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Super-critical Hardy-Littlewood inequalities for
multilinear forms

DANIEL NÚÑEZ-ALARCÓN, DJAIR PAULINO & DANIEL PELLEGRINO

Abstract: The multilinear Hardy-Littlewood inequalities provide estimates for the sum
of the coefficients of multilinear forms T ∶ ℓnp1 × ⋯ × ℓnpm → ℝ (or ℂ) when 1/p1 + ⋯ +
1/pm < 1. In this paper we investigate the critical and super-critical cases; i.e., when
1/p1 + ⋯ + 1/pm ≥ 1.
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INTRODUCTION

Littlewood’s 4/3 theorem assures that for 𝕂 = ℝ or ℂ, we have

(
n

∑
j1,j2=1

∣A(ej1 , ej2)∣
4/3

)
3/4

≤
√
2 ‖A‖

for all positive integers n and all bilinear forms A ∶ ℓn∞ × ℓn∞ → 𝕂, where as usual

‖A‖ = sup {|A(x, y)| ∶ ‖x‖ ≤ 1 and ‖y‖ ≤ 1}

and ℓnp denotes 𝕂n with the ℓp norm; the exponent 4/3 cannot be improved (i.e., cannot be replaced by
a smaller one). Under an anisotropic viewpoint, the result can be generalized as follows (see Theorem
5.1 in Pellegrino et al. 2017): the inequality

⎛⎜
⎝

n
∑
j1=1

(
n

∑
j2=1

∣A(ej1 , ej2)∣
a
)

b
a
⎞⎟
⎠

1
b

≤
√
2 ‖A‖ (1)

holds for all n whenever a,b ∈ [1, ∞) satisfy
1
a

+ 1
b

≤ 3
2

.

Moreover, if a,b ∈ [1, ∞) satisfy
1
a

+ 1
b

> 3
2

,

then (1) is not possible, i.e., if

⎛⎜
⎝

n
∑
j1=1

(
n

∑
j2=1

∣A(ej1 , ej2)∣
a
)

b
a
⎞⎟
⎠

1
b

≤ C ‖A‖ ,
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then the constant C must depend on n.
From now on, unless stated otherwise, the exponents involved in the inequalities are positive

and can be even infinity (in this case the corresponding sum is replaced by the supremum). We also
consider 1/∞ ∶= 0. The Hardy-Littlewood inequalities for bilinear forms were conceived in 1934 by
Hardy and Littlewood (see Theorem 5 in Hardy & Littlewood 1934), as a natural generalization of
Littlewood’s 4/3 inequality. The results of the seminal paper of Hardy and Littlewood, in a modern
and somewhat more general presentation, can be summarized by the following two theorems:

Theorem 1. (see Osikiewicz & Tonge 2001 and Aron et al. 2017) Let 1 < q ≤ 2 < p, with 1
p + 1

q < 1. The
following assertions are equivalent:

(a) There is a constant C ≥ 1 (not depending on n) such that

⎛⎜
⎝

n
∑
j1=1

(
n

∑
j2=1

∣A(ej1 , ej2)∣
a
)

b
a
⎞⎟
⎠

1
b

≤ C ‖A‖

for all bilinear forms A ∶ ℓnp × ℓnq → 𝕂 and all positive integers n.

(b) The exponents a,b satisfy

(a,b) ∈ [ q
q− 1

, ∞) × [ 1
1− ( 1

p + 1
q)

, ∞) .

Moreover, the optimal constant C is 1.

Theorem 2. (see Pellegrino et al. 2017) Let p,q ∈ [2, ∞], with 1
p + 1

q < 1. The following assertions are
equivalent:

(a) There is a constant C ≥ 1 (not depending on n) such that

⎛⎜
⎝

n
∑
j1=1

(
n

∑
j2=1

∣A(ej1 , ej2)∣
a
)

b
a
⎞⎟
⎠

1
b

≤ C ‖A‖

for all bilinear forms A ∶ ℓnp × ℓnq → 𝕂 and all positive integers n.

(b) The exponents a,b satisfy

(a,b) ∈ [ q
q− 1

, ∞) × [ 1
1− ( 1

p + 1
q)

, ∞)

and
1
a

+ 1
b

≤ 3
2

− ( 1
p

+ 1
q

) . (2)

Since (2) is trivially verified under the conditions of Theorem 1, we can unify the two theorems as
follows:

Theorem 3. Let q ∈ (1, ∞] and p ∈ [2, ∞], with 1
p + 1

q < 1. The following assertions are equivalent:
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(a) There is a constant C ≥ 1 (not depending on n) such that

⎛⎜
⎝

n
∑
j1=1

(
n

∑
j2=1

∣A(ej1 , ej2)∣
a
)

b
a
⎞⎟
⎠

1
b

≤ C ‖A‖

for all bilinear forms A ∶ ℓnp × ℓnq → 𝕂 and all positive integers n.

(b) The exponents a,b satisfy

(a,b) ∈ [ q
q− 1

, ∞) × [ 1
1− ( 1

p + 1
q)

, ∞)

and
1
a

+ 1
b

≤ 3
2

− ( 1
p

+ 1
q

) .

