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Abstract: Oil spills, intrinsically related to the petroleum production chain, represent 
a risk to the marine environment and a potential threat to humans through seafood 
consumption. We revised the NE Brazil oil spill and other accidents along the Brazilian 
coast, with a focus on seafood contamination, covering topics such as bioaccumulation, 
bioaccessibility, and risk analysis. Comprehensive knowledge of the impacts of spills 
helps in the interpretation of the dynamics of hydrocarbons released into the sea, 
contributing to actions to control their negative impacts. Currently, no legal limits have 
been established permanently in Brazil for PAHs in seafood edible tissues.
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INTRODUCTION
The land-sea transition region encompasses 
various ecosystems, connecting rivers, estuaries, 
bays, and the coastal ocean (Bauer et al. 2013). 
Features such as high rates of primary and 
secondary productions, high abundance, and 
biodiversity of flora and fauna are examples 
of many marine ecosystem services used by 
humans to build their well-being. Consequently, 
it results in the attraction and settlement of over 
38% of the World’s population in the coastal 
zone (Unep 2014). Indeed, human activities are 
recognized as posing threats to the health of 
major Earth systems, including the ocean and 
its coastal zone, at local, regional, and/or global 
scales (Ekins et al. 2019). 

Developments in the fossil fuel industry - in 
pace with modern society’s demand for energy 
- have the potential to affect coastal ocean 
ecosystems and human health (Patin 1999). Most 
of the oil (and related refi ned products) directly 

affecting coastal (and marine) ecosystems come 
from chronic inputs, and are related to the oil 
and gas exploration, production, transportation, 
refining, and use (NRC 2003). However, acute 
events of large oil spills also have negative 
environmental consequences, as observed in 
the case of the Deep-Water Horizon rig blowout 
(Ramseur 2010) or the Exxon Valdez in Alaska 
(Peterson et al. 2003), just to name a few 
examples. Social and economic impacts are 
also relevant aspects in the case of a coastal 
oil spill, including a drastic drop in revenues 
from tourism and fi sheries marketing by local 
traditional communities and the contamination 
of seafood (Storelli et al. 2013, Wenzl & Zelinkova 
2019).

In a scenario of the high environmental and 
socio-economic vulnerability of coastal locations 
and the human population affected by an oil 
spill, negative impacts can be aggravated due to 
the different social groups directly impacted by 
such accidents, the activities affected, and the 
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profile of the compounds present in the oil and 
their persistence and bioaccumulation in the 
marine environment (Fattal et al. 2010, Duran & 
Cravo-Laureau 2016).

Petroleum and its products are sources of 
PAHs that are characterized by a predominance of 
2-3 rings and alkyl homologs in the naphthalene, 
phenanthrene, dibenzothiophene, and chrysene 
series (Tissot & Welt 1984, Wang et al. 2003). 
Another important origin of polyaromatic 
compounds includes the combustion of fossil 
fuels and biomass burning, which produces 
non-alkylated compounds with 4-6 rings known 
as pyrogenic PAHs (Wang et al. 1999). The distinct 
molecular distribution of PAHs is used as tool 
for assigning sources of petrogenic and/or 
pyrolytic compounds in the atmosphere, water, 
sediments, and biological tissues (Tsapakis & 
Stephanou 2005, Mirza et al. 2012, Asagbra et 
al. 2015, Sun et al. 2016). For example, bivalves 
collected near water discharge platforms 
show enhanced levels of naphthalenes, 
phenanthrenes, or dibenzothiophenes, all 
characteristic of petroleum (Neff et al. 2011). A 
similar bioaccumulation profile of petroleum-
derived PAHs is also observed in Guanabara 
Bay, an oil-residue chronically impacted bay 
surrounded by the Rio de Janeiro metropolitan 
region (Francioni et al. 2005, Ramos et al. 2017). 

