
An Acad Bras Cienc (2023) 95(3): e20220684 DOI 10.1590/0001-3765202320220684
Anais da Academia Brasileira de Ciências | Annals of the Brazilian Academy of Sciences
Printed ISSN 0001-3765 I Online ISSN 1678-2690
www.scielo.br/aabc | www.fb.com/aabcjournal

ENGINEERING SCIENCES

BIOPLAG: An Approach to Detect Programming
Plagiarism

KAIO P. GOMES, SIMONE N. MATOS & TARCIZIO ALEXANDRE BINI

Abstract: This paper creates an approach to the automatic detection of plagiarism in
programming by combining the interdisciplinary knowledge from bioinformatics with
techniques such as: tokens of programming language elements, tokens mapping in
synthetic biological sequence, and alignment of biological sequences. This solution,
named BIOPLAG, contemplates different levels of modifications in source code, and its
functioning depends on concepts of computer science as well. Through the realization
of three experiments with students and programmers, a total of 168 real examples of
plagiarism evaluated the implementation of BIOPLAG with the usage of 336 source codes
in C language divided into seven scenarios. The evaluation process compared to other
tools known as references in the literature: MOSS and JPLAG. The evaluative metrics used
are precision, recall, and fmeasure. As a result, BIOPLAG showed to be the best in four
and equal in three out of seven test scenarios. Its average score on the metrics in the
evaluation process was 0.95 against MOSS with 0.83 and JPAG with 0.87.

Keywords: Automatic detection, bioinformatics, plagiarism in programming, source code.

INTRODUCTION

The plagiarism in programming, specifically in source code, can be defined as unauthorized re-use of a
program’s implementation by copying its structure and syntax (Burrows et al. 2007). Unlike authorized
use, which allows the re-use of source code in software development (Karnalim et al. 2022). For
instance, it might be desirable to re-use test implementations of open-source projects to contribute
to greater security and agility in the development of software (Makady & Walker 2017).

The concern of this subject has been noticed by the statistics (Flores et al. 2015). A study developed
by Sraka & Kaucic (2009) and Cheers et al. (2021, 2023) showed that in the academic environment, a rate
of 72.5% of students admitted to plagiarizing at least once in programming assignments. This problem
might affect the learning process of students in programming courses (Gomes &Matos 2020). However,
this type of plagiarism can interfere in various areas besides the education field (Chuda et al. 2012,
Cheers & Lin 2022). According to Ullah et al. (2020), every software system has up to 20% of plagiarized
source code in its implementation.

Proposed solutions for the plagiarism problem are created to automate the detection of similarity
between source codes, having its usage for the detection of both authorized and unauthorized
re-use (Flores et al. 2015, Ragkhitwetsagul 2016, Makady & Walker 2017, Cheers & Lin 2022). Manually
performing this task requires much effort and may become unfeasible in certain cases (Prado

An Acad Bras Cienc (2023) 95(3)

KAIO P. GOMES, SIMONE N. MATOS & TARCIZIO ALEXANDRE BINI BIOPLAG: AN APPROACH TO DETECT PROGRAMMING PLAGIARISM

et al. 2018). The automatic detectors for unauthorized use of source code try to contemplate
different modification techniques used by plagiarists. These modifications are addressed by studies
in computer science, such as the six levels of Faidhi & Robinson (1987) and the four types of Roy &
Cordy (2007).

The automatic detectors created are commonly based on various approaches, for example, graphs,
trees, tokens, metrics, textual comparisons, among others (Arwin & Tahaghoghi 2006). Some of the
tools developed using these existing techniques are JPLAG, Measure of Software Similarity (MOSS), Yes,
Plague, Yet Another Plague (YAP), Plaggie, Fast Plagiarism-Detection System (FPDS) and Marble (Đurić
& Gašević 2013).

Many solution tools have been proposed and developed; the two most used as references in
the literature are MOSS and JPLAG (Ahadi & Mathieson 2019, Đurić & Gašević 2013). However, these
tools, including the most used ones, have limitations regarding the ability to detect various levels or
types of modifications in source codes. Besides, these solutions have a limited number of supported
programming languages. As a limiting factor, the time complexity has to be regarded to avoid infeasible
solutions.

The present paper creates an approach, named BIOPLAG, to automatically detect the six levels
of plagiarism in source code following the classification elaborated by Faidhi & Robinson (1987). The
BIOPLAG (Gomes 2020) uses a combination of techniques from bioinformatics and computer science.
The following techniques are used: tokens of programming language elements, tokens mapping in
synthetic biological sequences, and alignment of biological sequences. The applied concepts of
bioinformatics are based on the computer virus detection method developed by Pedersen et al. (2012).

BIOPLAG has the characteristic of supporting any programming language. In this work, its
implementation used a token generator for the C language to evaluate the created approach. However,
other token generators of any programming language can be integrated.

The evaluation process is performed from the application of BIOPLAG in seven test scenarios, of
which six aim to evaluate its performance in detecting plagiarism levels in plagiarized source code, and
one is directed to find false positives and false negatives. The tests were created from implementations
of source codes written in C language representing samples of presence and absence of plagiarism,
and they were implemented through three real experiments with volunteers.

Experiments carried out in this paper had the participation of 25 undergraduate students and
three graduate students from the Federal University of Technology – Paraná, in addition to six
programmers from a software development company in the region. From a public source code dataset,
the volunteers produced examples of programming plagiarism following the six specific levels of Faidhi
& Robinson (1987) to compose six testing scenarios.

The test scenarios used a total of 336 source code examples implemented in C language to
be tested in pairs, resulting in 168 tests to evaluate the detection of six levels of plagiarism in
programming and cases of absence of plagiarism. For the cases of absence, 60 non-plagiarized
examples were chosen randomly from the source code dataset used in the experiments.

The evaluation of the test scenarios was performed to analyze the following performance metrics:
precision, recall, and fmeasure. The MOSS and JPAG tools, considered as references in state of the art,
were compared with BIOPLAG regarding their performances in programming plagiarism detection.

An Acad Bras Cienc (2023) 95(3) e20220684 2 | 20

KAIO P. GOMES, SIMONE N. MATOS & TARCIZIO ALEXANDRE BINI BIOPLAG: AN APPROACH TO DETECT PROGRAMMING PLAGIARISM

The results obtained by BIOPLAG demonstrated that its performance was not inferior in any test
scenario for the precision, recall, and fmeasure regarding the compared tools. In sum, it has shown
to be greater or equal for every test scenario.

BACKGROUND

The Cambridge dictionary (Cambridge 2020) defines plagiarism as ”the process or practice of using
another person’s idea or work and pretending that it is your own.” Regarding the concern of plagiarism
in programming, as shown in Ullah et al. (2020), each software system contains from 5% to 20% of
plagiarism in its source code.

Due to this ethical problem that affects several fields (Chuda et al. 2012, Cheers & Lin 2022)
besides the software industry, plagiarism detection approaches are proposed. The computer science
contributes for the elaboration of these solutions (Allyson et al. 2019, Kuo et al. 2018, Meuschke et al.
2018, Prechelt et al. 2002, Cheers & Lin 2022) as well as other interdisciplinary fields, for example, the
bioinformatics (Kane & Springer 2007, Pedersen et al. 2012, Revett 2009, Xu et al. 2006).

