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Abstract: Blast-induced vibration may be harmful to facilities in the vicinity of operating 
mines, mainly causing structural damage and human discomfort. This study presents an 
application of multivariate statistics to predict vibration levels regarding their potential 
to cause structural damage and human discomfort. An extensive seismic monitoring 
campaign was executed in a large open-pit iron ore mine, near a small village, to gather 
a dataset for a predictive multivariate analysis. Ten blasting events have produced a 
dataset of 158 valid measurements. Three classes of vibration peak velocity were adopted 
from legal standards, which later supported a cluster analysis. Then, it was possible 
to compare how much these two classification modalities respond to discriminant 
analysis. The next step was to carry out a principal component analysis (PCA) from the 
original database, and, comparatively, to plot both the scores concerning the classes 
derived from the vibration standard and those from the groups obtained from cluster 
analysis. PCA has considerably explained the data variability, while the three classes 
from cluster analysis resulted very similar to the corresponding ones from the vibration 
standards. The results have demonstrated that multivariate statistics may be applied 
to manage blasting-induced vibration and its deleterious effects with few adjustments 
and automation.

Key words: rock blasting, vibration, multivariate analysis, cluster analysis, discriminant 
analysis, principal component analysis.

INTRODUCTION

Rock blasting is a unitary operation of critical 
importance in hard rock mining and should be 
designed to combine the best fragmentation 
(resulting in ideal particle size distribution, with 
appropriate fragment blockiness and avoiding 
both over-sized fragments and those fines from 
over-fracturing) and minimal cost, considering 
health, industrial hygiene and environmental 
restrictions (Aler et al. 1996). Among the negative 
blasting impacts on its surroundings are induced 
ground vibrations (Hudaverdi et al. 2007, 2011, Ak 

et al. 2009). The level of vibrations is influenced 
by two specific groups of parameters. First, the 
parameters inherent to the rock mass where 
the waves propagate: its physical properties, 
such as porosity, mechanical strength, the 
presence of joint sets, elasticity parameters 
(Young’s modulus, Poisson’s modulus, acoustic 
impedance). Obviously, these parameters are 
intrinsic to the mined region (NBR 9653:2005, 
2005). The other group is concerned with the 
blasting plan, designed by the engineers, such 
as charge per delay, distance among blast holes 
and rows, bench height, drill hole diameter, 
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stemming, delay between holes and rows 
ignition, sequence, and direction of initiation 
and subdrilling (Bhandari 1997). 

The complexity of the phenomena involved 
in rock blasting makes the accurate modeling 
of its features challenging. In line with this 
statement, various attempts are found in 
the technical literature, seeking a predictive 
equation for blast-induced vibration (Fişne et 
al. 2010). Table I exemplifies this effort, with 
compiled cases by Kuzu (2008).

As pointed out by Kumar and co-workers 
(Kumar et al. 2015), researchers generally perform 
site-specific experimental campaigns, as blast 
ground vibration is a concern. Seismographs are 
used in order to provide technical parameters, 
such as vertical, longitudinal, and transverse 
peak particle velocities. Their major resultant 
at a given instant, the so-called peak vector 
sum (PVS), is considered the main vibration 
parameter by many authors (Dehghani H & 
Ataee-Pour 2011). Along this line, Yilma (2016) 
performed a comparative study of the predictive 
equations of blast-induced vibrations and has 
suggested attenuation formulas. As Brazilian 
mining operation is concerned, Iramina et 
al. (2018) applied artificial neural network 

techniques and geomechanics parameters to 
model blast-induced vibration attenuation. 
As pointed by those authors, artificial neural 
network performed better, despite requiring 
larger datasets.

Database containing blast  design 
parameters and particle velocity or acceleration 
are usually gathered by researchers, seeking 
to provide necessary information to support 
regression analysis that can predict the level 
of blast-induced vibration (Singh et al. 2008). 
This approach considers the raw measured blast 
data to predict ground vibrations.