The fisheries body-burden of contaminants 
in affected areas includes a myriad of organic 
compounds and inorganic elements (including 
radioactive) that are present in crude oils 
(Barescut et al. 2009, Jisr et al. 2020, Ilori & 
Chetty 2021). Herein, the focus will be on organic 
compounds, particularly those with a cyclic 
aromatic structure. In petroleum, the mono-
cyclic aromatic hydrocarbons, namely benzene, 
toluene, ethylbenzene, and isomers of xylenes 
(the BTEX fraction) are abundant components 
but also highly volatile and cause short-term 
impacts (Neff et al. 2011). In contrast, compounds 

with two up to six-fused benzene rings, 
known collectively as the polycyclic aromatic 
hydrocarbons (PAHs) (Anderson & Achten 2015, 
Stout et al. 2015), are of environmental relevance 
because they are ubiquitous and persistent in 
aquatic systems, bioaccumulate through the 
chain food and can act as agents of endocrine 
disruption, mutagenicity (IARC 2010, Bergman 
et al. 2013) and/or carcinogenicity (Hwang et al. 
2012). In addition, the recognition of the adverse 
effects of PAHs on human health has resulted 
in the establishment by government agencies 
of threshold levels that guarantee the safety 
of seafood for human consumption, as will be 
detailed later.

Here, the impact of PAHs derived from the 
oil spill on fisheries and food safety in coastal 
systems is addressed. The main goal is to 
gather information on these subjects obtained 
following the recent major oil spills around the 
world, with a focus on the Brazilian scenario. 
The information available in the country on 
these subjects, following the mysterious oil spill 
(Lourenço et al. 2020) that hit the NE Brazilian 
coast from August 2019 through January 2020 
(Soares et al. 2020) was compiled to help 
understand the dynamics of hydrocarbons 
released at sea and their potential environmental 
and socio-economic impacts on the coastal 
zone and local communities. The purpose of 
this review is to help guide emergency actions 
in the aftermath of the oil spill in Brazil, as well 
as to support the design of public programs and 
communication to fishermen and consumers 
about the environmental impacts of oil spills.

Oil spill accidents
Brazil is a reference in oil exploration from 
marine sources and is also a route for 
transporting oil from neighbouring countries. In 
2020, the average oil production in the country 
reached 2.94 million barrels per day, while 
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natural gas reached 127 million cubic meters per 
day (Petrobras 2020). This high oil production 
presents associated risks and demands from the 
petroleum industry, among other environmental 
requirements, an Individual Emergency Plan 
(PEI) to prevent accidents and control/mitigate 
the environmental impacts in the aftermath 
(Brasil 2019).

In Brazil, oil accidents have been reported 
in many parts of the country. Back in the 
1970s, three accidents of great magnitude were 
reported: (i) the  Takimyia Maru vessel (1974)  in 
the São Sebastião channel, in the state of São 
Paulo; (ii) the Brazilian Marina (1978) vessel in 
Rio de Janeiro, in Guanabara Bay (1975), and: (iii) 
in 2001, when the P36 oil exploration platform in 
the Campos Basin in Rio de Janeiro caught fire 
and sank, 1,300 m³ of gas and 350 m³ of oil were 
spilled (Cetesb 2012).

In 2000, Guanabara Bay in Rio de Janeiro was 
once again affected by an oil spill, the rupture of 
an oil pipeline leaked approximately 1,300 m3 of 
marine fuel (Meniconi et al. 2001). In 2004, in the 
state of Paraná (South Brazil), the explosion of 
the Chilean Vicuña vessel caused the spilling of 
millions of litters of bunker oil in the Paranaguá 
Port, which affected four municipalities and 
caused the paralysis of fishing for two months 
(Noernberg et al. 2008). In 2011, another 
environmental contamination caused by the 
spill of 3,700 oil barrels, covered 182 km² of an 
area of Campos Bay (Matos et al. 2019). In Pará, 
in 2015, in the northern region of Brazil, a ship 
carrying around five thousand oxen sank and 
spilled about 135 m³ of oil into the Pará river, 
in the city of Barcarena. Most of the animals 
that were to be transported drowned and the 
oil spilled into the river to such an extent that 
there was no longer any visual evidence of their 
presence (O’Briens 2016, Oceana 2020). Matos 
et al. (2019) reported several accidents with oil 
spills in the state of Maranhão (Northeast). In 