In 1981, Praciano-Pereira (see Praciano-Pereira 1981) extended the Hardy-Littlewood inequalities
to m-linear forms as follows: if p1, ...,pm ∈ [1, ∞] and

1
p1

+ ⋯ + 1
pm

≤ 1
2

,

there exists a constant C ≥ 1 (not depending on n) such that

(
n

∑
j1,...,jm=1

|T(ej1 , ..., ejm)|
2m

m+1−2( 1
p1 +⋯+ 1

pm ) )

m+1−2( 1
p1 +⋯+ 1

pm )
2m

≤ C‖T‖, (3)

for all m-linear forms T ∶ ℓnp1 × ⋯ × ℓnpm → 𝕂 and for all positive integers n.
When

1
2

≤ 1
p1

+ ⋯ + 1
pm

< 1,

Dimant and Sevilla-Peris (see Dimant & Sevilla-Peris 2016 and Cavalcante 2018) have proved that there
exists a constant C ≥ 1 (not depending on n) such that

(
n

∑
j1,...,jm=1

|T(ej1 , ..., ejm)|
1

1−( 1
p1 +⋯+ 1

pm ) )
1−( 1

p1
+⋯+ 1

pm
)

≤ C‖T‖, (4)

for all m-linear forms T ∶ ℓnp1 × ⋯ × ℓnpm → 𝕂 and for all positive integers n.
Both in (3) and (4) the exponents are sharp, i.e., they cannot be replaced by smaller exponents

keeping the constant C not depending on n (this terminology will be used throughout the paper).
However, there still remains the question: what about anisotropic versions of (3) and (4), i.e., variants
with eventually different exponents associated to each index? Throughout this paper we shall address
this question and related problems.

In Albuquerque et al. 2014, the anisotropic version of the result of Praciano-Pereira was finally
settled (see also Santos & Velanga 2017 for a more complete version for the case p1, ...,pm = ∞):
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Theorem 4. (see Theorem 1.2 in Albuquerque et al. 2014 and Theorem 5.2 in Pellegrino et al. 2017) Let
p1, ...,pm ∈ [1, ∞] be such that

1
p1

+ ⋯ + 1
pm

≤ 1
2

and

q1, ...,qm ∈ [ 1
1− ( 1

p1
+ ⋯ + 1

pm
)

, 2] .

The following assertions are equivalent:

(a) There is a constant C ≥ 1 (not depending on n) such that

⎛⎜⎜⎜
⎝

n
∑
j1=1

⎛⎜
⎝

⋯ (
n

∑
jm=1

∣A (ej1 , … , ejm)∣
qm)

qm−1
qm

⋯⎞⎟
⎠

q1
q2 ⎞⎟⎟⎟

⎠

1
q1

≤ C ‖A‖ ,

for all m-linear forms A ∶ ℓnp1 × ⋯ × ℓnpm ⟶ 𝕂 and all positive integers n.

(b) The inequality
1
q1

+ ⋯ + 1
qm

≤ m+ 1
2

− ( 1
p1

+ ⋯ + 1
pm

)

is verified.

The anisotropic version of (4) is still not completely solved, but in Aron et al. 2017 the following
partial answer (that also generalizes Theorem 1) was obtained:

Theorem 5. (see Theorem 3.2 in Aron et al. 2017) Let m ≥ 2 and 1 < pm ≤ 2 < p1, ...,pm−1, with

1
p1

+ ⋯ + 1
pm

< 1.

The following assertions are equivalent:

(a) There is a constant C ≥ 1 (not depending on n) such that

⎛⎜⎜⎜
⎝

n
∑
j1=1

⎛⎜
⎝

⋯ (
n

∑
jm=1

∣A (ej1 , … , ejm)∣
qm)

qm−1
qm

⋯⎞⎟
⎠

q1
q2 ⎞⎟⎟⎟

⎠

1
q1

≤ C ‖A‖ ,

for all m-linear forms A ∶ ℓnp1 × ⋯ × ℓnpm ⟶ 𝕂 and all positive integers n.

(b) The exponents q1, ...,qm satisfy

q1 ≥ 𝛿p1,...,pmm ,q2 ≥ 𝛿p2,...,pmm−1 , ...,qm−1 ≥ 𝛿pm−1,pm
2 ,qm ≥ 𝛿pm1 ,

with
𝛿pk,...,pmm−k+1 ∶= 1

1− ( 1
pk

+ ⋯ + 1
pm

)
.
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The attentive reader may wonder why the case

1
p1

+ ⋯ + 1
pm

≥ 1 (5)

is not investigated in the previous results? The reason is simple, because in this case it is easy to
prove that if there exists C (not depending on n) such that

(
n

∑
j1,...,jm=1

∣T (ej1 , … , ejm)∣
s
)

1
s

≤ C ‖T‖ ,

for allm-linear forms T ∶ ℓnp1 × ⋯ × ℓnpm ⟶ 𝕂 and all positive integers n, then s = ∞ (i.e., we are forced
to deal with the sup norm, and the result becomes trivial). However, under the anisotropic viewpoint,
as a matter of fact, there is no reason to avoid the case (5) and it constitutes a vast field yet to be
explored. The first step in this direction is the following:

