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ABSTRACT

Purpose: The main goal of this study was to develop and compare two
different techniques for classification of specific types of corneal shapes
when Zernike coefficients are used as inputs. A feed-forward artificial
Neural Network (NN) and discriminant analysis (DA) techniques were
used. Methods: The inputs both for the NN and DA were the first 15
standard Zernike coefficients for 80 previously classified corneal elevation
datafiles from an Eyesys System 2000 Videokeratograph (VK), installed at
the Departamento de Oftalmologia of the Escola Paulista de Medicina,
Sao Paulo. The NN had 5 output neurons which were associated with 5
typical corneal shapes: keratoconus, with-the-rule astigmatism, against-
the-rule astigmatism, “regular” or “normal” shape and post-PRK. Results:
The NN and DA responses were statistically analyzed in terms of precision
([true positive+true negative]/total number of cases). Mean overall results
for all cases for the NN and DA techniques were, respectively, 94% and
84.8%. Conclusion: Although we used arelatively small database, results
obtained in the present study indicate that Zernike polynomials as des-
criptors of corneal shape may be a reliable parameter as input data for
diagnostic automation of VK maps, using either NN or DA.

Keywords: Corneal topography/methods; Statistical analysis; Neural networks (computer);
Artificial intelligence; Discriminant analysis

INTRODUCTION

Other authors have conducted studies and implementation of different
methods for the classification of videokeratography maps!?. Although
most of these methods have shown successful results regarding their main
objective of automation of classification, there are very few attempts in the
literature to use curvature independent input parameters such as Zernike
coefficients (ZC)*>. Since ZC have practically become a standard in des-
cribing corneal surface shapes® and also wavefront aberration data for the
eye®?, and since they are curvature definition independent, we believe
they form a better input parameter for automated diagnosis systems.

We have implemented a simple feed-forward NN and used the first 15 ZC
with a single 10 neuron occult layer and showed its accuracy in classifying
a small group of 40 corneas for 5 different typical cases. Also in a previous
study we quantitatively demonstrated the accuracy of ZC as a function of
the number of terms for synthetic corneas of different shape complexities®.
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Representation of the cornea as a set of
Zernike polynomials

In VK systems that use the Placido disc for measuring
corneal shape/power the examination data files are usually
based on the cylindrical symmetry and number of Placido
discs. In our case, an Eyesys System 2000 was used. For this
equipment we have 16 Placido discs and 360 polar angles,
separated by intervals of 1 degree, which gives us a total of
5760 points over the cornea (corneas with excessive loss in
peripheral and central discs were excluded during the random
selection of the original database and only those for which
only peripheral discs needed little or no editing were used in
this study).

The input parameters in an artificial NN are a very critical
aspect. This happens because each input is represented by a
single neuron and it would be a very awkward task to create a
NN with 5760 inputs, one for each corneal point.

For the previously mentioned reasons, our choice of input
was a set composed of the first 15 ZC, enumerated according
to the VSIA Taskforce members®, to fit corneal elevation data
files extracted from the Eyesys VK. Given that many brands of
VK systems offer software modules for exporting elevation
data (or at least the documentation of how data are organized
inside their files so one can build algorithms to successfully
read them), any reader may perform the calculations presented
here. Although initially used by optical engineers, ZC are
quite common today for the vision science community. They
have been successfully used to represent corneal height data
in many studies and the fitting method is a straightforward
process. Although the choice of using only 15 Zernike terms
are usually balanced between computational power and pre-
cision, precise results for conic surfaces (RMSE of 0.2 um
associated with the fitting process and 1-2 um when VK mis-
alignment and improper focus is considered) have been re-
ported without the need of more terms“”. For completeness,
a very brief description of the fitting procedure is given below
since this method is well documented elsewhere.

Fitting corneal height data with Zernike polynomials

In order to implement the fitting routines we represented
corneal elevation data / as a parameterized function of Placido
disc coordinates (p,8). This representation is illustrated in
figure 1. In this manner, corneal surface elevation may be
approximated by the series:

14

h(p(fi,@),9)= Z

=0

C,Z,(pn.0).6)

where, because of the method in which Eyesys saves and
organizes its data files, p is a parametric function of the
Placido disc number and angle (7,0), C are the Zernike
coefficients and Z are the ZC.