another accident in the Northeast region, in 
2015, the leakage of a pipeline connecting the 
PCM-5 and PCM-6 production vessels spilled 
7,000 liters of oil into the sea, in the Bay of 
Sergipe-Alagoas (Brasil 2017). In 2016, in the 
Sergipe State, Petrobras was fined for the spill 
of 1.8 tons of oil, which spread over 30 km in 3 
days (Brasil 2017). The causes of the accident are 
still unclear. 

The Brazilian Institute for the Environment 
and Renewable Natural Resources (IBAMA) also 
reports several oil spill accidents. For instance, 
in February 2019, the rupture of a hose during 
the transfer of oil from the platform P-58 to the 
São Sebastião ship spilled oil on the coast of 
Espírito Santo state, SE of Brazil, that spread 
for 2.4 km; although the slick has been quickly 
dispersed, the environmental impact has not 
been measured yet (IBAMA 2019). 

More recently, starting in August 2019 and 
extending for several months, the coastline of 
11 states from the Northeast and the Southeast 
regions were hit by oil residues, causing social, 
human health, and environmental disruption 
(Pena et al. 2019). This accident, already 
considered the biggest environmental disaster 
in Brazil, impacted 3,600 km of coastline, more 
than 980 beaches, and more than 5,000 tons of 
oiled wastes were removed from the marine and 
land areas (Brasil 2019, Soares et al. 2020). The 
Brazilian National Health Surveillance Agency 
(ANVISA) characterizes the product dumped 
on the coasts of Pernambuco and Paraíba as 
crude oil, before spreading to the Southeast 
Region, into the states of Espírito Santo and Rio 
de Janeiro (Carmo & Teixeira 2020). Chemical 
analyses classified the oil as Venezuelan crude, 
but the accident’s origin and causes are not 
yet known (Disner & Torres 2020). According to 
reports, almost two years after the accident, oil 
stains reappeared on some Brazilian beaches 
(northeast) (Brasil de Fato 2020, Jornal da Band 
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2021). The medium and long-term impacts of the 
oil spill remain unpredictable.

PAHs toxicity 
As previously mentioned, among the several 
hundreds of hydrocarbons found in petroleum, 
the major compounds of environmental 
concern – due to their negative impacts on 
the ecosystem and human health – are the 
aromatic ones, which may represent as much 
as 5% of crude oils (Hodson 2017). Whereas 
the petroleum abundant monocyclic aromatics 
hydrocarbons (BTEX) are relevant only in the 
short-term impacts after an oil spill, as they 
are quickly transported to the atmosphere, the 
polycyclic aromatic hydrocarbons (PAHs), with 
two to at least 6 fused rings, are persistent and 
bioaccumulative toxicants (Neff 2002).

The toxicities of several PAHs are well 
established and, in the case of human health, 
are usually associated with several types of 
cancers and degenerative diseases (Albers 2003, 
Hamidi et al. 2016). In wildlife, the negative 
effect of PAHs exposure includes, for example, 
reduction of marine plant diversity (Saifullah 
& Chaghtai 2005), hematopoietic disorders in 
oysters Crassostrea gigas (Donoghy et al. 2010), 
and reduced functionality of the innate and 
acquired immune systems in fish (Reynaud & 
Deschaux 2006), among others.

The recognition of the risk associated 
with PAHs exposure has led the United States 
Environmental Protection Agency (EPA) to rank 
in the early 1970s sixteen compounds as priority 
pollutants. These included only non-alkylated 
with 2 to 6 fused rings PAHs, which reflected 
the limited analytical capability of quantifying 
PAHs in environmental samples, rather than the 
recognition of their intrinsic toxicities (Anderson 
& Achten 2015). The list is now known to be 
limited in properly addressing the environmental 
fate and effect of PAHs in aquatic systems, and 

over forty individual PAHs, including parental 
and alkylated compounds, are included in such 
evaluations (Stout et al. 2015, Boehm et al. 
2018). The presence of oxygenated and nitrated-
derivatives PAHs is also a matter of concern in 
recent years (Cousin & Cachot 2014, Wincent et 
al. 2015).

