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ABSTRACT | Purpose: This study aimed to evaluate the 
classification performance of pretrained convolutional neural 
network models or architectures using fundus image dataset 
containing eight disease labels. Methods: A publicly available 
ocular disease intelligent recognition database has been used 
for the diagnosis of eight diseases. This ocular disease intelligent  
recognition database has a total of 10,000 fundus images from 
both eyes of 5,000 patients for the following eight diseases: 
healthy, diabetic retinopathy, glaucoma, cataract, age-related 
macular degeneration, hypertension, myopia, and others. 
Ocular disease classification performances were investigated 
by constructing three pretrained convolutional neural network 
architectures including VGG16, Inceptionv3, and ResNet50 
models with adaptive moment optimizer. These models were 
implemented in Google Colab, which made the task straight
forward without spending hours installing the environment and 
supporting libraries. To evaluate the effectiveness of the models, 
the dataset was divided into 70%, 10%, and 20% for training, 
validation, and testing, respectively. For each classification, 
the training images were augmented to 10,000 fundus images. 
Results: ResNet50 achieved an accuracy of 97.1%; sensitivity, 
78.5%; specificity, 98.5%; and precision, 79.7%, and had the 

best area under the curve and final score to classify cataract 
(area under the curve = 0.964, final score = 0.903). By contrast, 
VGG16 achieved an accuracy of 96.2%; sensitivity, 56.9%; 
specificity, 99.2%; precision, 84.1%; area under the curve, 
0.949; and final score, 0.857. Conclusions: These results 
demonstrate the ability of the pretrained convolutional neural 
network architectures to identify ophthalmological diseases 
from fundus images. ResNet50 can be a good architecture 
to solve problems in disease detection and classification of 
glaucoma, cataract, hypertension, and myopia; Inceptionv3 
for age-related macular degeneration, and other disease; and 
VGG16 for normal and diabetic retinopathy. 

Keywords: Neural networks, computer; Deep-learning; Image 
processing, computer-assisted; VGG16; Inceptionv3; ResNet50; 
Fundus oculi; Eye diseases

RESUMO | Objetivo: Avaliar o desempenho de classificação 
de modelos ou arquiteturas de rede neural convolucional pré-
treinadas usando um conjunto de dados de imagem de fundo 
de olho contendo oito rótulos de doenças diferentes. Métodos: 
Neste artigo, o conjunto de dados de reconhecimento inteligente 
de doenças oculares publicamente disponível foi usado para 
o diagnóstico de oito rótulos de doenças diferentes. O banco 
de dados de reconhecimento inteligente de doenças oculares 
tem um total de 10.000 imagens de fundo de olho de ambos 
os olhos de 5.000 pacientes para oito categorias que contêm 
rótulos saudáveis, retinopatia diabética, glaucoma, catarata, 
degeneração macular relacionada à idade, hipertensão, mio-
pia, outros. Investigamos o desempenho da classificação de 
doenças oculares construindo três arquiteturas de rede neural 
convolucional pré-treinadas diferentes, incluindo os modelos 
VGG16, Inceptionv3 e ResNet50 com otimizador de Momento 
Adaptativo. Esses modelos foram implementados no Google Colab 
o que facilitou a tarefa sem gastar horas instalando o ambiente 
e suportando bibliotecas. Para avaliar a eficácia dos modelos, o 
conjunto de dados é dividido em 70% para treinamento, 10% para 
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validação e os 20% restantes utilizados para teste. As imagens de 
treinamento foram expandidas para 10.000 imagens de fundo 
de olho para cada tal. Resultados: Observou-se que o modelo 
ResNet50 alcançou acurácia de 97,1%, sensibilidade de 78,5%, 
especificidade de 98,5% e precisão de 79,7% e teve a melhor 
área sob a curva e pontuação final para classificar a categoria da 
catarata (área sob a curva=0,964, final=0,903). Em contraste, o 
modelo VGG16 alcançou uma precisão de 96,2%, sensibilidade 
de 56,9%, especificidade de 99,2% e precisão de 84,1%, área 
sob a curva 0,949 e pontuação final de 0,857. Conclusão: 
Esses resultados demonstram a capacidade das arquiteturas de 
rede neural convolucional pré-treinadas em identificar doenças 
oftalmológicas a partir de imagens de fundo de olho. ResNet50 
pode ser uma boa solução para resolver problemas na detecção e 
classificação de doenças como glaucoma, catarata, hipertensão e 
miopia; Inceptionv3 para degeneração macular relacionada à idade 
e outras doenças; e VGG16 para retinopatia normal e diabética.

