsion contributes
efficiently by promoting the application of EOs
in real food systems as a means of natural
conservation, thus increasing antimicrobial
activity and, consequently, food safety.
Nanoemulsion has contributed, for example,
to significant advances in the development of
edible coatings in food products (Abbas et al.
2015, Donsi & Ferrari 2016, Ma et al. 2016).

Furthermore, several materials used in food
packaging may be updated to incorporate EOs.
The current trend in food packaging is to use
polymeric matrixes obtained from renewable
and biodegradable resources, such as lipids,
proteins and polysaccharides, thus contributing
to environmental sustainability (Ribeiro-Santos
et al. 2017, Romani et al. 2017).

Another point related to food preservation
is the use of additives. There is a considerable
interest in use of EOs, because those substances
are considered safe food additives by the Food
and Drug Administration. Moreover, due to
the increase in consumer demand, there is a
tendency to research natural additives, since
synthetical ones are associated with negative
side effects to human health (Cacho et al. 2016).

In this context, the main objective of the
present work is to present a literature review
in order to disclose the major advances and
future trends regarding EO applications in food
products. This review focuses on relevant papers
published in the last eight years.

Essential oils

EOs are aromatic substances produced from
secondary metabolites of plants belonging to
the angiosperm family. They can be used for
different purposes in several fields, such as
pharmaceutical, cosmetic, agricultural and food
sectors. Their complexity may vary from 20 to 60
components (Asbahani et al. 2015) and they are
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characterized by two or three major components
which are considered as such due to their high
concentration (20 to 70%) in comparison to other
components that define the physicochemical
properties of the oil. The components existing
in lower concentrations are also important to
EO composition, due to the synergistic effect of
the combined components (Asbahani et al. 2015,
Pavela 2015).

Composition and quality of EOs depend on a
plant’s characteristics, its stage of development,
origin, part of the plant used, and age, time,
and condition at which the plant has been
harvested. In addition to those factors, EOs are
also affected by extraction method, analysis
conditions and the type of solvent used,
therefore, it is fundamental to choose the most
suitable method (Ribeiro-Santos et al. 2017,
Asbahani et al. 2015).

Conventional extraction methods

These are classic extraction methods based on
the distillation of water by heating, traditionally
used to recover EOs from oilseeds and medicinal
or aromatic plants. Next, some of the main
extraction techniques will be presented.

Steam distillation

Although EOs are produced by different
methods, the majority (93%) are produced by
steam distillation (Masango 2005). In practice,
the process uses water as an extraction agent
to vaporize or release volatile compounds from
the raw material. The compounds are volatilized
by absorbing heat from the steam and are then
diffused in the vapor phase. The vapor phase
is cooled and condensed before the water is
separated from the organic phase based on its
immiscibility (Prado et al. 2015).

Steam distillation can be combined with
other extraction methods, such as microwave
or ultrasound, to increase efficiency. This
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combination can provide faster extraction
kinetics, lower costs, reduce environmental
impact, and provide a product similar to that
obtained by conventional hydrodistillation
(Palma et al. 2013). Variants of steam distillation
are hydrodistillation and hydrodiffusion,
presented in the following sections.

Hydrodistillation

This method is the simplest and oldest method
used for the extraction of EO. Avicenna (980-
1037), was the first to develop extraction using
the still, extracting the first pure essential
oil from the rose (Ashbahani et al. 2015). The
hydrodistillation (HD) system for extracting EO
is equipped with a Clevenger type device. In
this process, plant materials immersed in water
are heated in a balloon; the water evaporates
and flows towards the condenser until the EO
is released (Gavahian & Farahnaky 2018). This
technique is efficient in isolating a wide variety
of EOs. However, it requires large amounts of
energy and its high temperatures can cause
changes in the compounds, with possible
degradation (Pavlic et al. 2015).

Consumer demands, unpredictable
energy costs in the future, and environmental
constraints drive the development of clean
technologies that prevent the use of chemicals
and consume less energy (Zermane et al.
2016). The HD process with ohmic heating is a
relatively new and innovative technique that has
gained increasing interest in the last decade for
promoting time and energy savings (Gavahian &
Farahnaky 2018).

Moreover, several improved modules
have been developed in recent years, such
as microwave compressed hydrodistillation,
microwave accelerated rod distillation,
microwave vacuum hydrodistillation, and

microwave-assisted hydrodistillation "¢ etat-20%),
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In current studies, HD has been used to
obtain oils of pink pepper (Dannenberg et al.
2017, Dannenberg et al. 2016), rosemary (Sirocchi
et al. 2017), orange leaves (Alparslan et al. 2016),
ginger (Noori et al. 2018), oregano (Asensio et al.
2015, Hashemi et al. 2017), mint (Smaoui et al.
2016), and citronella (Gavahian et al. 2018).

Hydrodiffusion

This is a particular type of steam distillation,
where the flow of vapors occurs from the top of
the generator (Asbahani et al. 2015). This method
has now been improved with the addition of
microwave technology. The technique using
microwave hydrodiffusion and gravity (MHG)
is a solventless extraction method, based on
the drilling of oil glands and subsequent oil
drainage by gravity (Singh et al. 2019).