Paradoxically, that most of the information 
regarding negative biological effects is available 
for parental rather than alkylated PAHs (Fallahtafti 
et al. 2012). For instance, both the US-EPA and 
the International Agency for Research on Cancer 
(IARC 2010) include only parental compounds 
in the list of PAHs that may pose a carcinogenic 
risk to humans (Table I). Humans are exposed 
to PAHs through inhalation, dermatological 
contact, or consumption of contaminated food. 
The PAHs represent high risks to human health 
due to their lipophilic characteristic (Hamidi et 
al. 2016). These lipophilic compounds are easily 
bioaccumulated in organisms and biomagnified 
through the marine food chain, reflecting 
seafood contamination, including seaweed 
(Figure 1) (Fogaça et al. 2018, Nisha et al. 2019). 
To control the health risk due to consumption 
of contaminated seafood, the ‘limit of concern’ 
(LOC) is usually considered. The LOC represents 
the maximum concentration of carcinogenic 
PAHs allowed in the seafood in a risk assessment 
protocol, which also considers other aspects, 
like consumption habits, time of exposure, and 
population age (e.g., Wenzl & Zelinkova 2019). 

One approach to defining de LOC of 
PAHs in seafood is the consideration of toxic 
equivalencies (TEQ) of individual PAHs (only 4 
to 6 ring-PAHs) to benzo(a)pyrene, as adopted 
by NOAA/USA after the Gulf of Mexico Deep-
Water Horizon oil spill in 2010 (Ylitalo et al. 
2012). This was the same approach adopted by 
the Brazilian Health Regulatory Agency (ANVISA) 
after the mysterious oil spill in NE Brazil by 
launching a Technical Note (27/2019/SEI/GGALI/
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DIRE2/ANVISA). In this note, it was considered 
the consumption of 180 g of fish per day and 
60 g of crustaceans and molluscs per day,  five-
year of exposure, and the benzo(a)pyrene (BaP) 
equivalent, which means the weighted sum for 
8 PAHs (benzo(a)anthracene, chrysene, benzo(a)
fluoranthene, benzo(k)fluoranthene, benzo(a)
pyrene, dibenzo(a,h)anthracene, indene(1,2,3-
cd)pyrene and benzo(g,h,i)perylene). The 
calculated LOC in BaP-toxic equivalents was 6 
µg/kg (or ng/g) for fish and 18 µg/kg (or ng/g) 
for crustaceans and molluscs. 

Another example to establish LOC for PAHs 
is the legislation adopted in the European 

community for regular consumption of fisheries 
that might be chronically contaminated, which 
defines the maximum concentration (i.e., the 
LOC) of 5.0 µg/kg for benzo(a)pyrene or 30.0 
µg/kg for the sum of benzo(a)pyrene, benzo(a)
anthracene, benzo(b)fluoranthene and chrysene 
(Regulation EC n.835/2011). It is noteworthy that 
this regulation is an update of an earlier version 
(Regulation EC n. 1881/2006), excluding threshold 
values for edible fishes and crustaceans based 
on the assumption that these animals can 
metabolize PAHs and thus have a low tendency 
to accumulate them in muscle tissues. 

Table I. PAH classification. 