The nomenclature of the parameters 
inserted in Table I is as follows: v — velocity 
of vibrations [mm/s]; k — a real multiplicative 
coefficient from the regression model; n — a real 
addictive coefficient from the regression model; 
Q — maximum charge of explosives per delay 
[kg]; R — radial distance [m]; D — scaled distance 
[m/kg² or m/kg3].

The importance of multivariate techniques 
applied to mining and geotechnical data has 
been confirmed by a number of applications 
in the area. Studies like those from Santos 
and coworkers (Santos et al. 2019), Sing and 
coworkers (Singh et al. 2015), Landim (2011), and 

Table I. Regression equations for induced ground vibrations according to many authors (modified from Kuzu 2008). 
Researchers Empirical models Researchers Empirical models
Duvall & Petkof (1959) v = k(R/Q1/2)-b Kahriman (2004) v = 0.34D-1.79

Langefors & Kihlstrom (1978) v = k(Q/R2/3)b/2 Kahriman et al. (2006) v = 0.561D-1.432

Arnbraseys & Hendron (1968) v = k(R/Q1/3)-b Rai & Singh (2004) v = kR-b(Qmax)e
-b

Nicholls et al. (1970) v = 0.36D-1.63 Nicholson (2005) v = 0.438D-1.52

BIS (1973) [IS 6922] v = k(Q2/3/R)1.25 Rai et al. (2005) Qmax = k(vD2)b

Siskind et al. (1980) v = 0.828D-1.32 Ozer (2008) (sandstone) v = 0.257D-1.03

Ghosh & Daemen (1983) v = k(R/Q1/2)-be-αR Ozer (2008) (shale) v = 6.31D-1.9

Ghosh & Daemen (1983) v = k(R/Q1/3)-be-αR Ozer (2008) (limestone) v = 3.02D-1.69

Roy (1991) v = n + k(R/Q1/2)-1 Ak et al. (2009) v = 1.367D-1.59

Roy (1991) v = n + k(R/Q1/3)-1 Badal (2010) v = 0.29D-1.296

CMRI (1993) v = n + k(R/Q1/2)-1 Mesec et al. (2010) v = 0.508D-1.37

Kahriman (2002) v = 1.91D-1.13
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Vezhapparambu and colleagues (Vezhapparambu 
et al. 2018) can be cited, just to name a few. This 
research is inserted in this context and aimed 
at studying ground vibration parameters using 
multivariate statistical analysis.

Karadogan et al. (2014) made an interesting 
survey on legal norms concerning the limits of 
blast-induced vibrations in several countries, in 
order to guide their own technical study with 
a view to proposing similar standards for the 
Turkish mining sector. Nevertheless, for the 
present study, a combination of Brazilian legal 
vibration standard NBR 9653:2005 (Brazil 2005) 
stating vibration limit of 15.0 mm/s (for structure 
damage application), and the Australian one 
(Australia 2014) was adopted (vibration limit 
of 2.0 mm/s, for human comfort), since the 
latter is one of the few standards that adopts 
the human comfort as the criterion, in order to 
achieve a result that can embrace both structure 
damage and human comfort (Duvall & Fogelson 
1962, Erten et al. 2009). From the adoption of 
these limits concerning the peak velocity of 
the particles under vibration, a multivariate 
statistical analysis was carried out to evaluate 
the discriminating power of some classic 
techniques of multivariate analysis of empirical 
data. The idea was to analyze the pertinence of 
future development of automated algorithms 
for predicting (and quantifying) the impacts 
resulting from blasting operations in the vicinity 
of the mine. 