The use of MHG technology improved the
extraction rate of rosemary, and only 20 min
was sufficient to achieve a yield comparable
to that obtained in 3 h by the conventional
HD method. Also, a mixture of molecules with
different properties (for example, polarity and
volatility) can be extracted in a single step,
such as essential oils and phenolic compounds
(Ferreira et al. 2020).

In the extraction of EO from cumin seeds,
the researchers observed that the chemical
composition was approximately similar for the
MHG and HD methods, with a drastic reduction
in the extraction time from 150 min of HD to 16
min (200 W) of MHG (Benmoussa et al. 2018).

Organic solvent extraction

The plant material is macerated in an organic
solvent; the extract is concentrated by removing
the solvent under reduced pressure. This
technique avoids the chemical changes and
artifacts produced by cold extraction compared
to hydrodistillation (Asbahani et al. 2015).
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For solvent extraction, organic solvents
such as n-hexane, alcohol, chloroform, water,
and acetone are used, which provide efficient
lipid recovery. (Pavli¢ et al. 2015). Hexane is also
an excellent solvent for oil because of the high
oil solubility, and because the oil can be easily
recovered by distillation. The main drawback of
the use of hexane is its high toxicity. As a result,
other solvents have been used to substitute
hexane in oil recovery including some medium
polarity alcohols such as isopropanol and
ethanol (Palma et al. 2013).

Soxhlet is one of the oldest extraction
procedures. It is the standard extraction
process (Zygler et al. 2012), since the solvent
is recirculated in the sample until the oil is
completely removed (Luque de Castro & Priego-
Capote 2010).

The Soxhlet procedure has many
disadvantages. For example, the average time
for extraction is 1 to 72 hours; the solutes
extracted by this method are obtained in high
volume and diluted form and, therefore, need

POTENTIAL USE OF ESSENTIAL OIL IN FOOD

to be concentrated before analysis. Perhaps the
biggest disadvantage of this method is the need
for expensive, toxic, and high purity organic
solvents (Yousefi et al. 2019).

Several modified Soxhlet systems have
been designed to overcome the drawbacks of
the classical technique. Most of them focus on
speeding up the process in an attempt to reduce
the solvent consumption and the thermal
degradation of the target compounds (Palma
et al. 2013). Some alternatives to increase the
speed at which the matrix releases components
include applying microwaves or ultrasound
(Luque de Castro & Priego-Capote 2012).

Alternative extraction methods

Most of the conventional methods need long-
term extraction, in addition to the use of high-
quality solvents. Alternative processes present
some advantages, such as reduction in extraction
time and power consumption, moreover, they
increase the oil yield and improve quality
(Asbahani et al. 2015).

Essential Qils Extraction Methods
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2. Hydrodistillation
3. Hydrodiffusion

4. Organic Solvent Extraction
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Figure 1. Extraction methods used for obtaining essential oils.
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Therefore, several alternative extraction
methodologies are reported in literature:
ultrasound-assisted extraction (Tekin et al.
2015, Fernandes et al. 2016), microwave-assisted
extraction (Franco-Vega et al. 2016, Chen et al.
2017), pressurized liquid extraction (PLE) (Rai et
al. 2017), and supercritical fluid extraction (SFE)
(Mustafa & Turner 2011, Dawidowicz et al. 2012).

These techniques are considered efficient
and economically viable for the extraction of EOs.
Green technologies are better options mainly
because they are ecologically correct and there
are fewer toxic solvents used in the extraction
process. In addition, selective extraction, in
most cases, occurs through changes in process
parameters and can operate at elevated
temperatures and pressures, reducing extraction
time (Bubalo et al. 2018).

Pressurized fluid extraction

Regarding alternative methods, pressurized
fluids under subcritical or supercritical
conditions are indicated as a promising
technique for the extraction of compounds
with high purity (Moncada et al. 2014, Zheng et
al. 2017). A supercritical fluid is any substance
whose temperature and pressure conditions are
above its critical parameters (Sanchez-Camargo
et al. 2017). In this state, the substance acquires
an intermediate behavior between gases and
liquids (Shivonen et al. 1999). Small variations
in temperature and pressure cause significant
changes in the properties of the supercritical
fluid (Panja et al. 2018).

Commonly used in supercritical extraction,
carbon dioxide (CO,) has advantageous
properties such as low reactivity, low toxicity,
and low cost, and is recognized as safe for use
in food products (Cornelio-Santiago et al. 2017,
Panja et al. 2018). It is a non-polar solvent and,
consequently, has an affinity for other non-polar
solvents (Herrero et al. 2006). This disadvantage
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is usually overcome by the addition of modifiers
or co-solvents capable of altering the solvation
power of the supercritical fluid, facilitating
the solubility and desorption of the analyte.
However, to avoid a reduction in selectivity, a
maximum of 10% v/v must be added (Pinto et
al. 2018).

Meanwhile, the subcritical state occurs
when an extraction solvent is used at a
temperature between its boiling point and the
critical temperature, at a pressure sufficient to
maintain the solvent in a liquid state (Lu et al.
2014). It is considered more advantageous than
the supercritical state because of the lower
pressures used, resulting in shorter extraction
times (Miao et al. 2013). Currently, the subcritical
pressurized n-propane has been efficient in
extracting fatty acids and active compounds
such as phytosterols and tocopherols present
in oils (Knez Hrncic et al. 2018, Lopes et al. 2020,
Trentini et al. 2017, Zanqui et al. 2020).