Compound
Classification Molecular weigh 

g/mol
Number of 

rings Carcinogenicity
IARCa USEPAb

Naphthalene 2B C 128.1 2 Weak

Acenaphthylene 3 Not available 152.1 3 Weak

Acenaphthene 3 Not available 154.2 3 Weak

Fluorene 3 D 166.2 3 Weak

Phenanthrene 3 D 178.2 3 High

Anthracene 3 D 178.2 3 Weak

Fluoranthene 3 D 202.3 4 Weak

Pyrene 3 D 202.3 4 High

Benz(a)anthracene 3 B2 228.3 4 Moderate

Chrysene 2B B2 228.3 4 High

Benzo(b)fluoranthene 2B B2 252.3 5 Moderate

Benzo(k)fluoranthene 2B B2 252.3 5 Moderate

Benz(a)pyrene 1 B2 252.3 5 High

Dibenzo (ah)anthracene 2A B2 278.4 5 Moderate

Benzo(g,h,i)perylene 3 D 276.3 6 Moderate

Indeno(1,2,3-c,d)pyrene 2B B2 276.3 6 High
a 1 - carcinogenic to humans;  2A - probably carcinogenic to humans; 2B - possible carcinogenic to humans; 3 - unclassifiable 
as carcinogenetic  in humans; 4 - probably not carcinogenic to humans (IARC 2002; IARC 2009). b A - human  carcinogens; B 
- probable human carcinogens; B2 - probable human carcinogens based on sufficient carcinogenicity evidence in animals; C - 
possible  human carcinogens; D - not classifiable yet; E - evidence of non-carcinogenicity for humans (USEPA 1986). 
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Effect of PAH bioaccumulation reported in 
Brazilian aquatic organisms
Several researchers have focused on identifying 
and quantifying the environment PAHs to 
evaluate their effects on aquatic organisms and 
the ecological disturbances in marine wildlife 
(Maranho et al. 2006, Froehner et al. 2011, Craveiro 
et al. 2021). PAH can bioaccumulate in different 
animal groups through biomagnification, even 
over long distances, being transported by sea 
currents and wind actions, reaching vulnerable 
ecosystems (Szewczyk 2006). Due to its 
persistence in the environment, studies show 
that even months and years after an oil spill 
at sea, it is still possible to find PAH residues 
in animal tissues, water, and sediment (Silva et 
al. 2009, Souza-Bastos & Freire 2011). In a short 
time, there was a reduction in the richness, 
diversity, and uniformity of the seaweed Jania 
capillacea due to its oil coating, on Paiva beach 
(Pernambuco state, North-eastern Brazil), 
however, after two months its characteristics 

soon returned to the original state (Craveiro et 
al. 2021). 

The impact of the oil spill causes different 
levels of PAH bioaccumulation in filtering and 
high trophic level aquatic organisms (Figure 1) 
(Euzebio et al. 2019, Instituto Terra-Mar 2019). 
Filtering organisms, such as molluscs, can 
absorb high levels of contaminants in their 
tissues (Wilson et al. 1992, Araújo et al. 2016, Shi 
et al. 2016). Fish and crustaceans have shown a 
low capacity to bioaccumulate PAH (Graham et 
al. 2015, Lourenço et al. 2018). 

Since the feeding habits influence PAH 
bioaccumulation, carnivorous fish shall 
accumulate higher levels of these compounds. 
However, Soares-Gomes et al. (2010) did not 
observe a significant difference in the PAH 
concentrations among the carnivore sea bass 
(Centropomus parallelus), the detritivore benthic 
mullet (Mugil liza), and the detractor crustacean 
mangrove crab (Ucides cordatus). Although the 
authors observed those barnacle organisms 

Figure 1. Oil spill impacts in different types of aquatic organisms based on where they live, feed, and breed and 
how mobile they are. 
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were the most sensitive to the presence of 
oil in the water, due to their low efficiency in 
metabolizing such compounds. Elasmobranch, 
fish, invertebrate, and mammal species are 
especially vulnerable to exposure to oil spills, 
as they are species restricted to a depth of less 
than 100 m (Magris & Giarrizo 2020). 