MATERIALS AND METHODS
The field investigations were performed at 
a large open pit iron mine located in the so-
called Iron Quadrangle (Brazil) mineral province. 
The target mine is located near to a small 
village (Figure  1). The acquiring method was 
fully described by Silveira (2017) and Navarro 
Torres et al. (2018). A total of 20 seismographs 

(from Geosonics®, model SSU 3000 EZ+) were 
employed, in a campaign of 10 blast events, 
which has resulted in a large dataset of 158 
valid measurements. 42 observations could not 
activate the trigger level of 0.5 mm/s. This trigger 
value was adopted because it was the least 
sensible practical limit for field survey in order 
to avoid recording events as car traffic or even 
pedestrians walking. The distance (D) between 
the vibration source and the monitored point 
was calculated by allocating UTM coordinates 
obtained by a Garmin GPS (model Map).

A combination of Brazilian legal vibration 
standard and the Australian corresponding one 
was adopted, since the latter is one of the few 
standards that adopts the human comfort as 
the criterion, in order to achieve a result that 
can embrace both structure damage and human 
comfort (Table II). 

Due these criteria, it was created three 
different classes of vibration level: 15 < PVS, 
2 < PVS < 15 and PVS < 2. These classes were also 
used for qualitative grouping of observations 
(k = 3).

Figure 1. Representation of the region studied.
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The statistical analysis was initially 
performed at an exploratory level using Jamovi, 
a free and open statistical software package 
(The Jamovi Project 2019).

The cluster analysis of data was performed 
using Minitab® Version 19.2 (a proprietary 
system for statistical computation), which are 
widely used by statisticians. Cluster analysis of 
one dataset classifies the data into groups so 
that those within the same cluster share greater 
proximity of properties, when compared to data 
from the other groups (ultimately Euclidean 
distances between points belonging to a definite 
cluster are smaller than the distances between 
points of distinct clusters). Under this line of 
action, k-means clustering was employed. This 
clustering algorithm is used for partitioning a 
data set into a set of k pre-specified clusters. 
Using, intentionally, k = 3, two types of categories 
are obtained: those three ranges derived from 
vibration standards, and the three groups from 
cluster analysis. Then, it was possible to compare 
how much these two classification modalities 
respond to a discriminant analysis. 

In sequence, a linear discriminant analysis 
was executed for the legal vibration limits. This 
technique is a dimensionality reduction tool 
applied on any homoscedastic dataset. It is 
an analysis with discriminant functions and is 
based on replacing original data with a linear 
combination of measurements that minimizes 
the variance and maximizes the distance 
between the means of the classes. Markedly, 
if standardization is carried out, z-scores are 
always homocedastic.  

In the present case, the next methodological 
step was to perform a principal component 
analysis with the original database, and 
comparatively plot both the scores concerning 
the classes derived from the vibration standards 
and scores of the three groups from cluster 

analysis. The Jamovi statistical spreadsheet was 
used for this step.

Principal component analysis (PCA) is 
another very useful tool for multivariate data 
analysis based on reduction of dimensionality 
by an orthogonal coordinate transformation 
of a data set, generating a few orthogonal 
linearly uncorrelated variables called principal 
components, which capture most of the 
variability of those original data (Calabrese 
2019). Therefore, the basic purpose of PCA is to 
transform a set of initial variables correlated 
with each other, into another set of uncorrelated 
(orthogonal) variables, called main components, 
which are appropriate linear combinations of 
the original variables. The components are 
calculated in descending order of importance, 
that is, the first main component explains the 
maximum possible variance of the original data, 
the second the maximum possible variance not 
yet explained by the first one, and so on. The last 
main component will be the one with the least 
contribution to explain the total variance of the 
original data. In a principal component analysis, 
all variables are treated in the same way, that is, 
there are no dependency relationships between 
variables, as occurs in regression analysis. The 
main objectives of this multivariate technique 
are to reduce the dimensionality of the data 
and to obtain interpretable combinations of the 
original variables. 

The principal component analysis depends 
solely on the covariance matrix or the correlation 
matrix P of the original variables X1; ...; Xp. It is 

Table II. Summary of vibration limits adopted.

Standard Vibration limit Application

NBR 9653 (Brazil) 15.0 mm/s Structure 
damage

Transport Noise 
Management 

(Australia)
2.0 mm/s Human 

comfort
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not necessary to assume the normality of the 
data for the application of the technique, as 
pointed out by Santos et al. (2019).