Descritores Redes neurais de computação; Aprendizado pro-
fundo; Processamento de imagem assistida por computador; 
VGG16; Inceptionv3; ResNet50; Fundo de olho; Oftalmopatias

INTRODUCTION

According to the World Report on Vision published 
by the World Health Organization, at least 2.2 billion 
people have vision impairment. The report emphasizes 
that at least one billion suffer from an impairment that 
could have been prevented or has yet to be addressed(1).

Glaucoma is related to the degeneration of retinal 
ganglion cells and affects 7.7 million people(2). It causes 
permanent blindness, and early detection is challenging. 
The number of people with glaucoma is projected to 
increase 1.3 times between 2020 (76 million) and 2030 
(95.4 million), and those with age-related macular dege-
neration (AMD), 1.2 times between 2020 (195.6 million) 
and 2030 (243.3 million). Cataract, or the clouding of 
eye lens, affects approximately 94 million. Myopia, or 
nearsightedness, is a common cause of vision loss, and 
uncorrected myopia is the leading cause of distance 
vision impairment globally(3). Other extreme vision im-
pairments and blindness are usually generated by four 
ocular pathologies, namely, cataracts, diabetic retinopa-
thy, AMD, and glaucoma(4). 

Ophthalmologists diagnose diseases based on pat-
tern recognition using images of the fundus and its 
surrounding structures. This commitment of ophthalmo-
logy to disease detection using fundus images has laid 
the perfect groundwork for taking advantage of deep-
learning architectures. Nowadays, attempts have been 
made to obtain clinical results using deep-learning ar-

chitectures in the diagnosis, follow-up, and classification 
of common eye diseases. Recent studies have focused 
on deep-learning architectures on the classification of 
ophthalmological diseases such as diabetic retinopa-
thy(5,6), AMD(7,8), glaucoma(9,10), hypertension(11,12), myo-
pia(13,14), and cataract(15) through fundus imaging, visual 
field tests, or optical coherence tomography (OCT). Fun-
dus screening allows for the detection of both ocular and 
systemic diseases, namely, diabetes, glaucoma, cataract, 
AMD, and other causes(16).

In ophthalmology, enormous amounts of fundus 
images and patient-related data are available and pro-
duced daily. Among other eye diseases, cataract is one 
of the common causes of visual impairment and blind-
ness worldwide, in which approximately 50% of cases 
have overall blindness. Therefore, early detection and 
prevention of cataracts can reduce visual impairment 
and blindness. In 2021, Khan et al. proposed an auto-
mated cataract detection system using the pretrained 
VGG model, and they achieved 97.47% accuracy in 
the test dataset(17). The advancement of deep-learning 
in ophthalmology, such as in glaucoma, macular dege-
neration, diabetic retinopathy, corneal conditions, and 
age-related eye diseases, in addition to cataracts, has 
shown impressive results(18-20). Influenced by these re-
sults, we set up three pretrained CNN architectures and 
determined which disease was successfully classified by 
which model.

Pretrained models were also known as transfer lear-
ning. Models are not created from scratch. Approxima-
tely one million images of ImageNet dataset are used in 
pretrained models. A pretrained model is just adapted to 
a new problem. Given the insufficient training and tes-
ting data for building a deep-learning model, a pretrai-
ned model is an option to automatically extract features. 
We chose VGG16, ResNet50, and Inceptionv3 for their 
high performance reported in the literature. 

This study aimed to evaluate the classification per-
formances of pretrained convolutional neural network 
(CNN) architectures using the grand challenge database 
called ocular disease intelligent recognition (ODIR). 

METHODS

The fundus images used in this study were obtained 
from ODIR sponsored by Peking University(21). The pu-
blicly available dataset, containing “real” patient data 
from 487 hospitals, 26 cities in China, was collected by 
Shanggong Medical Technology Co., Ltd. The ODIR da-



Emir B, Colak E

3Arq Bras Oftalmol. 2024;87(5):e2022-0124

taset contains fundus images of 5,000 left and right eyes 
of patients and ophthalmologists’ diagnostic keywords, 
namely, healthy, diabetic retinopathy, glaucoma, cata-
ract, AMD, hypertensive retinopathy, myopia, and other 
diseases or anomalies. Fundus images with diagnostic 
keywords and associated ocular diseases are shown in 
Figure 1.