Several species exposed to oil have shown 
physiological abnormalities associated with 
high concentrations of these compounds in their 
tissues. Researchers have found that the PAH 
presence in the environment causes necropsy 
in fish liver tissues; histological changes in 
branchial cells, with negative consequences 
for gas exchange and osmoregulation; growth 
reduction, among other impacts (Silva et al. 
2009, Short 2017). The tetra Astyanax spp. 
showed gill alterations, liver inflammation, 
and histopathological injuries when exposed 
to water contaminated by the oil spill in the 
Pantanal Arroio Saldanha, in Parana state 
(Silva et al. 2009). The marine catfish (Genidens 
genidens) collected from Guanabara Bay, Rio 
de Janeiro State, showed blood alterations, 
genotoxic and physiological damage (Freire et 
al. 2020). Mangrove crabs, used as bioindicators 
of environmental health in a port and mangrove 
region in Brazil Northeastern, showed branchial 
lesions when collected near the port region, 
associated with the poor water quality and 
presence of PAHs (Carvalho Neta et al. 2019).

The PAH presence in the marine environment 
is not necessarily the result only of oil spills, it 
is also associated with intense urban-industrial 
activity (Froehner et al. 2011), which intensifies 
the impacts of contamination on aquatic 
organisms. 

These effects are correlated with highly 
contaminated areas where aquatic organisms 
live. Mussels (Perna perna) collected in an 
area with intense urban-industrial activity 
showed high PAH concentration in their tissues 

compared to those further away from the urban 
area (Santiago et al. 2016). Camargo et al. (2017) 
have shown that the presence of PAHs was a 
cause of alteration in the structure of the benthic 
macrofauna in Guanabara and Laranjeira bays 
(Rio de Janeiro and Paraná state, respectively).

The presence of PAH in the marine 
environment will not always be reflected in 
acute adverse effects on aquatic organisms, 
especially those that metabolize and excrete 
such compounds (Bandowe et al. 2014, Lourenço 
et al. 2018). For instance, Lourenço et al. (2018) 
evaluated the presence of PAH and trace 
elements in Coranx crysos and Tylosurus acus 
tissues and demonstrated that their presence 
characterizes the production of water from oil 
and gas platforms in the Campos Basin (Rio de 
Janeiro state) as minimally polluted.

Another effect observed in aquatic organisms 
exposed to PAH is related to the behaviour 
of these species. Tambaqui fish (Colossoma 
macropomum) showed changes such as 
reduction in swimming activity and predatory 
behaviour, associated with the lamellar and gill 
fusion, when exposed to insoluble crude oil 
fractions from an Oil Company located on the 
Urucu River, in the state of Amazonas (Kochhann 
et al. 2015). The presence of oil in the water 
affected the fish breathing and the water-air 
interface (Magris & Giarrizzo 2020). 

PAH consumption and health risk 
The impact of the oil spill has irremediable 
effects on many aquatic species (Baršienė et al. 
2008, Bado-Nilles et al. 2009, Chen & Denison 
2011, Yuewen & Adzigbl 2018). In addition, the 
presence of oil slicks or their fractions makes 
these organisms vulnerable, affecting the 
entire food web, including humans, since the 
consumption of oil-contaminated seafood 
represents a risk to human health.
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The 2 to 6 ring PAHs are a concern for short 
and medium-term food safety (Yender et al. 
2002). Although the toxicity potential of PAHs is 
recognized, to assess whether there is a risk in 
consuming seafood in oil-contaminated areas, a 
level of concern must be established (Gohlke et 
al. 2011). The Food and Drug Administration (FDA) 
provides guidelines for the types and amount of 
seafood that consumers can eat, after the Gulf of 
Mexico oil spill (Graham et al. 2015). Even in the 
USA, scientists are concerned about allowable 
intake doses combined with food consumption 
data or consumption scenarios (Scholl et al. 
2012) to determine the risk associated. This 
is because some ethnic groups have a higher 
consumption of seafood per kg of body weight. 
In this case, these thresholds, as well as the risk 
assessment of seafood intake in general, are 
questionable (Marques et al. 2011). 

The PAH intake of seafood was estimated to 
be 15.3 ng / kg body weight per day for Koreans. 
Furthermore, high molecular weight and 
carcinogenic PAH profile have been observed in 
bivalves molluscs, although these food products 
only account for 29% of total PAHs consumption 
(Moon et al. 2010).