Bioinformatics

Bioinformatics techniques can solve computer science problems, as shown in the following studies:
”integrating bioinformatics, distributed data management, and distributed computing for applied
training in high-performance computing” (Kane & Springer 2007); ”Blast your way through malware
analysis assisted by bioinformatics tools” (Pedersen et al. 2012); ”An approach to SOA-based
bioinformatics grid” (Xu et al. 2006); ”a bioinformatics based approach to user authentication via
keystroke dynamics” (Revett 2009); ”Planogram Compliance Control via Object Detection, Sequence
Alignment, and Focused Iterative Search” (Yücel & Ünsalan 2022); among others.

The biological sequences which are used in the alignments can be of different types, for example,
DNA and protein (Goad & Kanehisa 1982). According to the chosen bioinformatics tool for executing
alignments, any type of sequence can be used (Tang et al. 2009). For bioinformatics, the use of these
tools provides support in the investigation of protein functions, evolutionary relationships, among
other applications (Junior & Wolmer 2019).

Deoxyribonucleic acid (DNA) is responsible for keeping the genetic information of living
organisms. In its composition, there are four different types of nucleotides represented by the
following nitrogenous bases: adenine (A), thymine (T), guanine (G), and cytosine (C). The formulation
of a DNA sequence is done through a polynucleotide chain (Alberts et al. 2017).

Protein is associated with the metabolism of organisms performing different functions. In its
structure, it is defined as a polymer formed by a linear sequence of amino acids. Amino acids are the
molecules that make up the protein through 20 different shapes: alanine (A), arginine (R), asparagine
(N), aspartic acid (D), cysteine (C), glutamine (Q), glutamic acid (E), glycine (G), histidine (H), isoleucine
(I), leucine (L), lysine (K), methionine (M), phenylalanine (F), proline (P), serine (S), threonine (T),
tryptophan (W), tyrosine (Y), and valine (V) (Hunter 2009).

The alignment of these biological sequences consists of comparing two or more sequences
in search of a series of characters or patterns of characters that are in the same order in the

An Acad Bras Cienc (2023) 95(3) e20220684 3 | 20

KAIO P. GOMES, SIMONE N. MATOS & TARCIZIO ALEXANDRE BINI BIOPLAG: AN APPROACH TO DETECT PROGRAMMING PLAGIARISM

comparison (Mount 2001). This technique aims to detect the level of similarity between sequences.
Its functioning belongs to the same class of problems of finding the largest common subsequence
problem (LCS) (Coull et al. 2003).

The two main types of sequence alignment are: global and local. The global occurs when the
character-to-character comparison is made considering the entire length of the strings, seeking to
obtain the largest possible number of comparisons. Unlike the global, the local type seeks only regions
with a higher degree of similarity or equality of characters (Haque et al. 2009).

A scoring system is used to evaluate the alignment based on three comparison criteria, which can
be: match, mismatch, and gap. A positive value is assigned when characters are equal, and a negative
value is assigned in opposite situations when there is no equality. For the gap cases, it assigns a penalty
through a negative score when there are absence and presence of characters in comparison (Coull
et al. 2003).

All these concepts of sequence alignment are applied in a biologically inspired computingmethod
developed by Pedersen et al. (2012) that solves a computer science problem for the information
security domain. The main goal of the proposed solution is to detect computer malware using the
methods and tools of bioinformatics. Its functioning depends on four main steps.

The step I is responsible for selecting the files of interest, which are called digital artifacts. In this
context of the application, any file suspected of being infected and a known file containing a specific
malware of analysis interest. The chosen digital artifacts are inputs for the next step.

In step II, it occurs the mapping of the digital artifacts into DNA sequences. These sequences
represent the files, and no longer, the genetic material of organisms. The creation of these biological
structures depends on the ASCII (Extended version) binary representation of each character that
belongs to the digital artifact’s content.

Through a mapping table, every two contiguous bits a nucleotide is generated for creating the
DNA sequence of the digital artifact. The method used the following bits mapping into nucleotide: 00
into T, 01 into G, 10 into C, and 11 into A. The order of the nucleotides in the sequence respects the
same order that the bits appear in the binary representation.

The DNA sequences generated in step II are inputs for step III. In this step, a local alignment
conducted by a bioinformatics tool is performed. The tool adopted by this task is the Basic Local
Alignment Search Tool (BLAST), which detects regions of similarity between DNA sequences (Altschul
et al. 1990). This tool creates a report with different parameters analyzing the alignment, such as
e-value, percent identity, and score (Nilsson et al. 2012).

After performing the alignment, the report is analyzed in step IV. The main objective is to identify
the level of similarity among the sequences. By considering the degree of similarity established, it
is possible to identify whether there is malware in the suspect file. Due to the nature of the local
alignment, the report identifies regions of high similarity, which helps in the identification of files
camouflaged with the virus. Intentionally, the virus hides in a small portion of the file, and the
rest keeps the same as original not infected. In sum, this bioinformatics proposed method solves
a computer science problem and open opportunity to create novel solutions for other computing
domains besides information security, for example, programming plagiarism detection as pointed
by Pedersen et al. (2012).

An Acad Bras Cienc (2023) 95(3) e20220684 4 | 20

KAIO P. GOMES, SIMONE N. MATOS & TARCIZIO ALEXANDRE BINI BIOPLAG: AN APPROACH TO DETECT PROGRAMMING PLAGIARISM

Programming plagiarism

Plagiarism consists of re-using the work of other authors without referencing them (Maurer et al.
2006). An example is programming plagiarism, in which source codes are modified or camouflaged
with partial or integral pieces of other authors’ implementations (Flores et al. 2015).

Plagiarists in programming make different types of modifications to the source code so that
plagiarism detectors cannot identify that the implementation was generated from the partial or even
full copy of other code snippets. There are studies in computer science that seek to categorize these
modifications; for example, one of the leading studies for classification approach is the six levels
of Faidhi & Robinson (1987).

According to the six levels of modifications, level 1 represents source code changes in terms of
comments and indentations. Level 2 changes the identifiers of source code components, for example,
the name of variables. Level 3 contemplates changes in declared components, for instance, by altering
the position of declared variables, constants, procedures, and functions. Level 4 are modifications in
module components of source codes such as functions and procedures; for example, the creation of
new functions by merging two or more existing ones.

The level 5 replaces program repetition statements such as ”FOR” and ”WHILE”. Level 6 applies
logic changes by altering control statements such as the expressions in conditions. In sum, the levels
are cumulative and present increasing complexity for programming plagiarism detectors, in which the
sixth is the most difficult and the first is the easiest.

The two main detectors of plagiarism in source code evaluated as references in the literature are
JPLAG and MOSS. Both are widely used for comparison studies since they are free and functional (Đurić
& Gašević 2013, Ahadi & Mathieson 2019).

JPLAG is an automatic detection tool developed by Prechelt et al. (2002) to find similarities
among source codes. This tool supports the following languages of source code implementation: Java,
Scheme, C, C++ and C# (Ahadi & Mathieson 2019).