Theorem 6. (see Theorem 1 in Paulino 2019) For all m ≥ 2 we have

sup
j1

⎛⎜⎜⎜
⎝

n
∑
j2=1

⎛⎜
⎝

⋯ (
n

∑
jm=1

∣T (ej1 , … , ejm)∣
qm)

qm−1
qm

⋯⎞⎟
⎠

q2
q3 ⎞⎟⎟⎟

⎠

1
q2

≤ 2m−2
2 ‖T‖ (6)

for all m-linear forms T ∶ ℓnm × ⋯ × ℓnm → 𝕂, and all positive integers n, with

qk = 2m(m− 1)
mk− 2k+ 2

for all k = 2, ...,m. Moreover, q1 = ∞ and q2 = m are sharp and, for m > 2 the optimal exponents qk
satisfying (6) fulfill

qk ≥ m
k− 1

, k = 2, ...,m.

The case considered in Theorem 6 is called critical because it is a special case of (5), and from
now on we shall call case (5) super-critical, which is the topic of the present paper. In the next sections
we provide a partial solution to the super-critical case for 3-linear forms and we investigate what are
the conditions needed to obtain m-linear Hardy-Littlewood inequalities in the super-critical case.

THE 3-LINEAR CASE

We begin this section by presenting two simple, albeit very useful, lemmas that will be used all along
the paper.

Two multi-purpose lemmas

For S = {s1, … , sk} ⊂ {1, … ,m}, we define

̂S ∶= {1, … ,m}\S
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and by iS we shall mean (is1 , … , isk). If S = {s1, … , sk} and p = (p1, ...,pm) ∈ (0, ∞]m, we define

∣ 1p ∣
S

∶= 1
ps1

+ ⋯ + 1
psk

.

The lemmas read as follows:

Lemma 7. Let k ∈ {1, ...,m} and p = (p1, ...,pm) ∈ [1, ∞]m. If there is a constant C ≥ 1 (not depending
on n) such that

⎛⎜⎜⎜
⎝

n
∑
js1=1

⎛⎜⎜
⎝

n
∑
js2=1

⋯ ⎛⎜
⎝

n
∑
jsm=1

∣T(ejs1 , ..., ejsm )∣
qm⎞⎟

⎠

qm−1
qm

⋯⎞⎟⎟
⎠

q1
q2 ⎞⎟⎟⎟

⎠

1
q1

≤ C ‖T‖

for all m-linear forms T ∶ ℓnps1 × ⋯ × ℓnpsm → 𝕂 and all positive integers n, then

⎛⎜⎜⎜⎜
⎝

n
∑
jsk+1

=1

⎛⎜⎜
⎝

n
∑
jsk+2

=1
⋯ ⎛⎜

⎝

n
∑
jsm=1

∣A(ejsk+1
, ..., ejsm )∣

qm⎞⎟
⎠

qm−1
qm

⋯⎞⎟⎟
⎠

qk+1
qk+2 ⎞⎟⎟⎟⎟

⎠

1
qk+1

≤ C ‖A‖

for all (m− k)-linear forms A ∶ ℓnpsk+1
× ⋯ × ℓnpsm → 𝕂 and all positive integers n.

Proof. To simplify the notation, we can suppose (s1, ..., sm) = (1, ...,m).

Let suppose that there is a constant C ≥ 1 such that

⎛⎜⎜⎜
⎝

n
∑
j1=1

⎛⎜⎜
⎝

n
∑
j2=1

⋯ ⎛⎜
⎝

n
∑
jm=1

∣T(ej1 , ..., ejm)∣
qm⎞⎟

⎠

qm−1
qm

⋯⎞⎟⎟
⎠

q1
q2 ⎞⎟⎟⎟

⎠

1
q1

≤ C ‖T‖

for all m-linear forms T ∶ ℓnp1 × ⋯ × ℓnpm → 𝕂 .

Given an (m− k)-linear form S ∶ ℓnpk+1
×⋯×ℓnpm → 𝕂, we define them-linear form T ∶ ℓnp1 ×⋯×ℓnpm →

𝕂, given by

T (x(1), x(2), … , x(m)) = x(1)
1 ⋯ x(k)

1 S (x(k+1), x(k+2), … , x(m)) .
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It is obvious that ‖T‖ = ‖S‖ ; then, by the above assumption there is a constant C ≥ 1 such that

⎛⎜⎜⎜
⎝

n
∑
jk+1=1

⎛⎜⎜
⎝

n
∑
j
k+2

=1
⋯ ⎛⎜

⎝

n
∑
jm=1

∣S(ejsk+1
, ..., ejsm )∣

qm⎞⎟
⎠

qm−1
qm

⋯⎞⎟⎟
⎠

qk+1
qk+2 ⎞⎟⎟⎟

⎠

1
qk+1

= sup
i ̂{k+1,...,m}

⎛⎜⎜⎜
⎝

n
∑
jk+1=1

⎛⎜⎜
⎝

n
∑
j
k+2

=1
⋯ ⎛⎜

⎝

n
∑
jm=1

∣e(1)
1 ⋯ e(k)