An alternative method involves the addition
of propane as a solubility modifier. Propane’s
solvent power is superior to CO,, requiring
lower solvent/feed ratios and lower operating
pressures. Also, propane can be easily removed
from the oil after extraction by simple solvent
depressurization (Palla et al. 2014) and can offer
convenient selectivity and safety properties
(Hegel et al. 2013), since one of the main
disadvantages of extraction with pressurized
propane is its flammability.

Pressurized liquid extraction

Pressurized liquid extraction (PLE) is another
alternative technique which shows satisfactory
results in relation to oil recovery and extraction
time, when compared to conventional methods.
In this technique, there is no need for filtration
steps, since compounds are dissolved in the
solvent and may remain inside the extractor.
The PLE process consists of placing the sample
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into the extractor and extracting its compounds
using a solvent, with temperatures going up to
200°C and pressures ranging from 4 to 20MPa.
The solvent is pumped into the extractor
containing the sample and remains there for
a period that may vary depending on the type
of solvent and matrix used. Then, the extracted
material is transferred to a sample container
and undergoes specific analyses (Nieto et al.
2010, Dawidowicz et al. 2012).

This method has been successfully used
in the extraction of green coffee oil (Xu et al.
2019), pomegranate bark oil (Santos et al. 2019),
crambe seed oil (Mello et al. 2019) and cypress
oil (Dawidowicz et al. 2012).

Despite being an efficient technique, PLE is
not able to separate compounds from similar
phenolic classes, and the extracts produced
contain a wide mixture of components. Solid
adsorbents (solid-phase extraction - SPE) can be
used to separate specific classes and phenolic
compounds. In this context, the PLE method has
been improved through online SPE padding for
simultaneous extraction and fractionation (Silva
et al. 2020).

Ultrasound extraction

In the ultrasound extraction technique, the
ultrasound apparatus promotes a higher rate
of solvent penetration in the sample, caused by
cavitation bubbles formed duringthe application
of sonic waves. In general, the use of ultrasound
causes vibrations in the matrix, thus enhancing
the contact surface between the matrix and
the solvent and resulting in a higher solvent
recovery in a short period of time. Additionally,
the technique requires low temperatures, which
facilitates the recovery of volatile compounds in
EOs (Tekin et al. 2015, Samaram et al. 2014).
Current studies have used this method in
pomegranate bark (Sharayei et al. 2019), moringa
seed (Zhong et al. 2018), ginger (Fernandes et al.
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2016), papaya seed (Samaram et al. 2014), garlic
(Tekin et al. 2015) and grape marc (Goula et al.
2016).

A combined method of ultrasound-assisted
and microwave-assisted extractions was adopted
for the extraction of polyphenols in distilled
water (Yu et al. 2017). Another combined method
included ultrasound, followed by supercritical
CO, to extract polyphenols from grape marc
(Porto et al. 2015).

Microwave-assisted extraction

Among alternative methods, we also highlight
microwave-assisted extraction. This is an
emerging technique which improves material
recovery, and reduces the time and energy
needed in the process. It uses microwave
radiation as a heating source in the extraction
process. Microwaves, through dipole rotation
and ionic conduction, cause instantaneous
heating inside the sample, thus leading to
faster extractions (Franco-Vega et al. 2016).
Hibiscus chalice (Cassol et al. 2019), lemon peel
(Rodsamran & Sothornvit 2019), grape marc
(Garrido et al. 2019) and orange peel (Franco-
Vega et al. 2016) are examples of raw material
used in the microwave assisted extraction.

Emerging improvements in microwave-
assisted extraction include combining it with
other technologies to maximize the vyield
of target food components. The integration
of alternative and environmentally friendly
solvents (ionic liquids, deep eutectic solvents,
multiphase solvents and nonionic surfactants
at cloud point temperature) promotes overall
extraction efficiency (Ekezie et al. 2017).

Lately, enormous attention has been
given to extraction of food constituents using
the synergistic application of microwaves to
ultrasound irradiation techniques (Yu et al. 2017),
negative pressure cavitation (Yao et al. 2015),
sub or supercritical extraction (Matusiewicz &
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Slachcinski 2014), enzymatic extraction (Rashed
et al. 2017) and hydrodiffusion (Singh et al. 2019).

Applications of essential oils in food

When applied to food, EOs can act as flavoring,
antioxidant and antimicrobial agents, with
special importance given to the last two
functions. EOs can be added directly to food or
incorporated into material used for packaging
(Ribeiro-Santos et al. 2017, Falleh et al. 2020).
Table | presents some important uses of EOs
in the food industry, such as their use in active
packaging, edible coatings and food additives.

Additives

Theinclusion of EOs in food as conserving agents
isan alternative to the use of synthetic additives.
Antigo et al. (2017) produced milk caramel spread
(dulce de leche) with an addition of clove and
cinnamon EOs. Lipid oxidation, microbiological,
physical, chemical and sensorial attributes
of the product were analyzed. There were no
alterations related to composition, texture, color
and sensory attributes. Microbiological analyses
indicated the EOs used are active antimicrobial
components and including them in dulce de
leche provided general sensory acceptance
similar to the traditional product. The sample
with cinnamon EO showed less lipid oxidation
during storage.