In order to find the Zernike coefficients for a specific
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Figure 1 - Cylindrical coordinate system for representation of corneal
elevation data

corneal height, we perform a minimum square fit for all N data
points. This procedure consists of minimizing the sum

W(p(n.60).6)->C.Z,(pn.0).6)|| @
=0

360,16

5= 3
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relative to each Zernike coefficient, therefore we have to
find for dS/dCtz 0 fort=1,...,k, where k is the total number of
coefficients, such that

360,16

i I > h(p(n,0),6)Z,(p(n.0),6)-

dC; f=1,n=1 (3)
14 360,16
>C; D Z,(pn.0).6)Z,(p(n.6),6)=0
j=0 f=l.n=1

from where we extract a linear system AC = b with 15
equations and 15 unknown values of C. By solving this linear
system through conventional procedures, such as the Gaus-
sian elimination method, we find the 15 Zernike coefficients
for each corneal surface.

Data Acquisition

A total of 80 corneal VK files were randomly selected from
the database of an Eyesys VK installed at the refractive surgery
department of the Departamento de Oftalmologia - Escola
Paulista de Medicina - Sao Paulo. Two specialists in the area
were asked to select 5 corneal cases (“Normal” cornea (NRM),
Keratoconus (KC), Post-LASIK (PK), Astigmatisms with (AW)
and against-the-rule (AA)) from all files. From these, a total of
50% were randomly selected as the training set and the other
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50% were added to the remaining of the original database and
was used as the testing set. This is an important step because
the training phase of the NN and the DA algorithm should be
accomplished by presenting equal numbers of each
classification case. In this way a more balanced solution for the
synaptic weights and DA parameters is reached.

Implementation of the Neural Network

We used the Matlab Neural Network Toolbox (Www.
mathworks.com) to implement the feed-forward Neural Net-
work, shown in figure 2.

This type of NN is defined in the literature as feed-forward
with single occult layer. As mentioned, the input layer is used
to feed each Zernike coefficient representing corneal eleva-
tion; the occult layer, after several tests using the optimization
functions available in the Matlab toolbox, was determined to
have 5 neurons and the output layer contains one neuron for
each corneal shape that we are classifying. There are ob-
viously an infinite number of configurations for intermediate
layers, such as the actual number of layers and the number of
neurons for each layer. What we tried to do was to make the
NN as simple as possible for the best possible results. There is
also the possibility of a much greater number of output neu-
rons, i. e., corneal classifications, but we were restricted to the
number of cases that we had collected in our VK database.

Implementation of different statistical methods

There is an overwhelming amount of statistical software
and methods in the market today. We have chosen to use the

Scilab (www.scilab.org) program and its toolbox in discri-
minant analysis as our statistical method.

In the case we are considering, with 5 classes or catego-
rical variables (Keratoconus, Normal, Against and with the
rule astigmatisms and post-PRK), this procedure is also re-
ferred to as Multiple discriminant analysis or discriminant
factor analysis!'?. Discriminant analysis is used to determine
which variables discriminate more between two or more
naturally occurring groups and to quantify the classification
potential of their discriminant function base.

In the simplest case, we assume that all the groups have equal
covariance matrices. In this case, called the homoscedastic mo-
del, we can derive a linear discriminant function of the form

I(x)=b,, +b,x “)
where x is, in our case a vector with all Zernike coefficients,
and as result the discriminant function will be a linear combi-
nation of those polynomials.
In the most general case, the various groups have independent

covariance matrices, leading to the heteroscedastic model, which
leads to a quadratic discriminant function of the form:

d(x)=b, +b,x+b,x* S

RESULTS

Neural Networks

As mentioned in the previous section we first use our
training set to adjust the synaptic weights of the NN and then

Zernike Coefficients

Gs 1

Input Layer Hidden Layer

Normal (NRM)

S

With the rule Astigmatism (WA)

Against the rule Astigmatism (AA)

R R

Keratoconus (KC)

PL

Post PRK (PK)

A

Qutput Layer

Figure 2 - NN implemented for classification of VK examinations
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use these same weights to test our NN. The efficiency of the
NN was analyzed without using any corneal data from the
training set. At this point of our implementation an output
signal greater than or equal to the threshold value of 0.5 was
defined as a positive response for the given category and a
value less than 0.5 was defined as a negative response. If more
than one neuron at the output layer had response greater than
or equal to 0.5, the one that had the greater value would be
used as the correct response. If none of the responses were
greater than or equal to 0.5 we would consider that the NN did
not have a classification for that corneal shape.

We analyzed the outputs for each classification category
in terms of precision ([true positive+true negative]/total of
cases). Table 1, second column, shows the results for preci-
sion for all test cases for each classification category.

Statistical Analysis
Classical/Heteroscedastical/proportional

In this section we describe the results of two discrimi-
nant analysis models. The first one assumes a more complex
structure (Heteroscedastic) for the covariance matrix in
each group. Table 1, column 3 shows the results for this DA
implementation. It is clear from such a table that the Hete-
roscesdatic model performed quite well, considering the
overall RMSE of 1.6%, on data considered in testing the
model, where only one keratoconic cornea was classified as
astigmatic.