1 S(ejsk+1
, ..., ejsm )∣

qm⎞⎟
⎠

qm−1
qm

⋯⎞⎟⎟
⎠

qk+1
qk+2 ⎞⎟⎟⎟

⎠

1
qk+1

= sup
i ̂{k+1,...,m}

⎛⎜⎜⎜
⎝

n
∑
jk+1=1

⎛⎜⎜
⎝

n
∑
j
k+2

=1
⋯ ⎛⎜

⎝

n
∑
jm=1

∣T(ej1 , ..., ejsm )∣
qm⎞⎟

⎠

qm−1
qm

⋯⎞⎟⎟
⎠

qk+1
qk+2 ⎞⎟⎟⎟

⎠

1
qk+1

≤
⎛⎜⎜⎜
⎝

n
∑
j1=1

⎛⎜⎜
⎝

n
∑
j2=1

⋯ ⎛⎜
⎝

n
∑
jm=1

∣T(ej1 , ..., ejm)∣
qm⎞⎟

⎠

qm−1
qm

⋯⎞⎟⎟
⎠

q1
q2 ⎞⎟⎟⎟

⎠

1
q1

≤ C ‖T‖

= C ‖S‖ .

Lemma 8. Let k ∈ {1, ...,m} and p = (p1, ...,pm) ∈ [1, ∞]m. Let S = {s1, … , sk} ⊂ {1, … ,m}. If there is a
constant C ≥ 1 (not depending on n) such that

⎛⎜⎜⎜⎜
⎝

n
∑
js1=1

⎛⎜⎜
⎝

n
∑
js2=1

⋯ ⎛⎜
⎝

n
∑
jsk

=1
∣A(ejs1 , ..., ejsk )∣

qk⎞⎟
⎠

qk−1
qk

⋯⎞⎟⎟
⎠

q1
q2 ⎞⎟⎟⎟⎟

⎠

1
q1

≤ C ‖A‖

for all k-linear forms A ∶ ℓnps1 × ⋯ × ℓnpsk → 𝕂 and all positive integers n, then

sup
iŜ

⎛⎜⎜⎜⎜
⎝

n
∑
js1=1

⎛⎜⎜
⎝

n
∑
js2=1

⋯ ⎛⎜
⎝

n
∑
jsk

=1
∣T(ej1 , ..., ejm)∣

qk⎞⎟
⎠

qk−1
qk

⋯⎞⎟⎟
⎠

q1
q2 ⎞⎟⎟⎟⎟

⎠

1
q1

≤ C ‖T‖

for all m-linear forms T ∶ ℓnp1 × ⋯ × ℓnpm → 𝕂 and all positive integers n. Moreover, if

∣ 1p ∣
S

< 1

and, for every j ∈ Ŝ,
∣ 1p ∣

S∪{j}
≥ 1,

the sup cannot be improved (here and henceforth, this means that the sup cannot be replaced by any
ℓp-sum).

An Acad Bras Cienc (2023) 95(1) e20200255 7 | 16



DANIEL NÚÑEZ-ALARCÓN, DJAIR PAULINO & DANIEL PELLEGRINO HARDY-LITTLEWOOD INEQUALITIES

Proof. To simplify the notation, we can suppose (s1, ..., sk) = (1, ..., k).
Let us fix the last m− k variables and work with k-linear forms A ∶ ℓnp1 × ⋯ × ℓnpk → 𝕂. Since

⎛⎜⎜⎜
⎝

n
∑
j1=1

⎛⎜⎜
⎝

n
∑
j2=1

⋯ (
n

∑
jk=1

∣A(ej1 , ..., ejk)∣
qk)

qk−1
qk

⋯⎞⎟⎟
⎠

q1
q2 ⎞⎟⎟⎟

⎠

1
q1

≤ C ‖A‖

for all k-linear forms A ∶ ℓnp1 × ⋯ × ℓnpk → 𝕂, we know that there is a constant C ≥ 1, such that for any
fixed vectors ejk+1

, ..., ejm , we have

⎛⎜⎜⎜⎜
⎝

n
∑
js1=1

⎛⎜⎜
⎝

n
∑
js2=1

⋯ ⎛⎜
⎝

n
∑
jsk

=1
∣T(ej1 , ..., ejm)∣

qk⎞⎟
⎠

qk−1
qk

⋯⎞⎟⎟
⎠

q1
q2 ⎞⎟⎟⎟⎟

⎠

1
q1

≤ C ∥T (⋅, ⋯ , ⋅, ejk+1
, ..., ejm)∥

for all m-linear forms T ∶ ℓnp1 × ⋯ × ℓnpm → 𝕂. Then, there is a constant C ≥ 1, such that