EOs have been used to reduce the addition
of nitrites in meat products. In this context, a
study evaluated the effect of adding coriander
EO in concentrations of 0.075-0.150 pL/ g on
the characteristics of cooked pork sausages,
produced with different concentrations of
sodium nitrite (0.50 and 100 mg/ kg). The
combination of 60 mg/ kg of nitrite with 0.12
uL/ g of EO resulted in a better microbial and
oxidative stability and satisfactory values of
red color, therefore, it is possible to use the
coriander EO to reduce the amount of sodium
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nitrite added to cooked pork sausages, while
retaining high quality and shelf life (Sojic et al.
2019).

The Melaleuca alternifolia EO, also known
as tea tree EO, is widely used due to its broad-
spectrum antimicrobial activity and powerful
anti-inflammatory properties. Thus, the
objective of one study was to evaluate the
antimicrobial potential of this EO (1.5%) in the
inhibition of Listeria monocytogenes in ground
beef. The samples were inoculated with four
different suspensions of L. monocytogenes (1.5
x 10% 4.6 x 10% 9.2 x 10°, and 1.2 x 10” CFU/ mL)
and stored at 4 °C for 14 days. Except for the
sample inoculated with the suspension at 1.5 x
10® CFU/ mL, the tests showed that tea tree EO
had antimicrobial activity (Silva et al. 2019a).

Shange et al. (2019) evaluated the effect
of adding oregano EO (1%) on the shelf life
of wildebeest biceps femoris muscles, stored
anaerobically at 2.6 °C for 9 days. Lipid oxidation
was stabilized at <9 mgMDA/ kg for the sample
with EO, while the same was not observed for
the control. Samples with EO also showed lower
total viable counts (TVC), coliform counts, and
lactic acid bacteria (LAB) counts. The count limit
for TVC and LAB for this product was reached 3
days later than in the control group. In addition,
bacterial growth rates for TVC and LAB were
>14-fold slower for the samples with EQ. Hyptis
suaveolens EO has also been studied due to its
antibacterial, antioxidant and antifungal action.
Based on this, Mihin et al. (2019) evaluated the
addition of this EO and its effect on the shelf
life of beef. During in vitro tests, the EO showed
inhibitory activity against 11 microbial strains
and was able to preserve the quality of the meat
for 7 days.

Another alternative to extend the shelf life
of meat is the use of EOs in marinades, as in the
study by Haute et al. (2016) which consisted of
immersing meat (pork fillet, pork bacon, chicken
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Table I. Examples of essential oils application in food.

Application Food

Milk caramel spread
(dulce de leche)

Cooked pork
sausages

Ground beef

Wildebeest biceps
femoris muscles

Ground beef

Meat
Pork meat

. Minas frescal cheese
Additive

Pressed ewes' cheese
Fruit juice
Pomegranate
Rice
Seeds

Bread

Fish burger

Beef patties

Cheese

Peach
Corn
Cherry tomato

Bread
Active packaging Chicken fillets
Shrimp

Otolithes ruber fish
Beef

Fresh poultry meat
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Essential oil

Clove and Cinnamon

Coriander
Tea tree

Oregano

Hyptis suaveolens
Cinnamon, Oregano,
and Thyme

Cinnamon
Oregano and Rosemary

Thyme, Lemongrass and
Basil

Japanese Mint and
Pepper Mint

Eucalyptus, Galbanum,
Thymus, and Clove

Nutmeg
Lemongrass

Oregano and Thyme

Lemon

Cinnamon

Pink Pepper

Ginger and Angelica
Oregano and Cinnamom
Oregano
Lemongrass

Polylophium
involucratum

Clove

Zataria multiflora and
pepper mint

Chrysanthemum

Rosemary
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Property

Antimicrobial
Antioxidant

Antimicrobial
Antioxidant
Antimicrobial

Antimicrobial

Antimicrobial
Antioxidant

Antimicrobial
Antimicrobial

Antimicrobial

Antimicrobial

Antimicrobial
Antimicrobial
Antioxidant
Antimicrobial

Antimicrobial
Antioxidant

Antimicrobial

Antioxidant

Antimicrobial

Antimicrobial

Antioxidant
Antimicrobial
Antimicrobial

Antimicrobial
Antimicrobial

Antimicrobial
Antimicrobial
Antioxidant

Antimicrobial
Antioxidant

Antimicrobial
Antioxidant

€20191270 8120

Reference

Antigo et al. 2017

Sojic et al. 2019
Silva et al. 2019

Shange et al. 2019
Mihin et al. 2019

Haute et al. 2016
Haute et al. 2017

Diniz-Silva et al. 2020
Licon et al. 2020
Guedes et al. 2016

Jahani et al. 2020
Das et al. 2020
Deepika et al. 2020

Rosa et al. 2020
Hasani et al. 2020

Ghaderi-Ghahfarokhi et
al. 2017

Dannenberg et al. 2017

Jiang et al. 2020

Mateo et al. 2017

Kwon et al. 2017
Oliveira et al. 2020

Javaherzadeh et al. 2020

Ejaz et al. 2017

Heydari-Majd et al. 2019
Lin et al. 2019

Souza et al. 2019
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Table I. Continuation.