The dataset was divided into training, validation, and 
testing sets with 3,500, 500, and 1,000 pairs of fundus 
images, respectively. In the ODIR dataset, each patient’s 
left and right fundus images received ≥1 labels. The 
annotated classification labels of these patients were 
determined by the following rules. The classification 
labels of one patient depended on the left and right 
fundus images and corresponding diagnostic keywords. 
One patient was classified as normal if and only if both 
left and right diagnosis keywords were “normal fundus.” 
The classification labels were decided by the other fundus 
image when one of the fundus images was marked as 
“normal fundus.” All suspected diseases or abnorma-
lities were labeled as other diseases. If two keywords 
“anterior segment image” and “no fundus image” were 
used, the image was not classified into any of the eight 
categories. The keywords “lens dust,” “optic disk pho-

tographically invisible,” “low image quality,” and “ima-
ge offset” did not play a decisive role in determining 
the patient’s labels. The background of the left and 
right fundus images of patients with IDs [2174-2182] 
and [2957] was quite different from the others. Since 
these fundus images were preprocessed beforehand, 
they were not included in the model training. After 
identifying patients with these diagnostic keywords and 
preprocessed background images, 302 of 3,500 patients 
in the training set, 29 of 500 patients in the validation 
set, and 70 of 1,000 patients in the testing set were ex-
cluded. The class distribution of the eight categories of 
fundus images in the training, validation, and testing sets 
of the ODIR database is shown in Table 1.

Following the left and right diagnostic keywords of 
the patients and the aforementioned rules, the patients 
were assigned to the disease positive or disease nega-
tive category for each class from eight different classes 
corresponding to the diagnostic keywords. Then, they 
were turned into binary classification problems, not 
multi-diagnostic problems. Accordingly, each patient’s 
fundus images were assigned to only one category in 
the training, validation, and testing sets, e.g., cataract 
or not cataract. 

Figure 1. Fundus images with diagnostic keywords and associated ocular diseases.
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Gour et al. proposed two inputs and concatenated 
input CNN architecture for the multiclass multilabel 
fundus images of ophthalmologic diseases using transfer 
learning-based CNN approaches. They used four CNN 
architectures pretrained with two different optimizers 
and noted that the pretrained VGG16 architecture 
with the SGD optimizer performed better for multiclass 
multilabel fundus image classification in the ODIR data-
base(22). Wang et al proposed a multilabel classification 
ensemble model of fundus images based on CNN to 
directly detect one or more fundus diseases in fundus 
images. Each model consisted of two parts: a feature 
extraction network based on EfficientNet and a custom 
classification neural network for multilabel classifica-
tion problems. Finally, the output probabilities of the 
different models were combined as the final recognition 
result. Experimental results showed that the model can 
be trained using fewer datasets, and good results can 
be obtained(23). 

Fundus images in the ODIR dataset were prepro-
cessed before model training. A frame was created by 
determining the coordinates where the colored pixels 
were located. The parts with black pixels outside this 
frame were not included in the images. The left and right 
fundus image pixel widths of the patients were concate-
nated in the horizontal axis. The mirroring process was 
performed on the concatenated image. The height of 
the images combined on the horizontal axis was added 
to the height of the images obtained after mirroring on 
the vertical axis.

Table 1 shows that the frequency of glaucoma, ca-
taract, AMD, hypertension, and myopia disease classes 
was very low. To eliminate the imbalance in class dis-

tribution, data augmentation was applied so that the 
fundus image frequencies of the eight disease classes 
were equal. First, from the Augmentor package func-
tions in Python programming language, grid_width = 
3, grid_height = 3, magnitude = 3, random distortion 
function with probability 0.25; secondly, grid_width = 
3, grid_height = 3, magnitude = 3, corner = “bell”, me-
thod = “in” gaussian distortion function with the same 
probability; and finally skewed with probability 0.05; 
skew_tilt; skew_left_right; skew_top_bottom; skew_cor-
ner functions were used. In this process, we obtained 
10,000 new fundus images in the newly created indices, 
with equal numbers in each subcategory of no disease 
“0” and disease present “1” in each disease category. 

Input images obtained after image preprocessing and 
data augmentation were adapted to the dimensions used 
in the data input layers of the models, with 224 × 224 
× 3 for VGG16 and ResNet50 and 299 × 299 × 3 for 
Inceptionv3. Newly created fundus images were used for 
each disease class in the input layers of these models. 
In these model architectures, the default learning rate 
was 0.001 for a batch size of 32, 0.9 for 𝛽1, 0.999 for 𝛽2, 
and 10−8 for 𝜀, and an adaptive moment optimization 
algorithm was used. 