The PAH concentrations of 0.04 to 1.17 ng/kg 
body weight per day found in Sardina pilchardus 
and Solea solea collected at Catatania by 
Ferrante et al. (2018), did not represent a risk 
to human consumption, as such concentrations 
are below the defined maximum limit by 
European Food Safety Authority (EFSA). Although 
low molecular weight PAHs are not classified as 
carcinogens, their chronic ingestion can cause 
negative impacts on human health (Rotkin-
Ellman et al. 2012). 

It seems that the concern about the 
concentration of PAHs in aquatic organisms 
for human health is due to the culture of 
consumption of such proteins. For the adult 
population of Kuwait, the estimated mean 

daily consumption of seafood was 66.4 g/day, 
lower than that set by the US EPA (142.2 g/day) 
(Alomirah et al. 2009). These authors observed 
that even the high presence of low molecular 
weight (LMW) PAH in fish consumed by the 
Kuwait population does not pose a health risk. 
The high concentration of naphthalene and 
phenanthrene in fish also poses no risk to the 
Canadian population, even with an average daily 
intake of PAH from seafood was 1.097 ng/day for 
men and 1.051 ng/day for women (Ohiozebau et 
al. 2017). 

Recently, in Brazil, Massone et al. (2021) 
observed levels of some PAHs with carcinogenic 
potential in sardine muscles (Sardinella 
brasiliensis). The authors state that the presence 
of B(a)P, whose concentration was higher than 6 
μg/kg in 4% of their samples, does not represent 
a risk to the consumption of this fish. However, 
it is important to continue monitoring Brazilian 
fish to ensure food safety.

The PAH profile in fish muscles is generally 
characterized by low molecular weight 
compounds, most likely due to the difficulty 
of organisms to bioaccumulate high molecular 
weight PAH (Ni & Guo 2013, Akhbarizadeh et al. 
2019). The concentration of PAH in fish muscles 
also varies according to their trophic level, 
due to the interaction between PAH and the 
lipid content of different species (Recabarren-
Villalón et al. 2021). Furthermore, intrinsic 
(sexual maturation stage, age, body weight) and 
extrinsic factors (food web position, lifestyle, 
food availability) contribute to the differences 
in the concentration of these compounds 
(Mahugija & Njale 2018, Habibullah-Al-Mamun 
et al. 2019).

Most studies on the concern about the 
consumption of contaminated fish, such as 
Oliveira et al. (2020), highlight the concentration 
and profile of PAH in fish muscles. These authors 
observed that the Portuguese population is 
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more vulnerable to the carcinogenicity of PAHs 
when they feed on whitemouth Argyrosomus 
regius from captivity, due to the high presence 
of high molecular weight (HMW) PAHs in their 
samples.

To enhance the taste and improve the 
appearance, fish are often consumed after 
undergoing some culinary processing. However, 
its nutritional content can change according to 
the addition of spices and/or thermal processing. 
Thus boiling, cooking, grilling, and roasting, 
among others, can reduce the concentration of 
contaminants in food matrices, making them 
safer (Mi et al. 2017, Girard et al. 2018).  

Depending on the culinary treatment, PAHs 
may also tend to aggregate to lipid particles in 
the gastrointestinal tract, due to their lipophilic 
characteristics, making them more bioaccessible 
during the digestive process (Harris et al. 
2013). The EC Regulation number 1881/2006 
and subsequent amendments (EC Regulation 
No. 835/2011 and 1327/2014) set the maximum 
allowable concentration of B(a)P for non-smoked 
fish (2 μg/kg wet weight), for crustaceans and 
cephalopod molluscs not smoked (5 μg/kg wet 
weight) and for not smoked bivalve molluscs (10 
μg/kg wet weight) (Ferrante et al. 2018). 