sup
iŜ

⎛⎜⎜⎜⎜
⎝

n
∑
js1=1

⎛⎜⎜
⎝

n
∑
js2=1

⋯ ⎛⎜
⎝

n
∑
jsk

=1
∣T(ej1 , ..., ejm)∣

qk⎞⎟
⎠

qk−1
qk

⋯⎞⎟⎟
⎠

q1
q2 ⎞⎟⎟⎟⎟

⎠

1
q1

≤ C sup
i ̂S

∥T (⋅, ⋯ , ⋅, ejk+1
, ..., ejm)∥

≤ C ‖T‖

for all m-linear forms T ∶ ℓnp1 × ⋯ × ℓnpm → 𝕂.
Now let us show that the sup cannot be improved. In fact, in this case we have m − k suprema,

none of which can be improved. Otherwise there will exist i ∈ ̂S, r ∈ (0, ∞) and C ≥ 1 such that

sup
iŜ∪{i}

⎛⎜⎜⎜⎜⎜
⎝

n
∑
ji=1

⎛⎜⎜⎜⎜
⎝

n
∑
js1=1

⎛⎜⎜
⎝

n
∑
js2=1

⋯ ⎛⎜
⎝

n
∑
jsk

=1
∣T(ej1 , ..., ejm)∣

qk⎞⎟
⎠

qk−1
qk

⋯⎞⎟⎟
⎠

q1
q2 ⎞⎟⎟⎟⎟

⎠

r
q1

⎞⎟⎟⎟⎟⎟
⎠

1
r

≤ C ‖T‖

for allm-linear forms T ∶ ℓnp1 ×⋯×ℓnpm → 𝕂 and all n. Using the Lemma 7, this would imply the existence
of a constant C ≥ 1 such that

⎛⎜⎜⎜⎜⎜
⎝

n
∑
ji=1

⎛⎜⎜⎜⎜
⎝

n
∑
js1=1

⎛⎜⎜
⎝

n
∑
js2=1

⋯ ⎛⎜
⎝

n
∑
jsk

=1
∣A(eji , ejs1 , ..., ejsk )∣

qk⎞⎟
⎠

qk−1
qk

⋯⎞⎟⎟
⎠

q1
q2 ⎞⎟⎟⎟⎟

⎠

r
q1

⎞⎟⎟⎟⎟⎟
⎠

1
r

≤ C ‖A‖

for all (k+ 1)-linear forms A ∶ ℓnpi × ℓnps1 × ⋯ × ℓnpsk → 𝕂. Considering 𝜌 = max {q1, ...,qk, r} , by the
monotonicity of the ℓq norms we conclude that there is a constant C ≥ 1 such that

⎛⎜
⎝

n
∑

ji,js1,...,jsk=1
∣A(eji , ejs1 , ..., ejsk )∣

𝜌⎞⎟
⎠

1
𝜌

≤ C ‖A‖
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for all (k+ 1)-linear forms A ∶ ℓnpi × ℓnps1 × ⋯ × ℓnpsk → 𝕂. But this is impossible due to the hypothesis
∣ 1p ∣

S∪{i}
≥ 1.

In the next sections, using Lemma 7 and Lemma 8, we obtain the super-critical versions of the
Hardy-Littlewood inequalities presented in the introduction.

A first natural illustration of the usefulness of Lemma 7 and Lemma 8 leads us to an alternate
proof of Proposition 6.3 in Pellegrino et al. 2017. In fact, if q ∈ (1, ∞], it is well known that

(
n

∑
j=1

∣A (ej)∣a)

1
a

≤ ‖A‖

for all bounded linear forms A ∶ ℓq → 𝕂, if, and only if, a ≥ q
q−1 . Thus, for a,b ∈ (0, ∞], and p,q ∈ (1, ∞]

such that 1
p + 1

q ≥ 1, we invoke Lemma 7 and Lemma 8 to obtain:

Proposition 9. (see Proposition 6.3 in Pellegrino et al. 2017) Let p,q ∈ (1, ∞] be such that 1
p + 1

q ≥ 1.
We have

⎛⎜
⎝

n
∑
i=1

(
n

∑
j=1

∣A(ei, ej)∣
a)

b
a
⎞⎟
⎠

1
b

≤ ‖A‖

for all bilinear forms A ∶ ℓnp × ℓnq → 𝕂 and all n if, and only if, the exponents a,b satisfy

b = ∞ and a ≥ q
q− 1

.

In this section we are mainly interested in the case of 3-linear forms.
By Theorem 6 used for 3-linear forms we have

sup
j1

⎛⎜
⎝

n
∑
j2=1

(
n

∑
j3=1

∣T (ej1 , ej2 , ej3)∣
q3)

q2
q3 ⎞⎟

⎠

1
q2

≤
√
2 ‖T‖ (7)

for all 3-linear forms T ∶ ℓn3 × ℓn3 × ℓn3 → 𝕂, and all positive integers n, with q2 = 3 and q3 = 12/5.
Moreover, the supremum cannot be replaced by an ℓp-sum and q2 = 3 is sharp; besides, the optimal
exponent q3 satisfying (7) fulfills q3 ≥ 3/2.

As a consequence of Lemma 7 and Lemma 8, we complete the above result.