Canonical/Homoscedastical/proporcional

We consider further in our analysis a simpler linear model,
with homoscedastic covariance structure. Table 1 shows the
results of this model with the data used to estimate the ca-
nonical function. Interestingly it performs relatively well to
detect the keratoconic and post-LASIK cases, but is not re-
liable in classifying the normal and astigmatic group of in-
dividuals (fourth column).

DISCUSSION

From the results obtained here our claim is that both an
Artificial Intelligence (AI) system and statistical DA for

Table 1. Results for NN and DA (classical and canonical)

Classification Precision (%)

NN DA - Classical DA - Canonical

NRM 87.50 100.00 62.50
WA 90.00 97.50 66.60
AA 95.00 97.50 66.60
KC 97.50 97.00 91.00
PK 100.00 100.00 93.00
Mean 94.00 98.40 75.94

NRM=normal; WA= with the rule astigmatism; AA= against the rule astigmatism;
KC= keratoconus; PK= post PRK
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corneal diagnosis that use Zernike terms as input for a NN are
satisfactory solutions. First because it is easier to implement,
given that ZC and least squares fitting methods are well do-
cumented in literature and have been used for decades in the
field of optical engineering'". Second, because it will allow any
interested reader to reproduce these results in the laboratory,
given that Zernike terms do not depend on any user or subjec-
tive choice in order to determine corneal parameters and also
does not use any complex statistical formulation, and also
because their implementation details are not proprietary. In
addition, last of all, because the proposed method represents
an elegant mathematical approach in terms of corneal repre-
sentation and may serve well as input into a well-established
NN theory and algorithms. This solution is very independent
of the VK manufacture, NN configuration or parameters chosen
to represent the cornea.

Now, regarding the usefulness or cost-benefit of using NN
or conventional statistical techniques is a more complicated
issue. As we may see from Table 1, a simple feed-forward NN
gave us a mean classification precision of 94%. The effort for
trying the best NN was not needed: we simply used the first
feed-forward design that was implemented. Now the second
attempt using a canonical DA furnished a poor average pre-
cision of 75.94%, which urged us to test other types of DA
and, finally, obtain a very satisfactory result of 98.40% mean
precision with a classical DA. This result was even better than
that of the NN. Nevertheless, if we take the mean of the DA
methods, 87.17%, the NN technique performed better.

So now we come to a cost-benefit relation that might in-
volve implementation factors as well; that is, although DA is
more computationally cost-effective when compared to NN, it
might be tricky to find which type of DA furnishes better
results for that specific database. In terms of processing time
the DA took only a few seconds while the NN training took
about half an hour and the testing took only about 1-2 se-
conds. This means that for a very large database the training
phase of the NN may take up to several hours in today’s
personal computers, although after training it would take only
a couple of seconds to classify the cornea. Another possible
disadvantage of using NN is that, because of the complexity
of the algorithm, there are very few packages available in the
market and most of them with quite high prices; on the other
hand there are many low-cost, and even free, quite powerful
tools for statistical analysis available on the internet today. In
general, we believe NN may render better results than sta-
tistical models, but computational power available should be
considered critical.

RESUMO

Objetivos: Nosso principal objetivo neste trabalho foi de de-
senvolver e comparar duas técnicas diferentes para classifica-
¢do de superficies corneanas. Uma rede neural artificial ali-
mentada adiante e andlise descriminante foram as técnicas de
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classificacdo comparadas neste trabalho. Métodos: As entra-
das para ambos os métodos de classificacao foram os primei-
ros 15 coeficientes de Zernike para 80 cérneas mensuradas
anteriormente em um topdgrafo Eyesys instalado no Depar-
tamento de Oftalmologia da Escola Paulista de Medicina -
UNIFESP. A rede neural tem 5 saidas que foram associados
aos cinco casos tipicos contidos na base de dados: ceratoco-
ne, astigmatismo a favor da regra, astigmatismo contra a
regra, formato “regular” ou “normal” e p6s-PRK. Resultados:
Os resultados de ambos os métodos foram estatisticamente
analisados em termos de precisdo. Os resultados gerais para
ambos os métodos de redes neurais e andlise discriminante
foram 94% e 84,8%, respectivamente. Conclusao: Embora te-
nha-se utilizado uma base de dados relativamente pequena, os
resultados obtidos aqui indicam que os polindmios de Zernike
podem ser um parametro de entrada para classificacdo de
diferentes formatos de cérnea, tanto para uso com redes
neurais ou andlise discriminante.

Descritores: Topografia da cérnea/métodos; Andlise estatis-
tica; Redes neurais (computagdo); Inteligéncia artificial; Ané-
lise discriminante
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