To perform ophthalmological disease classification 
in the VGG16 model architecture, 1,000 classes in the 
fully connected layer in the ImageNet object classifica-
tion were adapted to two classes. All layers except the 
last three fully connected layers of the architecture were 
frozen using pretrained layer weights. In the Inceptionv3 
model architecture, the number of classes in the fully 
connected layer was adapted to two classes. All layers 
except the second Inception C, InceptionAux, Inception 
D, Inception E modules, and fully connected layer, which 
was the output, were frozen. In ResNet50, the weights 
up to the seventh layer of the architecture were frozen. 
These deep-learning architectures were trained for the 
classification of ophthalmological diseases by fine-tuning 
the ODIR fundus image set. Finally, the softmax layer was 
replaced with the customized layer for the ophthalmolo-
gical disease classification with two classes.

The ODIR dataset had some limitations. As a fundus 
image dataset with real clinical applications, the use of 
10,000 images could not adequately meet the need to 
develop a real-time deep-learning application. More 
fundus images are needed for a more accurate clinical 
diagnosis. This may enable our pretrained models to 
have better generalization ability. The rarity of some 
fundus diseases made it difficult to define these fundus 

Table 1. Class distribution of eight categories of fundus images in the 
training, validation, and testing sets of the ODIR database

Disease 
classification

Training
(1/0)

Validation
(1/0)

Test
(1/0)

Total
(1/0)

Healthy 1,001/2,197 147/324 274/656 1,422/3,177

Diabetic retinopathy 1,073/2,125 158/313 319/611 1,550/3,049

Glaucoma 197/3,001 27/444 51/879 275/4,324

Cataract 179/3,019 29/442 65/865 273/4,326

Age-related macular 
degeneration

163/3,035 25/446 48/882 236/4,363

Hypertension 103/3,095 16/455 30/900 149/4,450

Myopia 166/3,032 23/448 46/884 235/4,364

Others 883/2,315 131/340 263/667 1277/3,322

Total 3,198 471 930 4,599

1/0= disease positive/disease negative.
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diseases. In addition, although the ODIR dataset provi-
ded detailed diagnostic keywords for each fundus image, 
it was ultimately divided into eight categories. By making 
a more detailed subset classification of fundus diseases, 
a better understanding of the images belonging to the 
classifications can be achieved. In addition, the source 
of images was collected from a single ethnicity (Chinese 
only). Fundus data from different races or ethnicities are 
needed to have a better diversity of the dataset.

Running environment

All deep-learning CNNs, pretrained on ImageNet, 
were trained and tested based on a publicly available 
CNN framework Pytorch. The coding and training steps 
were conducted in Google Colaboratory (Colab-Pro). 
This system is essential to this study because we can use 
NVIDIA Tesla-P100 GPU, with 25 gigabyte of random-
access memory and 100 GB of memory in a cloud com-
puting environment. 

The following early stopping strategy was applied for 
all the classification experiments: the training procedure 
did not stop until the validation loss was continuously 
higher than the lowest validation loss for seven epochs.

Evaluation metrics

Four evaluation metrics, including kappa, F1-score 
(F1), area under the curve (AUC), and their mean value, 
denoted as the final score, were used to evaluate the 
classification performance of the pretrained CNN mo-
dels for ophthalmological diseases from fundus images. 
The kappa coefficient was used for consistency check, 
and it ranged from −1 to 1. F1 is the harmonic mean of 
precision and recall. Since kappa and F1 only consider 
a single threshold, the output of the classification ne-
tworks is probabilistic; thus, we used the area under the 
receiver operating characteristics curve. All these four 
metrics were calculated by the sklearn package. 

RESULTS
This study focused on the classification performan-

ce of pretrained VGG16, Inceptionv3, and ResNet50 
models. After training these models, the weights were 
saved for the prediction of the previously unseen data-
set of test images. The trained model was then used for 
the classification of the test images as ophthalmological 
disease labels based on model accuracy and loss. Table 2 
describes the accuracy and loss achieved for the training 
and validation sets in the last epoch when the pretrained 
models were trained.

Table 3 displays the confusion matrix of the pretrai-
ned CNN models with a softmax classifier. Each row of 
the confusion matrix represents instances in an actual/
true class, and each column of the matrix represents 
instances in a predicted class. The values in the main 
diagonal of the matrix represent instances where the 
model can accurately predict the class to which an image 
belongs (true negative [TN] and true positive [TP]). On 
the contrary, all values in the confusion matrix, except 
the major diagonal, represent cases where the model 
misclassifies an image (false negative [FN] and false 
positive [FP]). 