Proposition 10. Let p, r ∈ (1, ∞) and q ∈ [2, ∞] be such that 1q + 1
r < 1 and 1

p + 1
q + 1

r ≥ 1. The following
assertions are equivalent:

(a) There is a constant C ≥ 1 (not depending on n) such that

⎛⎜⎜⎜
⎝

n
∑
j1=1

⎛⎜
⎝

n
∑
j2=1

(
n

∑
j3=1

∣T (ej1 , ej2 , ej3)∣
q3)

q2
q3 ⎞⎟

⎠

q1
q2 ⎞⎟⎟⎟

⎠

1
q1

≤ C ‖T‖

for every 3-linear form T ∶ ℓnp × ℓnq × ℓnr → 𝕂 and all n.
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(b) The exponents q1,q2,q3 satisfy

q1 = ∞, q2 ≥ 1
1− ( 1r + 1

q)
, q3 ≥ r

r − 1
,

and
1
q2

+ 1
q3

≤ 3
2

− (1
r

+ 1
q

) .

Proof. Since 1
q + 1

r < 1, by Theorem 3 there is a constant C ≥ 1 such that

⎛⎜
⎝

n
∑
j2=1

(
n

∑
j3=1

∣A (ej2 , ej3)∣
q3)

q2
q3 ⎞⎟

⎠

1
q2

≤ C ‖A‖

for all bilinear forms A ∶ ℓnq × ℓnr → 𝕂 if, and only if,

q3 ≥ r
r − 1

,q2 ≥ 1
1− ( 1r + 1

q)

and
1
q3

+ 1
q2

≤ 3
2

− (1
r

+ 1
q

) .

We combine this equivalence with the fact 1
q + 1

r < 1 and 1
p + 1

q + 1
r ≥ 1, and then, we invoke Lemma 7

and Lemma 8 to conclude the proof.

Corollary 11. For all 3-linear forms T ∶ ℓn3 × ℓn3 × ℓn3 → 𝕂 and all n, we have

⎛⎜⎜⎜
⎝

n
∑
j1=1

⎛⎜
⎝

n
∑
j2=1

(
n

∑
j3=1

∣T (ej1 , ej2 , ej3)∣
q3)

q2
q3 ⎞⎟

⎠

q1
q2 ⎞⎟⎟⎟

⎠

1
q1

≤ C ‖T‖

if, and only if, q1 = ∞, q2 ≥ 3, q3 ≥ 3/2, and 1
q2

+ 1
q3

≤ 5
6 .

THEm-LINEAR CASE

Now we use Lemma 7 and Lemma 8 to obtain super-critical versions of Hardy-Littlewood inequalities
for m-linear forms. Our main result is the following Theorem. Below, we use the notation ⌈x⌉ to
represent the smallest integer greater than to x, i.e., ⌈x⌉ = min {n ∈ ℤ ∣ n > x}.

Theorem 12. Let m ≥ 2 be an integer, p ∈ (1, 2m], k ∶= max{0, ⌈m − p⌉} and A = {i ∈ {1, ...,m − 1} ∶
i ≤ k}. Then, there is a constant C ≥ 1 (not depending on n) such that

sup
ji,i∈A

(
n

∑
jk+1,...jm=1

∣T(ej1 , ..., ejm)∣
q
)

1
q

≤ C ‖T‖

for every m-linear form T ∶ ℓnp × ⋯ × ℓnp → 𝕂 if, and only if,

q ≥ p
p− (m− k)

.

Moreover, the sup cannot be improved.
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Proof. The case k = 0 is precisely (4), so we shall assume k ≥ 1. Since p ∈ (m− k,m− k+ 1] we have

1
m− k+ 1

≤ 1
p

< 1
m− k

and thus
m− k

m− k+ 1
≤ m− k

p
< 1.

On the other hand we also have
1 ≤ m− k+ 1

p
.

By (4) there is a constant C ≥ 1 such that

(
n

∑
jk+1,...jm=1

∣T(ejk+1
, ..., ejk)∣

q
)

1
q

≤ C ‖T‖

for every (m− k)-linear form T ∶ ℓnp × ⋯ × ℓnp → 𝕂 if, and only if,

q ≥ p
p− (m− k)

.

By Lemma 8 with S = {k+ 1, k+ 2, … ,m} ⊂ {1, … ,m}, and Lemma 7 we conclude the proof.

We finish this section with some super-critical results in the anisotropic setting, whose proofs we
omit. We begin with a super-critical version of Theorem 5:

Theorem 13. Letm ≥ 2, k ∈ {1, ...,m− 1}, p1, ...,pk ∈ [1, ∞], pk+1, ...,pm−1 ∈ (2, ∞] and pm ∈ (1, 2], such
that

1
pk+1

+ ⋯ + 1
pm

< 1

and
1
pj

+ 1
pk+1

+ ⋯ + 1
pm

≥ 1

for all j ∈ {1, ..., k}. The following assertions are equivalent:

(a) There is a constant C ≥ 1 (not depending on n) such that

⎛⎜⎜⎜
⎝

n
∑
j1=1

⎛⎜
⎝

n
∑
j2=1

⋯ (
n

∑
jm=1

∣T(ej1 , ..., ejm)∣
qm)

qm−1
qm

⋯⎞⎟
⎠

q1
q2 ⎞⎟⎟⎟

⎠

1
q1

≤ C ‖T‖

for all m-linear forms T ∶ ℓnp × ⋯ × ℓnp → 𝕂 and all n.