RESULTS AND DISCUSSION
Exploratory analysis
Table III presents the descriptive statistics of 
the variables used to compose the dataset 
used in this research. It was employed Jamovi 
spreadsheet for this analysis. In Table III and 
along the text, the symbols stand for the 
following parameters: D — distance [m]; Lv — 
wave longitudinal velocity [mm/s]; Tv — wave 
transverse velocity [mm/s]; Vv — wave vertical 
velocity [mm/s]; PVS — peak vector sum [mm/s]; 
and Q — explosive charge per delay [kg]. In 
turn, the subscript _st stands for “standardized 
variable”. The descriptive statistics of these data 
are showed in Table IV. In order to perform an 
exploratory analysis, a matrix plot of the data 
was done (Figure 2). This matrix provides a visual 
idea about the correlation between the variables 
and sometime called “draftsman’s plot”.

A careful examination of the matrix 
plot has allowed inferring that there is some 
correlation with many of the studied variables. 
The corresponding boxplot of each measured 
(raw) variable would not be useful, due to scale 

discrepancy of variables (which are of very 
different magnitudes). In view of this, these 
parameters were standardized (transforming 
raw data to z-scores) and are shown in Figure 3. 
Z-scores of a generic variable xi were obtained 
by the usual transformation: 

	 	 (1)

It is noteworthy that — at a first approach — 
some of these velocity measurements could be 
classified as anomalous, but in fact, they are not 
outliers (which are actually defined by statistical 
techniques), since the most discrepant values 
were those recorded at short distances from the 
blast faces and they were valid measurements 
obtained from the field campaign, which will be 
fully considered in the multivariate analysis.

K-means cluster analysis
In order to compare the legal standard 
classification adopted (which entails three 
ranges of vibration level) with the state of 
art multivariate statistical techniques, a 
k-means cluster analysis was performed, with 
three clusters, and standardized variables, as 
commented in this method explanation (item 
2). The result of cluster analysis is displayed in 
Table V.

Table III. Descriptive statistics (sample size: 158) showing the Shapiro-Wilk’s test for normality.

  D [m] Lv [mm/s] Tv [mm/s] Vv [mm/s] PVS [mm/s] Q/delay [kg]
Mean 844.0 3.108 2.327 1.890 3.718 1495
Median 851.5 0.7300 0.7950 0.5100 0.9850 1500
Standard deviation 466.7 8.448 4.218 4.139 9.392 400.0
Minimum 52 0.06000 0.1300 0.06000 0.1900 800
Maximum 1955 65.53 34.04 31.69 74.93 2100
Shapiro-Wilk p 0.0010 < 0 .0001 < 0 .0001 < 0.0001 <  0.0001 < 0.0001
25th percentile 474.0 0.3800 0.3800 0.2500 0.5250 1250
50th percentile 851.5 0.7300 0.7950 0.5100 0.9850 1500
75th percentile 1203 2.083 2.030 1.635 2.652 1750
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Figure 2. Matrix plot of the dataset (from Minitab).

Figure 3. Boxplots of standardized variables (from Jamovi).

Discriminant analysis
Initially a linear discriminant analysis was 
carried out for the legal vibration limits, using 
the standardized data because the original 
variables were not homoscedastic, as can be 
verified by the descriptive statistical analysis. 
Not surprisingly, in a second stage, the 
quadratic discriminant analysis of the original 
data proved to be more appropriate due to the 
lower elimination of measures resulting from 
excessive apparent correlation (as detected 
by the algorithm). The groups were: with PVS 
greater 15 mm/s (9 events), PVS between 2 mm/s 
and 15 mm/s (40 events), and PVS less than 
2 mm/s (109 events). The correct classification 
proportion concerned legal vibration limits was 
151/158 = 95.6 % for the quadratic discriminant 
function (against  89.2  % for linear function). 
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After a cross validation procedure, in order to 
compensate for an optimistic apparent error 
rate of misclassified observations, the correct 
classification proportion was 147/158 = 93.3 %. 
Detailed results are presented in Table VI.