As shown in Table 3, the pretrained ResNet50 model 
had the highest correct classification (TN + TP) and the 
lowest misclassification (FN + FP) for healthy, other, and 
glaucoma disease classes in the validation data. In addi-
tion, the pretrained ResNet50 model had the highest 

Table 2. Training and validation performances of the pretrained models in 
the last epoch for each ophthalmological disease classification

Training Validation

Model Disease classification Acc Loss Acc Loss

Healthy 0.719 0.476 0.597 1.193

Diabetic retinopathy 0.735 0.461 0.684 0.999

Glaucoma 0.954 0.171 0.892 0.845

VGG16 Cataract 0.981 0.154 0.968 0.129

Age-related macular 
degeneration

0.935 0.225 0.945 0.548

Hypertension 0.946 0.203 0.955 0.461

Myopia 0.995 0.273 0.972 3.324

Others 0.646 0.589 0.556 0.991

Healthy 0.997 0.016 0.660 2.263

Diabetic retinopathy 0.994 0.024 0.720 1.721

Glaucoma 0.997 0.013 0.915 0.863

Inceptionv3 Cataract 0.998 0.006 0.968 0.237

Age-related macular 
degeneration

0.999 0.004 0.962 0.597

Hypertension 0.996 0.020 0.955 0.798

Myopia 0.999 0.005 0.972 0.289

Others 0.992 0.039 0.667 2.455

Healthy 0.991 0.028 0.648 1.890

Diabetic retinopathy 0.992 0.022 0.701 2.263

Glaucoma 0.999 0.004 0.943 0.876

ResNet50 Cataract 0.999 0.001 0.981 0.428

Age-related macular 
degeneration

0.998 0.006 0.960 0.448

Hypertension 0.998 0.007 0.960 0.859

Myopia 0.999 0.002 0.979 0.254

Others 0.995 0.016 0.709 2.423

Acc= accuracy.
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correct classification and the lowest misclassification 
for diabetic retinopathy, cataract, and myopia disease 
classes in addition to healthy and glaucoma disease 
classes in the testing data. The pretrained Inceptionv3 
model had the highest correct classification and the  
lowest misclassification for diabetic retinopathy, cata-
ract, AMD, hypertension, and myopia disease classes in 
the validation data. In addition, the pretrained Incep-
tionv3 model had the highest correct classification and 
the lowest misclassification for AMD, hypertension, and 
other disease classes in the test data.

The standard measures of performance accuracy, 
precision, sensitivity, and specificity are calculated from 
the confusion matrix, and four evaluation metrics inclu-
ding kappa, F1, AUC, and their mean value (final score) 
are presented in the validation and testing sets in Tables 
4 and 5, respectively.

Table 4 shows that the pretrained Inceptionv3 model 
for the validation set achieved an accuracy of 98.3%, 
sensitivity of 89.7%, specificity of 98.9%, and precision 
of 83.9% and had the best final score to classify cataract 
(AUC=0.987, final=0.943). To classify myopia, this mo-
del achieved an accuracy of 98.1%, sensitivity of 82.6%, 
specificity of 98.9%, and precision of 79.2% and had the 
best final score (AUC=0.991, final=0.923). To classify 

AMD, this model achieved an accuracy of 94.5%, sensiti-
vity of 52%, specificity of 96.9%, and precision of 48.1% 
and had the best final score (AUC=0.796, final=0.737). 
To classify diabetic retinopathy, this model achieved 
an accuracy of 72.6%, sensitivity of 39.9%, specificity 
of 89.1%, and precision of 64.9% and had the best 
final score (AUC=0.758, final=0.602). The pretrained 
VGG16 model did not reach the best final score for any 
classification category in the validation set.

Table 5 shows the classification performance of the 
pretrained CNN architectures for ophthalmological 
diseases in the testing set. Moreover, the classification 
performances of normal and diabetic retinopathy rea-
ched the highest final score with the pretrained VGG16 
model compared with ResNet50 and Inceptionv3 
models (AUCN=0.717, FinalN=0.557; AUCD=0.677, 
FinalD=0.528). The pretrained Inceptionv3 model 
achieved the highest final score in classifying AMD 
and other diseases compared with VGG16 and Res-
Net50 (AUCA=0.748, FinalA=0.663; AUCO=0.621, 
FinalO=0.481). The pretrained ResNet50 model achie-
ved the highest final score in classifying glaucoma, 
cataract, hypertension, and myopia compared with 
VGG16 and Inceptionv3 (AUCG=0.762, FinalG=0.664; 
AUCC=0.964, FinalC=0.903; AUCH=0.764, Fina-
lH=0.626, AUCM=0.959, FinalM=0.836).

Table 3. Confusion matrix of pretrained convolutional neural network architectures for ophthalmological diseases.