POTENTIAL USE OF ESSENTIAL OIL IN FOOD

L ) Antimicrobial
Cheese Pimpinella saxifraga L Ksouda et al. 2019
Antioxidant
Beef slices Cumin Antimicrobial Behbahani et al. 2020
. . Antimicrobial .
Pistachio Thyme o Hashemi et al. 2020
Antioxidant
Mango Cinnamon Antioxidant Yin et al. 2019
Table grape Thymus Antimicrobial Pina-Barrera et al. 2019
. . Guava Cinnamon and Lemon Antioxidant Murmu and Mishra 2018
Edible coatings Case gooseberry Antimicrobial | Gonzalez-Locarno et al.
Antioxidant 2020
Strawberry Lemongrass Antioxidant Silva et al. 2019
. Antimicrobial .
Rainbow trout fillets Ferulago angulata . Shokri et al. 2020
Antioxidant
. . Antimicrobial )
Chicken breast Ginger . Noori et al. 2018
Antioxidant
Cheese Oregano Antimicrobial | Artiga-Artigas et al. 2017

fillet, chicken skin and salmon) in a solution
marinated with cinnamon, oregano, and thyme
EOs. It was observed that yeast growth was
inhibited by immersion in 1% cinnamon EO in
all matrixes. Haute et al. (2017) used a marinade
with 1% cinnamon EO in pork and salmon
and subsequently packed them with modified
atmosphere (MAP) or vacuum. Cinnamon EO
extended shelf life of pork packed in MAP and
vacuum against microbial growth but did not
have the same effect on salmon.

Diniz-Silva et al. (2020) evaluated the
incorporation of oregano and rosemary EOs
in the processing of Minas Frescal cheese
stored under refrigeration temperature (7 ©C).
In the first 15 days, a significant reduction in
Escherichia coli counts was observed in the
analyzed samples. The addition of EOs to cheese
also had a positive impact on sensory analysis.
Another cheese study evaluated the addition of
different EOs in the production of pressed ewes’
cheese. The thyme EO was the most effective in
completely inhibiting the growth of Penicillium
verrucosum and in reducing the Clostridium
tyrobutyricum count, without affecting the

natural flora present in the cheese (Licon et al.
2020).

Traditionally, safety and stability of fruit
juices were reached through thermal processing
and use of chemical preservatives. Guedes et al.
(2016) highlighted the use of EOs as an alternative
for the reduction of pathogenic microorganisms
in fruit juices. In this study, Japanese mint and
peppermint EOs were evaluated. Such EOs
induced reductions in counts of Escherichia
coli, Listeria monocytogenes and Salmonella
enteritidis in cashew, guava, mango, and
pineapple juices. Incorporation of these EOs in
fruit juices promoted a reduction in pathogenic
bacteria without altering their physical-chemical
properties; however, it significantly affected the
flavour.

In order to reduce the application of
synthetic antifungals in pomegranate fruits,
Jahani et al. (2020) evaluated the addition
of different concentrations of eucalyptus,
galbanum, thymus, and clove EOs and their
inhibitory effects against Aspergillus niger. All
analyses were performed on the first and tenth
days of storage. In in vitro analyses, the growth
of A. niger was completely inhibited on the first
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and tenth days by the application of clove EO in
the concentrations of 200, 400, 600 and 800 uL/
L. Thyme EO was effective in the concentration
of 800 pL/ L on the tenth day. The fruits treated
with thyme EO at a concentration of 800 pL/ L
showed the least weight loss and the highest
firmness in comparison with fruits treated with
other EOs. In addition, the highest anthocyanin
content was obtained with eucalyptus EO at 800
pL/ L.

The nanoencapsulation of EOs for use in
food as a preservative is a recent and promising
research field. EOs stored under ambient
conditions have some disadvantages, such as
insolubility in water, easy oxidation, instability,
volatilization and degradation of bioactive
compounds in a short period of time. These
factors can reduce their effectiveness when used
for practical applications. To overcome these
drawbacks and keep the original characteristics
of EOs, nanoencapsulation is an efficient
method (Das et al. 2020). Emulsification, spray
drying, ionic gelation and coacervation are the
most adopted nanoencapsulation techniques
(Chaudhari et al. 2019).

A large number of nanoencapsulation
carrier matrixes (nanoencapsulates) can be
used to encapsulate EO and their bioactive
compounds, such as starch, chitosan, zein,
cyclodextrin and cellulose. These encapsulants
must be biodegradable and safe for human
health. Depending on the method adopted,
the nanoencapsulated EOs can take different
forms, such as nanoemulsions, nanoparticles,
nanotubes, nanogel, nanosponge, nanofibers
and nanoliposomes. Among them,
nanoemulsion, nanoparticle and nanogel are
the most frequently used systems in the food
sector (Chaudhari et al. 2019).