The PAH dietary daily intake (DDI) in smoked 
fish for Nigerians was estimated to Clarias 
gariepinus (0.039 mg/day), Tilapia zilli (0.052 
mg/day), Ethmalosa fimbriata (0.038 mg/day) 
and Scomber scombrus (0.195 mg/day). A DDI 
value for the total carcinogenic PAHs (∑CPAHs) 
was highest for E. fimbriata, indicating a greater 
risk of consumption of this species compared 
to the others (Tongo et al. 2017). It is evident, 
therefore, that cooking techniques using burning 
can make PAH bioavailable to the human body 
through seafood consumption.

In countries whose fish consumption 
represents the main source of animal protein, 
the risk analysis for human health is extremely 

important to ensure food safety. The average 
consumption of fish in the world is 20.5 kg/per 
capita, however, in Brazil, such consumption 
depends on the region. In the Amazonian 
region, for example, they consume about 50 kg/
per capita/year of seafood, about five times 
higher than the Brazilian average and almost 
three times higher than the world consumption 
(Gervásio 2019, FAO 2020).

Although the vast majority of studies 
indicate that there is no risk in consuming 
seafood with some levels of PAH, it is important 
to continue monitoring these compounds. 
Fish consumption contributes 13.1% and 8.1% 
of LMW and HMW PAH, respectively, being the 
third category of foods that provide the most 
contaminants for humans through their daily 
consumption (Yu et al. 2015). 

Yu et al. (2012) observed that consumption 
in large quantities of clam Mactra chinensis e 
snail Bellamya poses a risk to human health due 
to the high potency equivalent concentrations 
and PAH values could pose a carcinogenic risk. 

The presence of PAH in the edible tissues 
of octopus Octopus vulgaris, Octopus maya, 
and Eledone cirrhosa do not represent a health 
risk, with overall LMW PAH concentrations being 
86–92% of the total (Oliveira et al. 2018). The 
concentration of non-carcinogenic PAH can also 
reveal a picture of risk to human health and 
aquatic organisms (Nasher et al. 2016) because 
it represents a chronic exposure of consumers 
and bioaccumulation of these compounds in 
the environment.

Fish consumption is generally encouraged 
due to the benefits associated with its lipid 
composition, omega-3 and omega-6, and other 
nutrients; on the other hand, depending on 
the fishing/farming location, these organisms 
may be more vulnerable to contaminants, 
and consuming them may pose a health risk 
(Oliveira et al. 2020, Ju et al. 2022). Thus, the 
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risk assessment for the consumption of fish 
associated with sites of intense anthropogenic 
activity and accidents with oil spills must 
continue.

In addition, there are new tools to assess 
the bioavailable amount of contaminants in 
seafood. Bioaccessibility refers to the portion of 
the food that is released after digestion in the 
gastrointestinal tract (Saura-Calixto et al. 2007), 
reaching the systemic circulation and becoming 
bioavailable. Quantifying the bioaccessibility 
of these compounds would make risk analysis 
more realistic (Afonso et al. 2015). Bioaccessibility 
reduced the PAHs concentration in marine 
and freshwater fish muscles. This shows that 
the level of concern about the consumption 
of contaminated seafood is overestimated. 
Besides, the LMW PAHs are more bioaccessible 
for the gastrointestinal tract than those HMW 
PAHs, because of the hydrophobic characteristics 
(Wang et al. 2010). 

Recently, studies have shown that 
bioaccessibility has reduced the level of daily 
intake of PAHs in samples of mussels (Fogaça 
et al. 2018) and oysters (Hong et al. 2016). 
Unfortunately, in Brazil, there are still no studies 
on the PAH bioaccessibility in seafood. And the 
results of the PAH bioaccumulation analyses in 
samples collected after the oil spill in NE Brazil 
are still in the processing and publication phase. 
Therefore, there will be only one scenario of the 
impact of the accident in the coming years.

CONCLUSIONS
In the year that Ocean Decade begins, it is 
necessary a greater scientific and civil demand 
from the government authorities in assigning 
plausible punishments to those responsible 
for the causes of oil spills. In addition, the 
literature lacks further scientific research on the 
chronic effects of exposure to spots by aquatic 

organisms, especially those targeted by fishing 
and aquaculture, whether or not the product is 
validated for human consumption.
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