Disease 
classification

Validation data Test data

VGG16 Inceptionv3 ResNet50 VGG16 Inceptionv3 ResNet50

N P N P N P N P N P N P

Healthy
N 199(TN) 125(FP) 174(TN) 150(FP) 255(TN) 69(FP) 443(TN) 213(FP) 431(TN) 225(FP) 519(TN) 137(FP)

P 70(FN) 77(TP) 39(FN) 108(TP) 87(FN) 60(TP) 97(FN) 177(TP) 102(FN) 172(TP) 160(FN) 114(TP)

Diabetic retinopathy
N 236(TN) 77(FP) 279(TN) 34(FP) 301(TN) 12(FP) 428(TN) 183(FP) 585(TN) 26(FP) 580(TN) 31(FP)

P 81(FN) 77(TP) 95(FN) 63(TP) 129(FN) 29(TP) 140(FN) 179(TP) 266(FN) 53(TP) 260(FN) 59(TP)

Glaucoma
N 410(TN) 34(FP) 382(TN) 62(FP) 430(TN) 14(FP) 842(TN) 37(FP) 855(TN) 24(FP) 854(TN) 25(FP)

P 23(FN) 4(TP) 17(FN) 10(TP) 21(FN) 6(TP) 38(FN) 13(TP) 38(FN) 13(TP) 36(FN) 15(TP)

Cataract
N 435(TN) 7(FP) 437(TN) 5(FP) 438(TN) 4(FP) 858(TN) 7(FP) 853(TN) 12(FP) 852(TN) 13(FP)

P 6(FN) 23(TP) 3(FN) 26(TP) 5(FN) 24(TP) 28(FN) 37(TP) 18(FN) 47(TP) 14(FN) 51(TP)

Age-related macular 
degeneration

N 440(TN) 6(FP) 432(TN) 14(FP) 424(TN) 22(FP) 857(TN) 25(FP) 860(TN) 22(FP) 819(TN) 63(FP)

P 22(FN) 3(TP) 12(FN) 13(TP) 14(FN) 11(TP) 41(FN) 7(TP) 34(FN) 14(TP) 26(FN) 22(TP)

Hypertension
N 452(TN) 3(FP) 455(TN) 0(FP) 440(TN) 15(FP) 898(TN) 2(FP) 900(TN) 0(FP) 840(TN) 60(FP)

P 16(FN) 0(TP) 16(FN) 0(TP) 14(FN) 2(TP) 30(FN) 0(TP) 30(FN) 0(TP) 18(FN) 12(TP)

Myopia
N 444(TN) 4(FP) 443(TN) 5(FP) 439(TN) 9(FP) 858(TN) 26(FP) 849(TN) 35(FP) 858(TN) 26(FP)

P 9(FN) 14(TP) 4(FN) 19(TP) 5(FN) 18(TP) 21(FN) 25(TP) 12(FN) 34(TP) 14(FN) 32(TP)

Others
N 208(TN) 132(FP) 257(TN) 83(FP) 277(TN) 63(FP) 423(TN) 244(FP) 636(TN) 31(FP) 595(TN) 72(FP)

P 81(FN) 50(TP) 88(FN) 43(TP) 90(FN) 41(TP) 129(FN) 134(TP) 230(FN) 33(TP) 213(FN) 50(TP)

N= negative; P= positive; TN= true negative; FN= false negative; TP= true positive; FP= false positive.
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Cataract and myopia classes achieved the highest 
AUC and final scores when the performance results 
of the models in the validation and testing sets were 
evaluated in general (Tables 4 and 5). Although the 
accuracy of the models corresponding to glaucoma, 
AMD, and hypertension classifications was >0.80, the 
low precision, sensitivity, and specificity values of these 
disease classifications affected the AUC and thus the 
final score. The F1 score value was >0.90 in glaucoma, 
cataract, AMD, hypertension, and myopia classes with 
data imbalances. For the normal category, if both fundus 
images were labeled normal, this classification had an 
issue because the patient was included in the normal 
category, which affected the results. In addition, patients 
were labeled with a total of 117 diagnostic keywords, 
including eight disease classes. Therefore, the perfor-
mance of the pretrained model for the other diseases 
category was quite low. To improve the performance of 

the models in this category, a new classification category 
suitable for each diagnostic keyword is needed, more 
fundus images containing these diagnostic keywords 
should be collected.

DISCUSSION

Many datasets consist of high-quality images that 
were captured under controlled, non-standard condi-
tions. Arguably, algorithms trained on such datasets will 
perform poorly because the images may not be directly 
comparable and environmental and hardware details 
may differ. On the contrary, the ODIR dataset addresses 
these issues, “real-life” patient data were collected from 
different hospitals/medical centers, and images were 
captured using different camera models under various 
nontypical conditions. As a result, the noise caused by 
those variations makes it very difficult for the algorithms 
to conduct an accurate and effective analysis. 