Astudyusingnanoencapsulationtechnology
evaluated the antifungal activity of nutmeg EO
applied to the chitosan nano-matrix in order to
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control post-harvest losses of rice grains. The
EO was tested against 15 food-borne fungi. In
comparison with free EO, nanoencapsulated EO
showed greater efficacy against the evaluated
fungi, and at lower doses, was able to inhibit
the aflatoxin B1 biosynthesis by Aspergillus
flavus strain LHP R14. In situ efficacy of
nanoencapsulated and unencapsulated EO on
stored rice seeds showed effective protection
against lipid peroxidation, fungal infestation
and aflatoxin B1 contamination (Das et al. 2020).

Deepika et al. (2020) tested the potential
of lemongrass EO encapsulated into chitosan
nanoparticles against Aspergillus flavus and 15
other fungi, in order to control the deterioration
of stored food. After nanoencapsulation, the EO
showed better effectiveness in inhibiting the
growth of fungi and production of aflatoxin B1
by A. flavus. Furthermore, the nanoencapsulated
lemongrass EO exhibited remarkable antioxidant
activity and did not have adverse effects on
seed germination.

In the research developed by Rosa et
al. (2020), oregano and thyme EOs were
encapsulated using zein nanocapsules.
Nanoencapsulated EOs have been shown
to be more effective against gram-positive
bacteria compared to gram-negative bacteria.
In addition, nano-encapsulated EOs were also
effective in preserving bread, protecting against
the proliferation of molds and yeasts.

LemonEQisanantimicrobialandantioxidant
compound, used mainly as a food additive. Thus,
a study aimed to evaluate the antioxidant effect
of lemon EO, (0.5 and 1%) nanoencapsulated
in chitosan/modified starch, in fish burgers
stored for 18 days. The nanoencapsulated EO
in the concentration chitosan: modified starch
(1.5: 8.5%) improved the quality characteristics
of the fish burgers. This improvement was due
to the reduction in the values of peroxides (PV),
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thiobarbituric acid value (TBA) and total volatile
nitrogen base (TVB-N) (Hasani et al. 2020).
Ghaderi-Ghahfarokhi et al. (2017) evaluated
the addition of cinnamon EO incorporated into
chitosan nanoparticles in beef patties. Both
free and nanoencapsulated cinnamon EO were
effective in reducing the microbial population
of samples compared to the control (without
addition of EO) over an 8-day storage period at
4°C. At the end of the storage period, the best
formulations in thiobarbituric acid reactive
substances (TBARS) test were the samples with
0.05% of ascorbic acid and 01% of encapsulated
EO. In addition, it was observed that the color
of the samples containing nanoencapsulated
EO changed slightly, while for the sample with
free EQ, there were significant changes in color.
In the sensory analysis, the beef patties with
free cinnamon EO showed lower consumer
acceptability in the color and odor parameters.

Active packaging

Through interaction with products, active
packaging increases the shelf life of food,
improving or maintaining its properties. Due to
the antimicrobial and antioxidant properties of
EOs, the development of active packaging for
food with EO incorporation has become the
focus of many research studies (Ribeiro-Santos
et al. 2017).

One of these studies developed and
evaluated active films made of cellulose acetate
incorporated with pink pepper EO. Active films
were evaluated based on their action in sliced
mozzarella cheese against Staphylococcus
aureus, Listeria monocytogenes, Escherichia coli
and Salmonella Typhimurium. Concentrations
of 2, 4 and 6% of the added EO were active
against L. monocytogenes and S. aureus. The
tests showed that affinity between nonpolar EO
molecules and the lipid components of cheese
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allow migration of antimicrobial properties to
food (Dannenberg et al. 2017).

Ginger and angelica EOs are known for
their antimicrobial and antioxidant properties.
Thus, a study aimed to develop films based
on polylactic acid (PLA) and EO of ginger and
angelica for the preservation of peaches. The
film with the addition of angelica EO showed the
highest antioxidant activity and had the best
effect on the preservation of peach samples.
Due to the delay in the oxidation process, the
shelf life of this fruit was extended to more than
15 days (Jiang et al. 2020).

Mateo et al. (2017) developed a packaging
made of ethylene-vinyl alcohol copolymer
incorporated with oregano and cinnamon
EOs to control the usual fungi associated with
aflatoxin contamination in maize grains. The
bioactive film that contained an effective dose
of cinnamaldehyde was the most efficient in
controlling Aspergillus flavus and Aspergillus
parasiticus. Antimicrobial activity was also
tested in cherry tomatoes with active packaging
containing microencapsulated oregano EO.
Results showed that tomatoes’ quality and
their physical properties were preserved. The
packaging with 2% oregano EO was the most
efficient, reducing 91.64% of the microbial load
(Kwon et al. 2017).

Oliveira et al. (2020) developed cashew gum
and gelatin films, incorporated with ferulic acid
and lemongrass EO, for application as bread
packaging. The packaging with EO provided six
days of storage for bread compared to three
days for commercial packaging. The increase
in the shelf life of the bread samples suggests
antimicrobial action of the lemongrass EO
packaging.

EO nanoencapsulation techniques
have also been widely used for application
in active packaging. A study investigated
the effect of applying a ploylactic acid film
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(PLA) incorporated with nanochitosan and
Polylophium involucratum EO in chicken fillets
stored for 10 days at refrigerated temperature.
In the packaged samples, the total microbial
population was reduced by approximately 1-3
log CFU/ g. In addition, the films extended the
shelf life of the chicken fillet by more than 10
days, without producing adverse sensorial
properties (Javaherzadeh et al. 2020).