The same process was applied for the 
cluster classification. The correct classifications 
proportion from cluster analysis was 156/158 = 
98.7 %. Groups from cluster analysis were: group 
1 (4 events), group 2 (117 events) and group 3 
(37 events). Detailed results are presented, as 
shown in Table VII.

Principal component analysis

In order to reduce the number of dimensions 
of the dataset, preserving most of the original 
variability, a principal component analysis (PCA) 
was executed, as shown in Table VIII and Table 
IX. As already mentioned, the variables were 
standardized due to the high scale discrepancy 
of variables. Once this was done, a correlation 
matrix must be adopted, instead of a covariance 
matrix, as one of the PCA premises.

From these three techniques applied to 
the dataset, it was possible to reach the final 

Table IV. Descriptive statistics for (dimensionless) standardized data (N = 158; mean = 0; variance = 1).

D_st Lv_st Tv_st Vv_st PVS_st Q/d_st
Median 0.016100 -0.28155 -0.36330 -0.33350 -0.29100 0.012700
Minimum -1.6969 -0.36080 -0.52090 -0.44220 -0.37560 -1.7371
Maximum 2.3804 7.3889 7.5179 7.1998 7.5822 1.5125
Skewness 0.28519 5.7447 4.2095 4.9252 5.7140 -0.048856
Std. error skewness 0.19305 0.19305 0.19305 0.19305 0.19305 0.19305
Shapiro-Wilk p 0.0010 < .0001 < .0001 < .0001 < .0001 < .0001
25th percentile -0.79270 -0.32300 -0.46170 -0.39630 -0.34000 -0.61230
50th percentile 0.016100 -0.28155 -0.36330 -0.33350 -0.29100 0.012700
75th percentile 0.76815 -0.12145 -0.070500 -0.061625 -0.11345 0.63760

Table V. Final Partition.

Number of 
observations

Within cluster sum of 
squares

Average distance from 
centroid

Maximum distance 
from centroid

Cluster1 3 41.860 3.612 4.742
Cluster2 131 240.026 1.235 2.309
Cluster3 24 85.866 1.742 4.168

Table VI. Summary of classification from legal vibration limits.

True Group 
(before cross validation)

True Group 
(after cross validation)

Put into Group 15 < PVS 2 < PVS < 15 PVS < 2 15 < PVS 2 < PVS < 15 PVS < 2

15 < PVS 9 1 0 8 4 0
2 < PVS < 15 0 38 5 1 35 5
PVS < 2 0 1 104 0 1 104
Total N 9 40 109 9 40 109
N correct 9 38 104 8 35 104
Proportion 1.000 0.950 0.954 0.889 0.875 0.954
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results of multivariate assessment, as follows. 
Figure 4 shows the Mahalanobis distance for the 
observations, where some pseudo-outliers were 
detected, accordingly with the high variability 
explained before in the exploratory data 
analysis.

Figure 5 displays the scree plot of 
eigenvalues of each component from PCA. 
Despite of criticism against its use (Yeomans 
& Golder 1982), the Guttman–Kaiser criterion 
for selecting the number of components was 
used because of its widespread employment 
in technical literature. Following the Guttman–
Kaiser criterion, components were retained, 
which represent 85.2 % of the total variability of 
data. This cumulative proportion can be safely 
considered as a good representation of the total 
variability, plus a system dimension reduction 
from five to two.

Figure 6 shows a biplot of score from 
the first two components and the loading 
of all eigenvectors, in order to present the 
correlation between the data dispersion and 
the eigenvectors’ growth directions. As the 
distance increases, all velocities decrease, both 
ruled mostly by the first component, and the 
charge per delay grows in a direction ruled by 
the second component.