Table 4. Evaluation of classification performances of pretrained convolutional neural network architectures for ophthalmological diseases in the validation set

Ophthalmological disease classification

Model Metrics N D G C A H M O

Acc 0.586 0.665 0.879 0.972 0.941 0.960 0.972 0.548

Prec 0.381 0.500 0.105 0.767 0.333 0.000 0.778 0.275

Sens 0.524 0.487 0.148 0.793 0.120 0.000 0.609 0.382

VGG16 Spec 0.614 0.754 0.923 0.984 0.987 0.993 0.991 0.612

Kappa 0.125 0.243 0.060 0.765 0.153 −0.011 0.669 −0.006

F1 0.586 0.665 0.879 0.972 0.941 0.960 0.972 0.548

AUC 0.617 0.709 0.719 0.988 0.720 0.604 0.967 0.504

Final 0.443 0.539 0.553 0.908 0.605 0.518 0.870 0.349

Acc 0.599 0.726 0.832 0.983 0.945 0.966 0.981 0.637

Prec 0.419 0.649 0.139 0.839 0.481 0.000 0.792 0.341

Sens 0.735 0.399 0.370 0.897 0.520 0.000 0.826 0.328

Inceptionv3 Spec 0.537 0.891 0.860 0.989 0.969 1.000 0.989 0.756

Kappa 0.225 0.321 0.129 0.858 0.471 0.000 0.798 0.085

F1 0.599 0.726 0.832 0.983 0.945 0.966 0.981 0.637

AUC 0.691 0.758 0.662 0.987 0.796 0.690 0.991 0.556

Final 0.505 0.602 0.541 0.943 0.737 0.552 0.923 0.426

Acc 0.669 0.701 0.926 0.981 0.924 0.938 0.970 0.675

Prec 0.465 0.707 0.300 0.857 0.333 0.118 0.667 0.394

Sens 0.408 0.184 0.222 0.828 0.440 0.125 0.783 0.313

ResNet50 Spec 0.787 0.962 0.968 0.991 0.951 0.967 0.980 0.815

Kappa 0.202 0.178 0.217 0.832 0.339 0.089 0.704 0.136

F1 0.669 0.701 0.926 0.981 0.924 0.938 0.970 0.675

AUC 0.682 0.695 0.678 0.988 0.815 0.745 0.989 0.608

Final 0.518 0.525 0.607 0.933 0.693 0.591 0.888 0.473

A: Age= age-related macular degeneration; Acc= accuracy; AUC= area under the curve; C= cataract; D= diabetic retinopathy; Final= mean values of F1, AUC, and kappa; G= glau-
coma; H= hypertension; M= myopia; N, healthy; O= others; Prec= precision; Sens= sensitivity; Spec= specificity.
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Table 5. Evaluation of classification performances of pretrained convolutional neural network architectures for ophthalmological diseases in the testing set