(b) The exponents satisfy

q1 = ⋯ = qk = ∞ and qi ≥ 1
1− ( 1

pi
+ ⋯ + 1

pm
)

, i = k+ 1, ...,m.

Analogously, using Lemma 7, Lemma 8 and Theorem 4 we have:
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Theorem 14. Let p1, ...,pk ∈ [1, 2] and pk+1, ...,pm ∈ [2, ∞] be such that

1
pk+1

+ ⋯ + 1
pm

≤ 1
2

and
1
pj

+ 1
pk+1

+ ⋯ + 1
pm

≥ 1

for all j ∈ {1, ..., k}, and

qk+1, ...,qm ∈ ⎡
⎢
⎣

1

1− ( 1
pk+1

+ ⋯ + 1
pm

)
, 2⎤⎥

⎦
.

The following assertions are equivalent:

(a) There is a constant C (not depending on n) such that

⎛⎜⎜⎜
⎝

n
∑
j1=1

⎛⎜
⎝

⋯ (
n

∑
jm=1

∣T (ej1 , … , ejm)∣
qm)

qm−1
qm

⋯⎞⎟
⎠

q1
q2 ⎞⎟⎟⎟

⎠

1
q1

≤ C ‖T‖ ,

for all m-linear forms T ∶ ℓnp1 × ⋯ × ℓnpm ⟶ 𝕂 and all positive integers n.

(b) q1 = ⋯ = qk = ∞ and the inequality

1
qk+1

+ ⋯ + 1
qm

≤ (m− k) + 1
2

− ( 1
pk+1

+ ⋯ + 1
pm

)

is verified.

The next result shows that it is possible to avoid the condition 1
pj

+ 1
pk+1

+ ⋯ + 1
pm

≥ 1, for all
j ∈ {1, ..., k}:

Theorem 15. Let p1, ...,pk ∈ [1, 2] and pk+1, ...,pm ∈ [2, ∞] be such that

1
pk+1

+ ⋯ + 1
pm

≤ 1
2

and

qk+1, ...,qm ∈ ⎡
⎢
⎣

1

1− ( 1
pk+1

+ ⋯ + 1
pm

)
, 2⎤⎥

⎦
with

1
qk+1

+ ⋯ + 1
qm

= (m− k) + 1
2

− ( 1
pk+1

+ ⋯ + 1
pm

) .

The following assertions are equivalent:

(a) There is a constant C (not depending on n) such that

⎛⎜⎜⎜
⎝

n
∑
j1=1

⎛⎜
⎝

⋯ (
n

∑
jm=1

∣T (ej1 , … , ejm)∣
qm)

qm−1
qm

⋯⎞⎟
⎠

q1
q2 ⎞⎟⎟⎟

⎠

1
q1

≤ C ‖T‖ ,

for all m-linear forms T ∶ ℓnp1 × ⋯ × ℓnpm ⟶ 𝕂 and all positive integers n.
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(b) q1 = ⋯ = qk = ∞.

Proof. Suppose that (a) holds and qk < ∞. In this case, Lemma 7 provides a constant C such that

⎛⎜⎜⎜
⎝

n
∑
jk=1

⎛⎜
⎝

⋯ (
n

∑
jm=1

∣T (ej1 , … , ejm)∣
qm)

qm−1
qm

⋯⎞⎟
⎠

qk
qk+1 ⎞⎟⎟⎟

⎠

1
qk

≤ C ‖T‖

for all (m− k+ 1)-linear forms T ∶ ℓnpk × ⋯ × ℓnpm → 𝕂 and all positive integers n. For any
(m− k+ 1)-linear form T ∶ ℓnpk × ⋯ × ℓnpm → 𝕂, we define an (m− k+ 1)-linear form S with the same
rule of T , but different domain ℓn2 × ℓnpk+1

× ⋯ × ℓnpm . So, there is a constant C such that

⎛⎜⎜⎜
⎝

n
∑
jk=1

⎛⎜
⎝

⋯ (
n

∑
jm=1

∣S (ej1 , … , ejm)∣
qm)

qm−1
qm

⋯⎞⎟
⎠

qk
qk+1 ⎞⎟⎟⎟

⎠

1
qk

(8)

=
⎛⎜⎜⎜
⎝

n
∑
jk=1

⎛⎜
⎝

⋯ (
n

∑
jm=1

∣T (ej1 , … , ejm)∣
qm)

qm−1
qm

⋯⎞⎟
⎠

qk
qk+1 ⎞⎟⎟⎟

⎠

1
qk

≤ C ‖T‖

≤ C ‖S‖ .

for all (m− k+ 1)-linear forms S ∶ ℓn2 × ℓnpk+1
× ⋯ × ℓnpm → 𝕂, and the exponents satisfy

1
qk

+ 1
qk+1

+ ⋯ + 1
qm

= 1
qk

+ (m− k) + 1
2

− ( 1
pk+1

+ ⋯ + 1
pm

)

> (m− k) + 1
2

− ( 1
pk+1

+ ⋯ + 1
pm

)

= (m− k+ 1) + 1
2

− ( 1
2

+ 1
pk+1

+ ⋯ + 1
pm

) .