The functioning of JPLAG depends on two main phases. Phase 1 applies the token technique,
in which each element of the source code turns into a sequence of tokens. Phase 2 performs a
peer-to-peer comparison among these sequences by using its version of the Running Karp-Rabin
Greedy String Tiling (RKR-GST) algorithm (Noh 2003). Regarding these processes, the time complexity
in the worst case is 𝑂(𝑛3).

The Measure of Software Similarity (MOSS) is another tool for automating the detection of
plagiarism in source codes. According to Araujo & Kyrilov (2020), its usage has been directed in
education to assess the authenticity of programming activities. The supported languages for analysis
are C, C++, Java, C#, Python, Visual Basic, Javascript, FORTRAN, ML, Haskell, Lisp, Scheme, Pascal,
Modula2, Ada, Perl, TCL, Matlab, VHDL, Verilog, Spice, MIPS assembly, a8086 assembly, and HCL2 (MOSS
2020).

Similar to JPLAG in terms of functioning and time complexity, it depends on the token technique
and has the complexity of 𝑂(𝑛3) for worst cases. The source codes to be compared are converted
into tokens and analyzed with the Winnowing algorithm developed by Schleimer et al. (2003). This
algorithm creates fingerprints for representing each previously generated token. The calculation of

An Acad Bras Cienc (2023) 95(3) e20220684 5 | 20

KAIO P. GOMES, SIMONE N. MATOS & TARCIZIO ALEXANDRE BINI BIOPLAG: AN APPROACH TO DETECT PROGRAMMING PLAGIARISM

the distance between these signature structures indicates the level of similarity for the compared
source codes.

THE CREATED SOLUTION

A system that detects programming plagiarism deals with different levels of modifications in source
code. Besides, its performance cannot demand a high computational cost of time complexity.
Otherwise, the solution is not viable. Regarding other potential limitations, a problem could be the
lack of language support for plagiarism analysis.

This present paper creates a novel approach named BIOPLAG for solving the source code
plagiarism problem. The goal of this solution is to contemplate all the six levels of modifications
in plagiarized source codes following the classification of Faidhi & Robinson (1987).

One of the main features presented in BIOPLAG is the flexibility to extend any language of support.
Its functioning depends on the combination of bioinformatics and computer science techniques. From
a viability aspect, its time complexity is the same as other recognized tools known as references, for
instance, JPLAG and MOSS.

In sum, the following combined techniques elaborate the approach: generation of tokens,
mapping in biological sequences, and local alignment of biological sequences. The application of
these bioinformatics concepts in the created approach is based on the work of Pedersen et al. (2012).
Figure 1 presents an overview of how BIOPLAG works through an activity diagram.

Figure 1. BIOPLAG activity diagram.

The diagram is composed of four activities: I) Generation of token sequences for each input source
code according to its language of implementation; II) Mapping of each token sequence into biological
sequences from the number of different tokens and composition units of the biological sequences;

An Acad Bras Cienc (2023) 95(3) e20220684 6 | 20

KAIO P. GOMES, SIMONE N. MATOS & TARCIZIO ALEXANDRE BINI BIOPLAG: AN APPROACH TO DETECT PROGRAMMING PLAGIARISM

III) Executing a local alignment among the biological sequences by using a bioinformatics tool; IV)
Identification of the rate of similarity from the alignment report provided in the previous activity.

In activity I, the token technique identifies every type of component presented in the source code
and categorizes it by assigning a specific token representing its purpose. For example, when there is
a declared variable instruction, it assigns a token for the identified variable component.

According to the language of source code implementation, a proper generator of tokens is
responsible for the analysis of every instruction. For this reason, BIOPLAG has the flexibility to accept
any programming language since it can integrate any generator.

The process of the first activity consists of source codes as inputs, and the outputs are specific
token sequences representing each input. Through a hash table, each instruction present in the inputs
produces tokens that form the output sequences. The number of different tokens depends on the
lexical analyzer used by the chosen generator, as well as the types of instructions in the source codes.

Figure 2 shows an example of functioning for the token generation process. In this case, an input
source code in C language turns into a token sequence. The single line of code composed on variable
declaration results into three tokens: <TYP> for the data type, <VAR> for the identifier, and <GRA> for
the syntax of end of instruction.

The token sequences are the inputs for the activity II, which is responsible for mapping tokens
into biological sequences. There are two different ways of performing this mapping, depending on the
chosen token generator in the activity I and the units of composition in biological sequence. Firstly, it
needs to check the number of different tokens (DT) supported and the number of different biological
units (DBU).

Figure 2. Converting a piece of code into a token sequence.

Formula 1 shows the two possible conditional cases for performing activity II. For the first case, the
mapping occurs based on consulting a token table to identify which biological unit will be generated.
In Figure 3, it represents this case regarding the chosen biological sequence as DNA, and it has three
different tokens. The three inputs convert into three nucleotides.

𝐷𝑇 ≤ 𝐷𝐵𝑈, 𝑓𝑜𝑟𝑐𝑎𝑠𝑒 ∶ 1
𝐷𝑇 > 𝐷𝐵𝑈, 𝑓𝑜𝑟𝑐𝑎𝑠𝑒 ∶ 2 (1)

For the second case of performing activity II, the mapping does not occur directly. Firstly, it
converts the input into a binary sequence, and then it maps from binary to biological units. The binary

An Acad Bras Cienc (2023) 95(3) e20220684 7 | 20

KAIO P. GOMES, SIMONE N. MATOS & TARCIZIO ALEXANDRE BINI BIOPLAG: AN APPROACH TO DETECT PROGRAMMING PLAGIARISM

representation of the inputs is identified by consulting the ASCII table, and the number of bits that
generate one biological unit depends on the type of chosen sequence.

Figure 3. First case of converting a token sequence into a biological sequence.

Formula 2 determines how many contiguous bits are required to convert itself into one unit of
the output sequence, where the variable N indicates the number of different units that compose the
biological sequence. Once found the result, any binary combination is acceptable since following the
number of required bits.

log2 𝑁 (2)

Figure 4 illustrates the whole process of performing for the second case in activity II. The input
turns into a binary form with the ASCII table, and from this new representation generates the output.
The mapping to the new sequence is through the nucleotide table based on bioinformatics. Applying
Formula 2 with variable N as 4 since the chosen biological sequence is DNA, it finds that any
combination of two bits is enough to complete the mapping.

Figure 4. Second case of converting a token sequence into a biological sequence.

Once the biological sequences are available as output of activity II, they become the inputs for
the activity III that execute the alignment among these sequences. BLAST is the bioinformatics tool
recommended for performing alignment in this created approach. However, BIOPLAG allows using
other solutions for this purpose since it has specific features as supporting biological sequences and
local alignments.

An Acad Bras Cienc (2023) 95(3) e20220684 8 | 20

KAIO P. GOMES, SIMONE N. MATOS & TARCIZIO ALEXANDRE BINI BIOPLAG: AN APPROACH TO DETECT PROGRAMMING PLAGIARISM

Due to the execution of the alignments for each input sequence, the time complexity for this
processing is cubic. This technique is the most demanded in terms of the computational cost
compared to others in this approach. For this reason, BIOPLAG has time complexity in its worst case
of 𝑂(𝑛3) being n the number of source codes for analysis.