Ejaz et al. (2018) used clove oil to
develope active films for peeled shrimp. The
authors produced a not very flexible film
with high mechanical resistance, combining
nanocomposites, zinc oxide and clove EQ. In this
study, films with 50% of clove EO showed the
maximum antibacterial activity against Listeria
monocytogenes and Salmonella typhimurium.

Heydari-Majd et al. (2019) produced films
based on PLA containing 1.5% zinc oxide
nanoparticles and different concentrations of
Zataria multiflora and peppermint EOs. The
films were applied to Otolithes ruber fish, stored
at 4 °C for 16 days. Compared to the control
sample, the shelf life of the packaged fish fillet
samples increased from 8 to 16 days. The lowest
values of TBARS and TVB-N were obtained for
samples packed with films containing 1.5%
Zataria multiflora EO.

EO extracted from the chrysanthemum
plant is used mainly as an organic pesticide
and as an insect repellent. This EO has also
exhibited antimicrobial properties. Therefore,
Lin et al. (2019) incorporated chrysanthemum
EO into chitosan nanofibers for application as
packaging in beef. After 7 days of storage, the
nanofibers with EO were effective against Listeria
monocytogenes bacteria, with inhibition rates of
99.91%, 99.97% and 99.95% at temperatures of
4 °C, 12 °C and 25 °C, respectively. Due to the
release of antioxidant components present in
the EO by nanofibers, the TBARS value in beef

POTENTIAL USE OF ESSENTIAL OIL IN FOOD

was 0.135 MDA/ kg lower compared to the control
sample, after 12 days at 4 °C.

Souza et al. (2019) developed
bionanocomposites based on chitosan and
montmorillonite, with incorporation of rosemary
EO in different concentrations (0.5, 1 and 2%)
to use as primary packaging for fresh poultry
meat. The meat samples were packaged and
stored for 15 days at 5 2C. In comparison to
the control, the samples packaged showed a
reduction of 1.2-21 log UFC/ g in the total count
of microorganisms. EO films were also able to
delay the lipid peroxidation and discoloration of
the fresh poultry meat.

Edible coatings

The coating technique consists of applying a thin
layer of a biodegradable and edible material on
the food surface in order to prolong the shelf
life of a wide variety of products. Some of the
functions of the edible coating are to prevent
undesirable chemical reactions, to serve as a
barrier against moisture loss and to prevent
deterioration by microorganisms. A wide variety
of polymeric matrixes can be used, such as
chitosan, sodium alginate and gelatin, which
can be incorporated into EOs to increase the
effectiveness of these coatings (Ju et al. 2019,
Pina-Barrera et al. 2019).

Oneoftheediblecoatingstudiesinvestigated
the effect of adding a coating based on sodium
alginate and EO of Pimpinella saxifrage, at a
concentration of 1-3%, to cheese samples. The
EO enrichment of sodium alginate coating,
particularly at 3%, improved the preservation of
the analyzed samples. The preservation of pH
and color were observed, as well as reduction
of weight loss and enhanced oxidative and
bacterial stability (Ksouda et al. 2019).

Cumin EO is known for its anti-inflammatory
and antimicrobial properties. Thus, one study
aimed to develop a coating based on Shahri
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Balangu and cumin EO to improve the shelf
life of beef slices, stored for 9 days under
refrigerated temperature. The counts of
psychrotrophic bacteria, coliforms, Escherichia
coli, Staphylococcus aureus, molds and yeasts
were significantly reduced. Moreover, there was
a reduction in lipid oxidation, and the coated
samples showed no adverse effects on the
sensory characteristics (Behbahani et al. 2020).

Hashemi et al. (2020) evaluated the effects
of coatings made with different concentrations
of alginate and thyme EO on the postharvest
characteristics of fresh pistachios stored for
39 days at 3 °C and 80% relative humidity. The
addition of coatings on the fruits contributed to
the maintenance of higher antioxidant activity
and phenolic content in comparison with the
control. In addition, the coated samples reduced
mold and yeast growth. The values of free fatty
acids and peroxides were also significantly lower
in pistachios with the addition of the coating
enriched with thyme EO.

Application of edible coatings incorporated
with EO in fruits has become a promising field.
Yin et al. (2019) evaluated the addition of a
coating on fresh mangoes stored for 14 days, at
25 °C and 50% relative humidity. The samples
were packaged in multilayer coatings made
from chitosan, cinnamon EO microcapsules and
alginate solutions. Compared to the control,
the coated fruits could effectively inhibit the
decrease of vitamin C content, slow down weight
loss and delay the appearance of respiration
peaks. Additionally, the mangoes coated with
five layers still maintained their commercial
value during the evaluated period, although the
same was not observed for the control samples.

In another study, Pina-Barrera et al. (2019)
developed a multisystemic coating based on
pullulan and polymeric nanocapsules containing
thymus EO, in order to increase the shelf life of
table grapes. The shelf life study showed that the
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coated grapes maintained their characteristics
of firmness, total acidity, color, and total soluble
solids for a longer time compared to the control.
Furthermore, the coating inhibited the growth
of undesirable microorganisms and reduced
oxidative stress induced during the postharvest
period. Murmu & Mishra (2018) demonstrated
improved antioxidant activity in guava coated
with arabic gum, sodium caseinate, cinnamon
and lemon EO-based coating.