Figure 7 was the score plot of the first two 
components, filtered by the legal vibration limits 
groups. There is a clear division in three groups, 
even though they were not defined by statistical 
techniques.

Figure 7 and Figure 8 show the same chart, 
but the former has the cluster group filter. 
The division of scores is clear too, and most 
important, it was almost identical to the legal 
vibration limit classification.

The parameters that determine the intensity 
and occurrence of the vibrations are vast and 
very heterogeneous, becoming extremally hard 
to predict and interpret without good statistical 

Table VII. Summary of classification from cluster 
analysis.

True Group
Put into Group 1 2 3

1 4 0 0

2 0 115 0

3 0 2 37
Total N 4 117 37

N correct 4 115 37
Proportion 1.000 0.983 1.000

Table VIII. Eigenanalysis of correlation matrix from PCA.

PC1 PC2 PC3 PC4 PC5
Eigenvalue 3.2191 1.0395 0.6253 0.0923 0.0239
Proportion 0.644 0.208 0.125 0.018 0.005
Cumulative 0.644 0.852 0.977 0.995 1.000

Table IX. Eigenvectors from PCA.

Variable PC1 PC2 PC3 PC4 PC5
Distance  
[m] -0.367 0.302 0.867 -0.134 -0.066

Longitudinal 
velocity 
(long_vel) 
[mm/s]

0.530 0.049 0.324 0.431 0.653

Transverse 
velocity 
(trans_vel) 
[mm/s]

0.537 0.037 0.090 -0.835 0.067

Vertical 
velocity  
(vert_vel) 
[mm/s]

0.543 0.062 0.199 0.313 -0.751

Charge per 
delay [kg] 0.033 0.949 -0.309 0.033 0.034

Figure 4. Outlier plot from principal component 
analysis (PCA).
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tools. In this mine-village context, depending 
on the regulation, the extrapolation of imposed 
limits can cause production stoppages, fines 
and affect the geotechnical structures such as 
slopes, stockpiles, waste piles and dams.

Once applied these statistical methods to 
the rock blasting data and to the mechanical 
properties of the rock mass, it was obtained a 
prediction model for the vibration intensity and its 
occurrence. Adding value through an anticipated 
and planned decision-making, reduction of 
production stoppage, and mitigation of eventual 
impacts on the geotechnical structures.

CONCLUSIONS
The impact of mining operations on communities 
located in its surroundings (which often arise 
from population settlement after the beginning 
of the mineral exploitation) has been the subject 
of many controversies among stakeholders and, 
consequently, studies aiming to alleviate this 
type of problem have been carried out. In this 
context, the adoption of computerized systems 
for the optimization of procedures, aiming at a 
lower impact due to blast vibrations, is extremely 
welcome. 

The application of combined cluster, 
discriminant and principal component analysis 
allowed classifying this complex dataset under 

Figure 8. Score plot from principal component analysis 
(PCA) with cluster groups.

Figure 5. Scree plot from principal component analysis 
(PCA).

Figure 6. Biplot chart from principal component 
analysis (PCA).

Figure 7. Score plot from principal component analysis 
(PCA) with legal vibration limits groups.
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study, on a statistical basis, without losing 
the real application based on legal standards. 
In line with these results, one could think of 
those specialist systems and those based on 
artificial intelligence, just to mention two 
common techniques. In any case, these results 
of multivariate statistics may be important 
instruments for their implementation in the 
field, creating, for example, automatic systems 
for detecting occasional violations of preset 
limits of ground vibration.

Therefore, it will be possible to automate this 
type of analysis for forecasting of blast-induced 
vibration with respect to its harmful effects, 
once the k-means cluster analysis reaches an 
almost identical result compared to the legal 
vibration limit classes. One could implement, for 
instance, an algorithm incorporating statistical 
analysis and regression models into a decision 
tree, excluding the subjectivities inherent to the 
human factor. This methodological approach 
may be widely applied in the research area of 
induced ground vibrations from rock blasting.
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