The alignment tool provides a report stating the level of similarity based on its result parameters.
This report with the complete analysis is the output of the activity III, and at the same time, is the
input for the last activity. Figure 5 shows how the alignment process works on BIOPLAG. Note that it is
necessary to adjust the tool, in addition to the need to be compatible with the input.

Figure 5. Alignment process by using the BLAST tool.

The activity IV is the last activity, which calculates a rate of similarity ranging from zero to one.
As a result of plagiarism detection, BIOPLAG provides this rate in percentage to determine the level
of similarity among the input source codes. Figure 6 presents the functioning of this last activity that
consists of extracting and processing some of the result metrics founded in the BLAST report. These
obtained data compose the elaboration of an own mathematical formula.

Figure 6. Report analysis process of the BIOPLAG for activity IV.

When BIOPLAG analyses a sequence in the report, it extracts the following corresponded data:
size, number of equal units, and positions of each aligned region. Also, it occurs the discarding of
overlapping areas in the alignment by keeping only those with high similarity. Finally, it calculates the
rate of similarity with the obtained data through Formula 3.

𝑠𝑖𝑚(𝑄𝑢𝑒𝑟𝑦, 𝑆𝑏𝑗𝑐𝑡) = (
∑𝐾𝑖=1 𝑛𝑖
ℎ

), ∈ [0, 1] (3)

An Acad Bras Cienc (2023) 95(3) e20220684 9 | 20

KAIO P. GOMES, SIMONE N. MATOS & TARCIZIO ALEXANDRE BINI BIOPLAG: AN APPROACH TO DETECT PROGRAMMING PLAGIARISM

The variables of the created formula are: 𝑛 for the number of equal units from the level of identity
in a specific region; 𝑖 for specifying which aligned region, for example, assuming 𝑖 = 1 it refers to the first
aligned region; 𝑘 for the number of different aligned regions; ℎ for the size of the analyzed sequence;
is the rate of similarity between 𝑞𝑢𝑒𝑟𝑦 and 𝑠𝑏𝑗𝑐𝑡 ; 𝑞𝑢𝑒𝑟𝑦 refers to the analyzed sequence, and 𝑠𝑏𝑗𝑐𝑡
is the other compared sequence considering a pairwise comparison.

IMPLEMENTATION

According to the functioning of the BIPLAG to implement the approach is necessary to deal with
bioinformatics and computer science techniques such as token generation, biological sequence
mapping, and sequence alignment. For this paper, the technology used to develop the solution was
Perl for the activities I, II, III, and IV. As for the evaluation process, a shell script was responsible for
automating the tests.

For the first activity, the token generator adopted was C Tokenize version 0.18, a Perl module
available from the Comprehensive Perl Archive Network (CPAN) (CPAN 2020). This module is
responsible for transforming source code into a sequence of tokens, and its usage is only for the C
programming language (MetaCPAN 2020). Therefore, in this implementation, the supporting language
used is C language.

The chosen token generator can produce up to nine different tokens, as shown in Table I. Each
coding command in source code can generate one or more of these symbols, which are the input for
the biological sequence mapping technique.

Table I. Description of the tokens.

Token Name Source Code Component

operator Different types of operators

grammar Coding syntax elements

number Numbers regardless of the type

reserved Reserved words

word Identifiers

string Chain of characters

comment Single and compound comments

cpp Inclusions and definitions

char_const Character constants

In activity II, the chosen type of biological sequence was protein. The hash table used as consulting
for the mapping of tokens into amino acids is presented in Table II. It is noteworthy that only 9 out
of 20 amino acids available are enough for the mapping process, and any of them can be chosen.
However, there are 8 possible mappings instead of 9 since the token for comments is irrelevant for
plagiarism detection in programming.

An Acad Bras Cienc (2023) 95(3) e20220684 10 | 20

KAIO P. GOMES, SIMONE N. MATOS & TARCIZIO ALEXANDRE BINI BIOPLAG: AN APPROACH TO DETECT PROGRAMMING PLAGIARISM

Table II. Mapping table from token to amino acid.

Amino Acid Name Amino Acid Abbreviation Token Name

Aspartic acid D operator

Cysteine C grammar

Glutamine Q number

Glutamic acid E reserved

Glycine G word

Histidine H string

N/A N/A comment

Arginine R cpp

Asparagine N char_const

Regarding the chosen biological sequence as protein, it was necessary to use a compatible BLAST
module for this type of sequence, by which the choice was Blastp version 2.2.28+ developed by BLAST
(2020). In sum, the activity III executed local alignments using this bioinformatics tool with 12 adjusted
parameters, considering as inputs: amino acid sequences in FASTA formatting (Pearson& Lipman 1988).
Table III shows the listing of the modified settings as well as the new values set for them.

Table III. The values assigned to each parameter in BLAST.

Blastp Parameter Value

word_size 3

matrix BLOSUM90, BLOSUM80,

BLOSUM62, PAM70 and PAM30

threshold 1

comp_based_stats 0

seg No

soft_masking False

db_soft_mask None

db_hard_mask None

xdrop_gap_final 25

evalue 1e47

ungapped N/A

Window_size 40

An Acad Bras Cienc (2023) 95(3) e20220684 11 | 20

KAIO P. GOMES, SIMONE N. MATOS & TARCIZIO ALEXANDRE BINI BIOPLAG: AN APPROACH TO DETECT PROGRAMMING PLAGIARISM

For the matrix in this new setting, there is more than one value to improve alignment results
according to the size of each sequence. Figure 7 presents through a flowchart themechanism of varying
for the parameter values. The remaining parameters not listed kept default values.

Figure 7. Mechanism of assigning different values for the matrix parameter.

The created mechanism of assigning different values has four cases according to a range of
sequence size. One of these cases allows BLAST to use up to two different values instead of just
one. This possible second value is used based on a threshold of 61.66% that indicates the presence
of plagiarism in source code.

This threshold was calculated by the average rate of six proposed studies in Ajmal et al. (2013),
Cosma & Joy (2012), Mason et al. (2019), Pawelczak (2013), Sulistiani & Karnalim (2019) and Xiong et al.
(2009). The reason is to avoid false positives e false negatives for alignments with long sequences.

For extracting and processing the BLAST report in the last activity, it was performed a sorting of
the aligned regions by crescent positions. The sorting is to deal with the overlaps since it was kept only
ranges closer to the beginning of the sequences. For example, by deciding between areas: A with initial
position 2 and B with initial position 3, area A is chosen due to localization be nearest to beginning
represented through the first unit of composition.