Ophthalmological disease classification

Model Metrics N D G C A H M O

Acc 0.667 0.653 0.919 0.962 0.929 0.966 0.949 0.599

Prec 0.454 0.494 0.260 0.841 0.219 0.000 0.490 0.354

Sens 0.646 0.561 0.255 0.569 0.146 0.000 0.543 0.510

VGG16 Spec 0.675 0.700 0.958 0.992 0.972 0.998 0.971 0.634

Kappa 0.286 0.253 0.215 0.660 0.139 −0.004 0.489 0.127

F1 0.667 0.653 0.919 0.962 0.929 0.966 0.949 0.599

AUC 0.717 0.677 0.726 0.949 0.578 0.654 0.861 0.586

Final 0.557 0.528 0.620 0.857 0.549 0.538 0.767 0.437

Acc 0.648 0.686 0.933 0.968 0.940 0.968 0.949 0.719

Prec 0.433 0.671 0.351 0.797 0.389 0.000 0.493 0.516

Sens 0.628 0.166 0.255 0.723 0.292 0.000 0.739 0.125

Inceptionv3 Spec 0.657 0.957 0.973 0.986 0.975 1.000 0.960 0.954

Kappa 0.252 0.151 0.261 0.741 0.302 0.000 0.566 0.102

F1 0.648 0.686 0.933 0.968 0.940 0.968 0.949 0.719

AUC 0.711 0.726 0.685 0.948 0.748 0.706 0.940 0.621

Final 0.537 0.521 0.626 0.885 0.663 0.558 0.818 0.481

Acc 0.681 0.687 0.934 0.971 0.904 0.916 0.957 0.694

Prec 0.454 0.656 0.375 0.797 0.259 0.167 0.552 0.410

Sens 0.416 0.185 0.294 0.785 0.458 0.400 0.696 0.190

ResNet50 Spec 0.791 0.949 0.972 0.985 0.929 0.933 0.971 0.892

Kappa 0.212 0.162 0.296 0.775 0.284 0.199 0.593 0.098

F1 0.681 0.687 0.934 0.971 0.904 0.916 0.957 0.694

AUC 0.703 0.643 0.762 0.964 0.702 0.764 0.959 0.575

Final 0.532 0.497 0.664 0.903 0.630 0.626 0.836 0.456

A= age-related macular degeneration; Acc= accuracy; AUC= area under the curve; C= cataract; D= diabetic retinopathy; Final= mean values of F1, AUC, and kappa; G=  glaucoma; 
H=  hypertension; M= myopia; N= healthy; O= others; Prec, precision; Sens=  sensitivity; Spec=  specificity.

The development of large training and validation 
datasets is one of the many necessary steps toward the 
development of robust and accurate artificial intelli-
gence (AI) models. However, most of the datasets lack 
sufficient data or suffer from the imbalance between 
their classes. The ODIR dataset has data imbalance in 
disease classes of glaucoma, cataract, AMD, hyperten-
sion, and myopia. Thus, several ways can be employed 
to overcome this issue, such as using augmentation 
techniques and leveraging the knowledge of pretrained 
models on large datasets, such as ImageNet(24,25). In this 
study, we used both pretrained models with weights  
obtained in ImageNet and appropriate data augmenta-
tion techniques.

AI, especially deep-learning-based methods, holds 
promise for improving and accelerating advances in 
healthcare. However, several important constraints 
should be addressed to facilitate its adoption in clinical set-
tings(26). Apart from the traditional methods to evaluate 

model performance, i.e., accuracy metrics, several 
others have been proposed as important for the accep-
tance of AI models(27). The transition from traditional 
machine-learning approaches to deep-learning models 
has improved the performance of such analyses(28).

The classification performance results of deep-lear-
ning models can be affected by dataset quality, labeling 
process, dataset heterogeneity, and dataset class imba-
lance(29). The ODIR dataset was constructed by collecting 
images from different hospitals and clinics in China. 
Fundus images were captured by various cameras, such 
as Canon, Zeiss, and Kowa, which varied the resolutions 
of images. Ensuring that the quality of the captured fun-
dus image is similar to the actual fundus is challenging. 
Fundus cameras may fail to capture important features 
responsible for disease identification, images had diffe
rent resolutions and angles, and fundus images had  
heterogeneous sizes. The models trained on such data 
may fail in categorizing images belonging to the same 



Emir B, Colak E

9Arq Bras Oftalmol. 2024;87(5):e2022-0124

class. This dataset also contained out-of-focus blurred 
images and had artifacts that interfere with the training 
images, as shown in Figure 2. We detected these images 
using the keywords given in the data preprocessing step 
and did not include them in model training, as they did 
not contribute or play a decisive role in determining a 
patient’s disease. In addition, we created a frame by 
determining the coordinates where the colored pixels 
are located. We did not include the black pixel portions 
outside this frame and tried to make all image sizes 
homogeneous. 

Instead of training the network from scratch, we used 
pretrained models trained on ImageNet and fine-tuned 
them on the fundus image data. We used pretrained 
models as feature extractors, based on the assumption 
that the primary layers of the models provide relevant 
baseline features. Another alternative approach was to 
eliminate the imbalance in class distribution by genera-
ting synthetic fundus image data equally in each clas-
sification category based on the augmentation strategy 
specified in the Methods.

To our knowledge, this is the first study that evalua
ted model performances using pretrained models for 
two-class classification in each disease category of eight 

ophthalmological diseases after obtaining a total of 
10,000 fundus images per class using data augmentation 
techniques in the ODIR dataset. According to the results, 
CNN training in ophthalmology may be a viable choice 
because publicly available datasets are increasing. 

In this study, we evaluated the performance of pretrai-
ned CNN architectures of VGG16, Inceptionv3, and Res-
Net50 for the automated classification of clinical fundus 
images in the newly publicly available ODIR dataset with 
multi-disease annotations. As shown in the experiments, 
ResNet50 and Inceptionv3 provided higher final scores 
than VGG16. ResNet50 requires fewer parameters and 
time to obtain classification results. ResNet50 can be a 
good architecture to solve problems in disease detection 
and classification of glaucoma, cataract, hypertension, 
and myopia; Inceptionv3 for AMD and other diseases; 
and VGG16 for normal and diabetic retinopathy. These 
deep-learning architectures might be efficient solutions 
for the optimization and classification of diseases using 
fundus images in real-life clinical settings.
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