On the other hand, replacing the unimodular (m−k+1)-linear form of the Kahane-Salem-Zygmund
inequality (see Lemma 6.1 in Albuquerque et al. 2014) in (8), we obtain

n
1
qk

+⋯+ 1
qm ≤ Cm ⋅ n

(m−k+1)+1
2 −( 1

2+ 1
pk+1

+⋯+ 1
pm

).

Since this is valid for all n, we conclude that

1
qk

+ ⋯ + 1
qm

≤ (m− k+ 1) + 1
2

− ( 1
2

+ 1
pk+1

+ ⋯ + 1
pm

) ,

and this is a contradiction. Hence qk = ∞. Finally, the fact that q1 = ⋯ = qk−1 = ∞ is a consequence
of Lemma 8, because

1
pj

+ 1
pk

+ 1
pk+1

+ ⋯ + 1
pm

≥ 1

for all j ∈ {1, ..., .k− 1} (recall that p1, ...,pk ∈ [1, 2]).
Finally, using Theorem 4 and Lemma 8 we prove that (b) implies (a).
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Remark 16. It is worth mentioning that the above theorems are independent. For instance, if m = 4,
k = 2, p1 = p2 = 2 and p3 = p4 = 8, nothing can be inferred by Theorem 14. However, using Theorem
15, we conclude that if q3,q4 ∈ [4/3, 2] and 1

q3
+ 1

q4
= 5

4 then there is a constant C (not depending on
n) such that

⎛⎜⎜⎜
⎝

n
∑
j1=1

⎛⎜
⎝

⋯ (
n

∑
j4=1

∣T (ej1 , … , ej4)∣
q4)

q3
q4

⋯⎞⎟
⎠

q1
q2 ⎞⎟⎟⎟

⎠

1
q1

≤ C ‖T‖ ,

for all 4-linear forms T ∶ ℓn2 × ℓn2 × ℓn8 × ℓn8 ⟶ 𝕂 and all positive integers n if, and only if, q1 = q2 = ∞.

The following result was proved in Albuquerque & Rezende 2018 (in Corollary 2):

Theorem 17. (see Corollary 2 in Albuquerque & Rezende 2018) Let m be a positive integer and
p1, ...,pm ∈ [1, 2m] and 1

p1
+ ⋯ + 1

pm
< 1. Then, there is a constant C (not depending on n) such

that

⎛⎜⎜⎜
⎝

n
∑
j1=1

⎛⎜
⎝

⋯ (
n

∑
jm=1

∣T (ej1 , … , ejm)∣
qm)

qm−1
qm

⋯⎞⎟
⎠

q1
q2 ⎞⎟⎟⎟

⎠

1
q1

≤ C ‖T‖

for all m-linear forms T ∶ ℓnp1 × ⋯ × ℓnpm → 𝕂 and all positive integers n, with

1
qi

= 1
2

+ (m− i+ 1)
2m

− ( 1
pi

+ ⋯ + 1
pm

) ,

for all i = 1, ...,m.

Again, Lemma 7 and Lemma 8 combined with the Kahane-Salem-Zygmund inequality (see Lemma
6.1 in Albuquerque et al. 2014) and Lemma 3.1 in Aron et al. 2017 give us the following super-critical
version of the Theorem 17:

Theorem 18. Letm ≥ 2, k ∈ {1, ...,m− 1}, p1, ...,pk ∈ [1, ∞] and pk+1, ...,pm ∈ [2, 2(m−k)], be such that

1
pk+1

+ ⋯ + 1
pm

< 1

and
1
pj

+ 1
pk+1

+ ⋯ + 1
pm

≥ 1,

for all j ∈ {1, ..., k}. Then

⎛⎜⎜⎜
⎝

n
∑
j1=1

⎛⎜
⎝

⋯ (
n

∑
jm=1

∣T (ej1 , … , ejm)∣
qm)

qm−1
qm

⋯⎞⎟
⎠

q1
q2 ⎞⎟⎟⎟

⎠

1
q1

≤ 2m−k−1
2 ‖T‖ (9)

for all m-linear forms T ∶ ℓnp1 × ⋯ × ℓnpm → 𝕂 and all positive integers n, with q1 = ⋯ = qk = ∞ and

1
qi

= 1
2

+ (m− i+ 1)
2(m− k)

− ( 1
pi

+ ⋯ + 1
pm

) ,
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for all i = k + 1, ...,m. Moreover, q1 = ⋯ = qk = ∞, and the optimal exponents qi satisfying (9) are
such that

qi ≥ 1
1− ( 1

pi
+ ⋯ + 1

pm
)

, i = k+ 1, ...,m,

and the inequality
1

qk+1
+ ⋯ + 1

qm
≤ (m− k) + 1

2
− ( 1

pk+1
+ ⋯ + 1

pm
)

is verified.

Remark 19. When k = 1 and p1 = ⋯ = pm = m we recover Theorem 6.
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