An Acad Bras Cienc (2023) 95(3) e20220684 12 | 20

KAIO P. GOMES, SIMONE N. MATOS & TARCIZIO ALEXANDRE BINI BIOPLAG: AN APPROACH TO DETECT PROGRAMMING PLAGIARISM

EXPERIMENTS AND EVALUATION

In order to evaluate BIOPLAG’s plagiarism detection performance using real examples, three
experiments conducted the participation of 28 students and six programmers as volunteers. The
main objective of these experiments is to expose the solution in real-world situations with different
modification techniques in plagiarized source codes. The participants freely created models of
plagiarism for each of the six levels of Faidhi & Robinson (1987). To produce these samples, they
receive a dataset used in Mou et al. (2016) with 52.000 source codes to be chosen to plagiarize.

Each plagiarized source code produced by the volunteers went through a check to certify the
fulfillment of the following requirements: implementation without errors; usage of the specified
programming language, which in this case is C; and correct indication of the techniques used to follow
the six levels of plagiarism. Table IV presents a quantitative analysis of the submissions that occurred,
considering the three experiments carried out.

Table IV. Quantitative analysis of the submissions for
the three experiments.

Experiment Submissions Disapprovals Approvals

1∘ 128 30 98

2∘ 39 10 29

3∘ 21 0 21

Total 188 40 148

Through the approved submissions, seven test scenarios were elaborated to evaluate BIOPLAG.
From the first to the sixth scenario, each of the six levels of programming plagiarism is assessed
with 148 examples produced by the volunteers, respectively. The seventh scenario is composed
of 20 non-plagiarized source codes randomly chosen from the dataset. Its goal is to complement
the evaluation with potential situations of false positives and false negatives. Table V shows the
composition of each test scenario as well as its evaluation goal.

Altogether, 336 source codes were used in 168 tests through seven different scenarios established
for evaluating the BIOPLAG. The following performance metrics were applied to each testing: precision
(P), recall (R), fmeasure (F), as shown in Formula 4, 5, and 6.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑃 = (𝑇𝑃
𝑇𝑃 + 𝐹𝑃

), ∈ [0, 1] (4)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑅 = (𝑇𝑃
𝑇𝑃 + 𝐹𝑁

), ∈ [0, 1] (5)

𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 𝐹 = 2 ∗ (𝑃 ∗ 𝑅
𝑃 + 𝑅

), ∈ [0, 1] (6)

These metrics were considered according to other studies in programming plagiarism domain
such as in Acampora & Cosma (2015), Cosma & Joy (2012), Đurić & Gašević (2013), Narayanan & Simi

An Acad Bras Cienc (2023) 95(3) e20220684 13 | 20

KAIO P. GOMES, SIMONE N. MATOS & TARCIZIO ALEXANDRE BINI BIOPLAG: AN APPROACH TO DETECT PROGRAMMING PLAGIARISM

Table V. Composition of the seven test scenarios.

Scenario Source Codes Level of Plagiarism Tests

A 52 I 26

B 48 II 24

C 50 III 25

D 54 IV 27

E 48 V 24

F 44 VI 22

G 40 False Positive/Negative 20

Total 336 N/A 168

(2012), Nichols et al. (2019), Son et al. (2013), Sulistiani & Karnalim (2019) and Xiong et al. (2009).
The variables of these formulas are defined as follows: TP is true positive, FP is false positive, FN
is the false negative, P is precision, and R is recall. The positive and negative label is associated
with the presence and absence of plagiarism, respectively. The precision metric indicates whether
the identified plagiarism cases were expected. On the other side, the recall analysis of whether
all plagiarism cases were detected. The fmeasure shows an average performance, considering the
precision and recall results.

RESULTS

The implementation of BIOPLAG was evaluated in the defined seven test scenarios from the three
experiments, and its results were compared with those obtained by the tools: JPLAG version 2.11.8 and
MOSS updated version until December 14, 2018. The default settings of each tool were considered for
the 168 tests. Table VI shows the obtained results for the performance metrics.

By analyzing the precision metric, it is identified that all tools achieved the maximum score. This
performance indicates that all the existing plagiarisms cases were successfully identified. For the last
scenario, the precision was proven by assessing the absence of plagiarism in all its tests. Regarding
the recall and fmeasure metric, no solution achieved maximum results in all scenarios. On the other
hand, the tool that obtained the maximum result in more scenarios is BIOPLAG being in 3 out of 7 for
both metrics.

Among the lowest scores obtained for the recall in each tool, BIOPLAG had the highest value: 0.76.
MOSS and JPLAG presented the following values: 0.20833 and 0.41667, respectively. It is observed that
BIOPLAG reached a 34% higher performance about the second best-evaluated tool in this case.

The fmeasure performance was higher with BIOPLAG, which had the following scores: an average
of 0.94719, a maximum of 1, and aminimum of 0.86364. In comparison, JPLAG had an average of 0.84826,
a maximum of 1, and a minimum of 0.58824. With MOSS, an average of 0.78584, a maximum of 1, and
a minimum of 0.34483. Table VII presents the overall results regarding all the evaluation metrics.

An Acad Bras Cienc (2023) 95(3) e20220684 14 | 20

KAIO P. GOMES, SIMONE N. MATOS & TARCIZIO ALEXANDRE BINI BIOPLAG: AN APPROACH TO DETECT PROGRAMMING PLAGIARISM

Table VI. Quantitative analysis of the submissions for the three experiments.

Scenario Detector TP FP FN Precision Recall fmeasure

A

BioPlag 26 0 0 1 1 1

JPLAG 25 0 1 1 0.961538 0.980392

MOSS 25 0 1 1 0.961538 0.980392

B

BioPlag 24 0 0 1 1 1

JPLAG 24 0 0 1 1 1

MOSS 23 0 1 1 0.958333 0.978723

C

BioPlag 19 0 6 1 0.76 0.863636

JPLAG 18 0 7 1 0.72 0.837209

MOSS 19 0 6 1 0.76 0.863636

D

BioPlag 25 0 2 1 0.925926 0.961538

JPLAG 19 0 8 1 0.703704 0.826087

MOSS 18 0 9 1 0.666667 0.80

E

BioPlag 21 0 3 1 0.875 0.933333

JPLAG 10 0 14 1 0.416667 0.588235

MOSS 5 0 19 1 0.208333 0.344828

F

BioPlag 17 0 5 1 0.772727 0.871795

JPLAG 12 0 10 1 0.545455 0.705882

MOSS 8 0 14 1 0.363636 0.533333

G

BioPlag 20 0 0 1 1 1

JPLAG 20 0 0 1 1 1

MOSS 20 0 0 1 1 1

In summary, BIOPLAG performed better results in four scenarios (A, D, E, F) and equal in three (B,
C, G). The overall performance analysis of the tools regarding the detection of plagiarism in source
codes is presented in Figure 8. The formulation of the analysis considers the following quantitative
measures: first quartile, second quartile, third quartile, average, upper limit, lower limit, and outlier.
The adopted outliers are data points located 1.5 times above or 1.5 times below the size of the each
box.

BIOPLAG presented scores of less than or equal to approximately 0.925926 in 25% of its results.
Also, it obtained maximum scores in 50% and values between the inclusive range 0.925926 and 1 in
25%. The average was 0.950665 and the median 1, with the upper limit of 1 and the lower limit of
0.863636. It was found the presence of two discrepant results: 0.76 and 0.772727.