Gonzalez-Locarno et al. (2020) evaluated the
effect of coatings made from chitosan and rue
EO in different concentrations for application
on cape gooseberries stored at 18 °C for 12 days.
The fruits coated with 0.5% EO suffered lower
weight loss compared to the uncoated samples.
The application of coatings with 1.0 and 1.5%
delayed the growth of aerobic mesophilic
bacteria, molds and yeasts. The coating also
preserved the antioxidant properties of the fruits
after 12 days. Silva et al. (2019b) obtained similar
results in his research on edible coatings made
of pectin, cellulose nanocrystals, glycerol and
lemongrass EO, for application on strawberries
under refrigeration temperature, during 8 days
of storage. Application of the coatings reduced
the weight loss and the anthocyanin content of
the fruits.

The use of nanoemulsions offers clear
advantages, such as better antimicrobial activity,
reduced interactions with other components
of the food matrix and greater stability to
EO compounds (Prakash 2018). Therefore,
Shokri et al. (2020) evaluated the efficiency of
nanoemulsions in improving the characteristics
of a coating based on chitosan and Ferulago
angulata EO, and the coating’'s potential to
extend the shelf life of Rainbow trout fillets
stored at 4 °C for 16 days. Nanoemulsions with
3% EO showed the best inhibitory effect on the
growth of bacteria in the fish fillet samples.
In addition, nanoemulsions improved the
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effectiveness of the coating in retarding the
increase of lipid peroxidation and TVB-N of the
analyzed samples.

The work of Noori et al. (2018) reported
the use of nanoemulsion with ginger EO in a
sodium caseinate edible coating applied to
chicken breast refrigerated for 12 days. Coating
with 6% of EO ginger nanoemulsion resulted in
significant decrease of total aerobic bacteria.
Although antioxidant activity was not significant,
samples coated with nanoemulsion showed
less difference in color and cooking loss, and
proved effective in prolonging the shelf life of
the product.

Artiga-Artigas et al. (2017) applied
nanoemulsion-based coatings containing
oregano EO incorporated with mandarin fibers
and sodium alginate in low-fat cheese in order
to extend its shelf life. The authors observed
that the cheese’s native microbiota was
controlled and growth of Staphylococcus aureus
was decreased from 6.0 to 4.6 log CFU/g after 15
days.

Legal aspects of the use of essential oils in
food

EOs are classified as flavorings by the European
Commission (EC) (EC 2008). Since 2012, the
European Union has adopted a list of flavorings
approved for use, which is updated frequently.
EOs are also classified and registered as
flavorings by the United States Food and Drug
Administration (FDA) and considered Generally
Recognized as Safe (GRAS) (FDA 2020).

The EOs classified as GRAS comprise a
series of EOs most commonly used, such as
oregano, coriander, ginger, thyme, clove, basil,
cinnamon, nutmeg, and menthol, among others.
Despite being classified as GRAS, EOs have a
recommended intake limit, since some of their
components can cause allergies. The Codex
Alimentarium, the Council of Europe (CoE), Food
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Chemical Codex (FCC), Manufacturers Association
(FEMA), and the International Organization of
Flavor Industries (I0FI) have adopted specific
protocols to check the toxicity of EOs and their
components, as well as established security
restrictions.

Some of the EOs, such as lavender,
eucalyptus and laurel, have been linked to
allergic reactions. Consequently, each EO
added to a food matrix must be validated by
its safe intake limit for humans, considering the
classification of EOs and their limits already pre-
established by health organizations, such as the
FDA (Falleh et al. 2020).

Future perspectives

The application of EOs in food matrixes has
emerged from an increasing trend to replace
synthetic preservatives. EOs used as natural
additives offer a clear advantage (Falleh et al.
2020). Several studies have been successful in
incorporating EOs in food matrixes, either in
their free form or added to materials to produce
active packaging and edible coating. Ecological
technologies capable of increasing the bioactive
potential of EOs have also been studied and
used, such as the alternative extraction methods
and micro and nanoencapsulation techniques
previously described in this literature review.

In addition to EOs that already have pre-
established limits for use in food, regulated by
food safety organizations, it is expected that in
the near future, the standardization of new types
of EOs will occur, so that they may be safely
applied to foods in doses capable of producing
desirable results. Moreover, the synergism
between different EOs for food applications
presents a field of research with promising
future perspectives. Future research combining
alternative EO extraction methods with emerging
technologies such as nanoencapsulation is also
expected.
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CONCLUSION

The study of the properties and extraction
methods of EOs, as well as their application
in food, has proved to be a subject of extreme
relevance, since safe and high-quality food
products have become a requirement of
consumers in recent years. Based on this
literature review, it was possible to identify the
main advances made and technologies used
in the development of active packaging, edible
coatings and food additives. In addition, the
ability of EOs to control microbiological action
and extend shelf life of products, thereby
providing safe products, has become clear. Thus,
future studies should be conducted to further
explore the interactions between EOs and food.
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