It was found that the lowest score of BIOPLAG was considered to be a discrepant point due to its
low frequency, which in this case occurred a single time and was distant from the limit: 0.863636. On

An Acad Bras Cienc (2023) 95(3) e20220684 15 | 20

KAIO P. GOMES, SIMONE N. MATOS & TARCIZIO ALEXANDRE BINI BIOPLAG: AN APPROACH TO DETECT PROGRAMMING PLAGIARISM

Table VII. Overall results for the compared tools.

Detector Metric Minimum Average Maximum

BIOPLAG 1 1 1

MOSS Precision 1 1 1

JPLAG 1 1 1

BIOPLAG 0.76 0.9048 1

MOSS Recall 0.2083 0.7026 1

JPLAG 0.4166 0.7639 1

BIOPLAG 0.8636 0.9471 1

MOSS fmeasure 0.3448 0.7858 1

JPLAG 0.5882 0.8482 1

the other hand, JPLAG did not present any discrepant points, but its lower limit was the lowest out of
all: 0.416667. The MOSS presented three outliers, and its lower limit was 0.533333.

BIOPLAG achieved the highest scores and with the least variability. In 75% of its results, the scores
varied between the inclusive interval 0.925926 and 1. JPLAG andMOSS presented the following inclusive
ranges: 0.72 and 1, and 0.76 and 1, respectively.

The variation between the results is smaller with BIOPLAG, considering its difference of 0.049335
between the mean and the median. Comparing with JPLAG and MOSS, this value is 0.1229278 and
0.170504, respectively. The difference between these indicators confirms a higher symmetry in the
results.

Summarizing the findings on the boxplot chart, BIOPLAG showed better or equal results for each
comparative measure analyzed. Regarding all tests performed, the average value for the three metrics
was 0.950665 for the created approach against 0.829496 for MOSS and 0.870722 for JPLAG.

CONCLUSIONS

This paper created an approach, named BIOPLAG, capable of detecting plagiarism levels in source
codes. Out of all its features, the flexibility of supporting any programming language stands out.
Its output result is a value in percentage that indicates the similarity found between the compared
source codes. The elaboration of the approach was designed considering interdisciplinary techniques
to improve the detection of plagiarism in programming.

The BIOPLAG is based on a set of combined techniques from bioinformatics and computing,
and its functioning essentially depends on four steps: generation of tokens, mapping of tokens into
biological sequences, alignment of biological sequences, and calculation of similarity among the
source codes compared. The central premise is to convert source code in a biological model in order
to use bioinformatics resources. Once this model is combined with an efficient computing technique,
a better solution can be proposed.

An Acad Bras Cienc (2023) 95(3) e20220684 16 | 20

KAIO P. GOMES, SIMONE N. MATOS & TARCIZIO ALEXANDRE BINI BIOPLAG: AN APPROACH TO DETECT PROGRAMMING PLAGIARISM

Figure 8. Comparison of the
tools through a boxplot
chart by analyzing on y-axis
the results from 0 to 1
regarding the three
performance metrics such as
recall, precision and
fmeasure.

With the implementation of BIOPLAG, an evaluation process was performed through seven
different test scenarios. This evaluation used 296 source codes produced through three experiments
having the participation of undergraduate students, graduate students, and programmers from an
information technology company. Besides, for the composition of the last test scenario, 40 source
codes were chosen randomly from a dataset that served as support for the experiments.

The assessment used a total of 336 source codes implemented in C language and distributed
within seven specific test scenarios contemplating the different levels of programming plagiarism. For
each test, the following metrics were considered: precision, recall, and fmeasure. The results found
with the implementation of the BIOPLAGwere compared with other programming plagiarism detectors:
MOSS and JPAG.

The results obtained by BIOPLAG indicate that the created approach was able to detect the six
levels of plagiarism in source code categorized by Faidhi & Robinson (1987). A total of 152 (90.48%)
out of 168 tests were correctly detected with the presence or absence of programming plagiarism. In
contrast, the other known tools, such as MOSS and JPLAG presented a total of 118 (70.23%) and 128
(76.19%), respectively.

Comparing the tools, BIOPLAG obtained better performance in 4 test scenarios and equal in
3 out of 7. Its average score on the metrics in the evaluation process was 0.950665 against MOSS
with 0.829496 and JPAG with 0.870722. Therefore, the created approach proved that the usage of the
combined techniques from bioinformatics and computer science successfully detected plagiarism in
programming.

An Acad Bras Cienc (2023) 95(3) e20220684 17 | 20

KAIO P. GOMES, SIMONE N. MATOS & TARCIZIO ALEXANDRE BINI BIOPLAG: AN APPROACH TO DETECT PROGRAMMING PLAGIARISM

FUTURE WORKS

Regarding the continuity of the development of this work, the following potential subjects can be
considered: extend the evaluation process for detection performance, define a new set of metrics
to be applied on the tests and implement the BIOPLAG considering other programming languages
of support. For instance, conduct new tests aimed at evaluating samples of non-plagiarized source
codes. The objective is to incorporate other metrics that deal with false negatives and true negatives,
such as the specificity rate. Also, different token generators can be utilized or developed in order to
complement the support of new programming languages.

The application of BioPlag for detecting similarities in texts and images is a research to be
developed in future works. As shown in the background section of this paper, several computer science
domain problems including the object detection on computer vision could be a new topic of study.

Future experiments can be performed with BioPlag to extend the detection of programming
plagiarism using source codes from standardized datasets such as ACM International Collegiate
Programming Contest (ICPC) and SOurce COde re-use (SOCO) from the international PAN@Fire 2014
competition.

Acknowledgments
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES)
- Finance Code 001. To Dr. Alexandre Rossi Paschoal for review of bioinformatics content the article.

REFERENCES

ACAMPORA G & COSMA G. 2015. A Fuzzy-Based
Approach to Programming Language Independent
Source-Code Plagiarism Detection. In: 2015 IEEE
International Conference on Fuzzy Systems
(FUZZ-IEEE). New Jersey: IEEE Press, p. 1-8. URL
https://doi.org/10.1109/FUZZ-IEEE.2015.7337935.

AHADI A & MATHIESON L. 2019. A Comparison of Three
Popular Source Code Similarity Tools for Detecting
Student Plagiarism. In: Proceedings of the Twenty-First
Australasian Computing Education Conference. New York:
Association for Computing Machinery, p. 112-117.

AJMAL O, SAAD MISSEN MM, HASHMAT T, MOOSA M & ALI T.
2013. EPlag: A two layer source code plagiarism detection
system. In: Eighth International Conference on Digital
Information Management (ICDIM 2013). Islamabad: IEEE,
p. 256-261. doi:10.1109/ICDIM.2013.6693984.

ALBERTS B, JOHNSON A, LEWIS J, MORGAN D, RAFF M,
ROBERTS K, WALTER P, WILSON J & HUNT T. 2017. Biologia
Molecular da Celula. Porto Alegre: Artmed Editora. URL
https://books.google.com.br/books?id=DlMmDwAAQBAJ.

ALLYSON FB, DANILO ML, JOSÉ SM & GIOVANNI BC. 2019.
Sherlock N-overlap: Invasive Normalization and Overlap
Coefficient for the Similarity Analysis Between Source

Code. IEEE Trans Comput 68(5): 740-751. doi:10.1109/TC.
2018.2881449.

ALTSCHUL SF, GISH W, MILLER W, MYERS EW & LIPMAN DJ.
1990. Basic local alignment search tool. J Molec Bio 215(3):
403-410. doi:10.1016/S0022-2836(05)80360-2.

ARAUJO GG & KYRILOV A. 2020. Plagiarism Prevention
through Project Based Learning with GitLab. J Comput Sci
Coll 35(10): 53-58.

ARWIN C & TAHAGHOGHI SMM. 2006. Plagiarism Detection
across Programming Languages. Australia: Australian
Computer Society Inc., p. 277-286.

BLAST. 2020. National Library of Medicine. URL https://
blast.ncbi.nlm.nih.gov/Blast.cgi.

BURROWS S, TAHAGHOGHI SMM & ZOBEL J. 2007. Efficient
Plagiarism Detection for Large Code Repositories. Softw
Pract Exper 37(2): 151-175.

CAMBRIDGE. 2020. The Cambridge Dictionary. URL
https://dictionary.cambridge.org/us/dictionary/
english/plagiarism.

CHEERS H & LIN Y. 2022. Identifying plagiarised
programming assignments based on source code
similarity scores. Computer Science Education, p. 1-25.
doi:10.1080/08993408.2022.2060633.

An Acad Bras Cienc (2023) 95(3) e20220684 18 | 20

KAIO P. GOMES, SIMONE N. MATOS & TARCIZIO ALEXANDRE BINI BIOPLAG: AN APPROACH TO DETECT PROGRAMMING PLAGIARISM

CHEERS H, LIN Y & SMITH SP. 2021. Academic Source Code
Plagiarism Detection by Measuring Program Behavioral
Similarity. IEEE Access 9: 50391-50412. doi:10.1109/ACCESS.
2021.3069367.

CHEERS H, LIN Y & YAN W. 2023. Identifying
Plagiarised Programming Assignments with
Detection Tool Consensus. Inform Educ 22(1): 1-19.
doi:10.15388/infedu.2023.05.

CHUDA D, NAVRAT P, KOVACOVA B & HUMAY P. 2012. The
Issue of (Software) Plagiarism: A Student View. IEEE Trans
Educ 55(1): 22-28. doi:10.1109/TE.2011.2112768.

COSMA G & JOY M. 2012. An Approach to Source-Code
Plagiarism Detection and Investigation Using Latent
Semantic Analysis. IEEE Trans Comput 61(3): 379-394.
doi:10.1109/TC.2011.223.

COULL S, BRANCH J, SZYMANSKI B & BREIMER E. 2003.
Intrusion detection: a bioinformatics approach. In: 19th
Annual Computer Security Applications Conference, 2003.
Proceedings, p. 24-33. doi:10.1109/CSAC.2003.1254307.

CPAN. 2020. Comprehensive Perl Archive Network. URL
https://www.cpan.org/modules/.

ĐURIĆ Z & GAŠEVIĆ D. 2013. A Source Code Similarity
System for Plagiarism Detection. The Computer Journal
56(1): 70-86. doi:10.1093/comjnl/bxs018.

FAIDHI JAW & ROBINSON SK. 1987. An Empirical Approach
for Detecting Program Similarity and Plagiarism within a
University Programming Environment. Comput Educ 11(1):
11-19. doi:10.1016/0360-1315(87)90042-X.

FLORES E, BARRÓN-CEDEÑO A, MORENO L & ROSSO P.
2015. Cross-language source code re-use detection using
latent semantic analysis. J Univers Comput Sci 21(13):
1708-1725.

GOAD WB & KANEHISA MI. 1982. Pattern recognition in
nucleic acid sequences. I.A general method for finding
local homologies and symmetries. Nucleic Acids Res
10(1): 247-263. doi:10.1093/nar/10.1.247.

GOMES K. 2020. BIOPLAG: abordagem de detecção de
plágio em código-fonte. Master’s thesis. Universidade
Tecnologica Federal do Paraná, Ponta Grossa-PR.

GOMES K & MATOS S. 2020. Contributions of
Bioinformatics for computing education in the
detection of programming assignment plagiarism.
doi:10.36229/978-85-7042-223-1.CAP.17.

HAQUEW, ARAVIND A& REDDY B. 2009. Pairwise Sequence
Alignment Algorithms: A Survey. In: Proceedings of the
2009 Conference on Information Science, Technology

and Applications. New York: Association for Computing
Machinery, p. 96-103. doi:10.1145/1551950.1551980.

HUNTER LE. 2009. The Processes of Life: An Introduction
to Molecular Biology. Cambridge: The MIT Press. doi:10.
7551/mitpress/9780262013055.001.0001.

JUNIOR Q & WOLMER D. 2019. ESSEX: identificação de um
aminoácido de interesse em sequências biológicas de
origens diferentes. Master’s thesis. Universidade Federal
do Rio Grande.

KANE MD& SPRINGER JA. 2007. Integrating Bioinformatics,
Distributed Data Management, and Distributed
Computing for Applied Training in High Performance
Computing. In: Proceedings of the 8th ACM SIGITE
Conference on Information Technology Education. New
York: Association for Computing Machinery, p. 33-36.
doi:10.1145/1324302.1324311.

KARNALIM O, SIMON, CHIVERS W & PANCA BS. 2022.
Educating Students about Programming Plagiarism and
Collusion via Formative Feedback. ACM Transac Comput
Ed 22(3): 1-31. doi:10.1145/3506717.

KUO JY, CHENG HK & WANG PF. 2018. Program plagiarism
detection with dynamic structure. In: 2018 7th
International Symposium on Next Generation Electronics
(ISNE). Taipei: IEEE, p. 1-3. doi:10.1109/ISNE.2018.8394758.

MAKADY S & WALKER RJ. 2017. Test Code Reuse from
OSS: Current and Future Challenges. In: Proceedings of
the 3rd Africa and Middle East Conference on Software
Engineering. New York: Association for Computing
Machinery, p. 31-36. doi:10.1145/3178298.3178305.

MASON T, GAVRILOVSKA A & JOYNER DA. 2019.
Collaboration Versus Cheating: Reducing Code
Plagiarism in an Online MS Computer Science
Program. In: Proceedings of the 50th ACM Technical
Symposium on Computer Science Education. New York:
Association for Computing Machinery, p. 1004-1010.
doi:10.1145/3287324.3287443.

MAURER H, KAPPE F & ZAKA B. 2006. Plagiarism - A Survey.
J Univers Comput Sci 12: 1050-1084.

METACPAN. 2020. C-Tokenize. URL https://metacpan.org/
dist/C-Tokenize/view/lib/C/Tokenize.pod\%23VERSION.

MEUSCHKE N, GONDEK C, SEEBACHER D, BREITINGER
C, KEIM D & GIPP B. 2018. An Adaptive Image-Based
Plagiarism Detection Approach. In: Proceedings of the
18th ACM/IEEE on Joint Conference on Digital Libraries.
New York: Association for Computing Machinery, p.
131-140. doi:10.1145/3197026.3197042.

MOSS. 2020. A system for detecting software similarity.
URL https://theory.stanford.edu/~aiken/moss/.

An Acad Bras Cienc (2023) 95(3) e20220684 19 | 20

KAIO P. GOMES, SIMONE N. MATOS & TARCIZIO ALEXANDRE BINI BIOPLAG: AN APPROACH TO DETECT PROGRAMMING PLAGIARISM

MOU L, LI G, ZHANG L, WANG T & JIN Z. 2016. Convolutional
Neural Networks over Tree Structures for Programming
Language Processing. In: Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence. AAAI Press
30(1): 1287-1293.

MOUNT DW. 2001. Bioinformatics - sequence and genome
analysis. New York: Cold Spring Harbor Laboratory Press.

NARAYANAN S & SIMI S. 2012. Source code
plagiarism detection and performance analysis
using fingerprint based distance measure method.
In: 2012 7th International Conference on Computer
Science and Education (ICCSE), p. 1065-1068.
doi:10.1109/ICCSE.2012.6295247.

NICHOLS L, DEWEY K, EMRE M, CHEN S & HARDEKOPF
B. 2019. Syntax-Based Improvements to Plagiarism
Detectors and Their Evaluations. In: Proceedings of the
2019 ACM Conference on Innovation and Technology
in Computer Science Education. ITiCSE ’19. New York:
Association for Computing Machinery, p. 555-561. doi:10.
1145/3304221.3319789.

NILSSON RH ET AL. 2012. Five simple guidelines for
establishing basic authenticity and reliability of newly
generated fungal ITS sequences. MycoKeys 4: 37-63.
doi:10.3897/mycokeys.4.3606.

NOH SY. 2003. An XML Plagiarism Detection Model for
Procedural Programming Languages. URL https://api.
semanticscholar.org/CorpusID:5847809.

PAWELCZAK D. 2013. Online detection of source-code
plagiarism in undergraduate programming courses.
In: Proceedings of the International Conference on
Frontiers in Education: Computer Science and Computer
Engineering (FECS), p. 1-7.

PEARSON W & LIPMAN D. 1988. Improved tools for
biological sequence comparison. In: Proceedings of the
National Academy of Sciences of the United States of
America 85: 2444-2448.

PEDERSEN JG, BASTOLA DR, DICK K, GANDHI R &
MAHONEY WR. 2012. BLAST Your Way through Malware
Malware Analysis Assisted by Bioinformatics Tools. In:
International Conference on Security and Management,
p. 1-7. URL https://api.semanticscholar.org/CorpusID:
202724024.

PRADO BO, BISPO KA & ANDRADE R. 2018. X9: An
Obfuscation Resilient Approach for Source Code
Plagiarism Detection in Virtual Learning Environments.
In: Proceedings of the 20th International Conference
on Enterprise Information Systems, ICEIS. p. 517-524.
doi:10.5220/0006668705170524.

PRECHELT L, MALPOHL G & PHILIPPSEN M. 2002. Finding
Plagiarisms among a Set of Programs with JPlag. J UCS
8(11): 1016-1038.

RAGKHITWETSAGUL C. 2016. Measuring Code Similarity in
Large-Scaled Code Corpora. In: 2016 IEEE International
Conference on Software Maintenance and Evolution
(ICSME), p. 626-630. doi:10.1109/ICSME.2016.18.

REVETT K. 2009. A bioinformatics based approach to
user authentication via keystroke dynamics. Int J Cont
Automat Sys 7: 7-15.

ROY C & CORDY J. 2007. A Survey on Software Clone
Detection Research. School Comput TR 541: 64-68.

SCHLEIMER S, WILKERSON DS& AIKEN A. 2003. Winnowing:
Local Algorithms for Document Fingerprinting. In:
Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data. New York:
Association for Computing Machinery, p. 76-85.
doi:10.1145/872757.872770.

SON JW, NOH TG, SONG HJ & PARK SB. 2013. An Application
for Plagiarized Source Code Detection Based on a Parse
Tree Kernel. Eng Appl Artif Intell 26(8): 1911-1918. doi:10.
1016/j.engappai.2013.06.007.

SRAKA D & KAUCIC B. 2009. Source code plagiarism. In:
Proceedings of the ITI 2009 31st International Conference
on Information Technology Interfaces, p. 461-466. doi:10.
1109/ITI.2009.5196127.

SULISTIANI L & KARNALIM O. 2019. ES-Plag: Efficient
and sensitive source code plagiarism detection tool
for academic environment. Comput Appl Eng Educ 27:
166-182.

TANG Y, XIAO B & LU X. 2009. Using a bioinformatics
approach to generate accurate exploit-based signatures
for polymorphic worms. Comput Sec 28: 827-842.

ULLAH F, WANG J, FARHAN M, JABBAR S, WU Z & KHALID
S. 2020. Plagiarism detection in students’ programming
assignments based on semantics: multimedia e-learning
based smart assessment methodology. Multimed Tools
Appl 79: 1-18.

XIONG H, YAN H, LI Z & LI H. 2009. BUAA_AntiPlagiarism: A
System To Detect Plagiarism for C Source Code. In: 2009
International Conference on Computational Intelligence
and Software Engineering, p. 1-5.

XU G, LUO Y, YU H& XU Z. 2006. An Approach to SOA-Based
Bioinformatics Grid. In: 2006 IEEE Asia-Pacific Conference
on Services Computing, p. 323-328.

An Acad Bras Cienc (2023) 95(3) e20220684 20 | 20

KAIO P. GOMES, SIMONE N. MATOS & TARCIZIO ALEXANDRE BINI BIOPLAG: AN APPROACH TO DETECT PROGRAMMING PLAGIARISM

YÜCEL ME & ÜNSALAN C. 2022. Planogram Compliance
Control via Object Detection, Sequence Alignment, and
Focused Iterative Search. arXiv preprint arXiv: 221201004.

How to cite
PABLO K, MATOS SN & BINI TA. 2023. BIOPLAG: An Approach to
Detect Programming Plagiarism. An Acad Bras Cienc 95: e20220684. DOI
10.1590/0001-3765202320220684.

Manuscript received on August 10, 2022;
accepted for publication on February 11, 2023

KAIO P. GOMES
https://orcid.org/0000-0002-0886-1484

SIMONE N. MATOS
https://orcid.org/0000-0002-5362-2343

TARCIZIO ALEXANDRE BINI
https://orcid.org/0000-0002-1320-2387

Universidade Tecnológica Federal do Paraná, Departamento de
Ciência da Computação, Rua Doutor Washington Subtil Chueire,
330, Jardim Carvalho, 84017-220 Ponta Grossa, PR, Brazil

Correspondence to: Kaio Pablo Gomes

E-mail: kaiopablo@live.com

Author contributions
KPB contributed to the writing and research. SNM was an advisor
and reviewer of the work. TB reviewed the manuscript. All
authors approved the final version.

An Acad Bras Cienc (2023) 95(3) e20220684 21 | 20

