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ISLET TRANSPLANTATION IN RODENTS. 
Do encapsulated islets really work?
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ABSTRACT – Context - Diabetes mellitus type I affects around 240 million people in the world and only in the USA 7.8% of the population. 
It has been estimated that the costs of its complications account for 5% to 10% of the total healthcare spending around the world. 
According to World Health Organization, 300 million people are expected to develop diabetes mellitus by the year 2025. The pancreatic 
islet transplantation is expected to be less invasive than a pancreas transplant, which is currently the most commonly used approach. 
Objectives - To compare the encapsulated and free islet transplantation in rodents looking at sites of islet implantation, number of 
injected islets, viability and immunosuppression. Methods - A literature search was conducted using MEDLINE/PUBMED and SCIELO 
with terms about islet transplantation in the rodent from 2000 to 2010. We found 2,636 articles but only 56 articles from 2000 to 2010 
were selected. Results - In these 56 articles used, 34% were encapsulated and 66% were nonencapsulated islets. Analyzing both types of 
islets transplantation, the majority of the encapsulated islets were implanted into the peritoneal cavity and the nonencapsulated islets 
into the liver, through the portal vein. In addition, the great advantage of the peritoneal cavity as the site of islet transplantation is its 
blood supply. Both vascular endothelial cells and vascular endothelial growth factor were used to stimulate angiogenesis of the islet 
grafts, increasing the vascularization rapidly after implantation. It also has been proven that there is influence of the capsules, since the 
larger the capsule more chances there are of central necrosis. In some articles, the use of immunosuppression demonstrated to increase 
the life expectancy of the graft. Conclusion - While significant progress has been made in the islets transplantation field, many obstacles 
remain to be overcome. Microencapsulation provides a means to transplant islets without immunosuppressive agents and may enable 
the performance of xenotransplantation. The use of alternative donor sources, fewer islets per capsule and the appropriate deployment 
location, such as the peritoneal cavity, may give a future perspective to the application of immunoprotective capsules and viability in 
clinical practice. A variety of strategies, such as genetic engineering, co-encapsulation, improvement in oxygen supply or the establishment 
of hypoxia resistance will also improve the islet transplantation performance. It remains to be determined which combination of strategies 
with encapsulation can fulfill the promise of establishing a simple and safe transplantation as a cure for diabetes.

HEADINGS - Diabetes mellitus, type I. Islets of Langerhans transplantation. Rodentia.

INTRODUCTION

Diabetes mellitus (DM) type I affects around 240 
million people in the world(1) and only in the USA 
7.8% of the population(55). It has been estimated that 
the costs of its complications account for 5% to 10%(20) 
of  the total healthcare spending around the world. 
According to World Health Organization, 300 million 
people are expected to develop DM by the year 2025.

Islet transplantation has been considered a safer 
alternative than whole-organ transplantation and 
a potentially alternative treatment to conventional 
exogenous-insulin therapy(16). The main benefit of islet 
transplantation is the ability to inject it in vascularized 
organs and it can be considered less invasive. The acute 
rejection still is a major problem. New alternatives to 
avoid the rejection have been developed such as, thymic 
manipulation, co-transplant with other cell types (bone 
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marrow cells, Sertoli cells etc.), liver transplantation(27, 

37, 41, 42) and encapsulated islets. 
With immunoprotection by encapsulation, islets 

are enclosed in a matrix surrounded by semipermeable 
membrane, which allows for the passage of  small 
molecules like insulin and glucose, but not for the 
entry of the much larger cells and antibodies of the 
immune system. Such a physical barrier can thus prevent 
allograft rejection, which depends on recognition 
of the Major Histocompatibility Complex (MHC) 
by host lymphocytes. Furthermore it can prevent 
antibody-mediated cytotoxicity, which plays a role in 
the autoimmune destruction of beta cells, as well as in 
allograft and xenograft rejection(31, 59). Immunoprotection 
by encapsulation can thus enable transplantation of 
islet tissue in the absence of immunossupression. 

Our aim is to compare the encapsulated and free 
islet transplantation in rodents looking at site of 
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implantation, number of  islets, viability and type of 
immunosuppression.

METHODS

This research was made through MEDLINE/PUBMED 
and SCIELO web sites looking for papers on the content 
“islet transplantation in the rodent”.

We found 2,636 articles but only 56 articles from 2000 to 2010 
were selected based on the relevance. Thirty-five (35%) were about 
encapsulated islet and sixty-five (65%) nonencapsulated islet. 
There were articles about xenografts, isografts and allografts.

RESULTS

The best islet survival rate in encapsulated islet transplantation 
was achieved in the peritoneal cavity with an average of 4216 
islets implanted per capsule, lasting an average of 100 days 
functionally (Table 1).

The most widely used implantation sites of encapsulated 
islets (Figure 1).

In contrast, the best islet survival rate in the nonencapsulated 
islets was achieved by injecting islets into the liver, with an 
average of 1475 islets implanted per capsule, lasting an average 
of 164 days with the use of immunosuppression (Table 2).

TABLE 1. Sites of implantation of encapsulated islets and islets survival 
rate (days)

Encapsulated

Author
No. of islets per 

capsule
Results days

Peritoneal cavity
Tatarkiewicz et al.(53) 2000 70
Omer et al.(35) 3000 21-70

Figliuzzi et al.(11) 16000
IS+: 18 ± 8

IS-: 7.5 ± 0.2
Yun Lee et al.(63) 1200 >365
Remuzzi A et al.(39) 3000 80
O’Sullivan et al.(36) 100 14

Subcutaneous tissue
Sorenby et al.(48) 200 to 1000 ± 6
Sorenby et al.(49) 125 to 375 28

Liver
Schneider S. et al.(44) 1500 95 ± 3

IS+: with immunosuppression;
IS - : without immunosuppression

Nonencapsulated
Author No. of islets Results days

Liver
Ikebukuro et al.(19) 600 > 365
Spadella et al.(50) 1500 365
Schneider et al.(44) 1500 97 ± 2
Omer et al.(35) 4000 70
Taira M. et al.(52) 600 30
Ikebukuro et al.(18) 600 250

Hara et al.(16) 500 to 1500
IS+: 10.5 ± 8.44
IS-: 12.0 ± 2.65

Lee. et al.(29) 1500 126
Kidney

Olsson et al.(34) 250 28
Sawada et al.(42) 2000 > 100
Lan et al.(27) - > 60
Hamamoto et al.(14) 2500 41
Kover et al.(24) 1500 80 –120
Hiramatsu et al.(17) 200 or 20 56
Socha-Urbanek et al.(47) 1500 ± 200 150
Laumonier et al.(28) 3000 to 3200 19.5 ± 5.8
Omer et al.(35) 4000 70
Sharma et al.(46) 30 30 – 40
Hara et al.(16) 500 to 1500 11.0 ± 2.63
Han et al.(15) - 60

IS+: with immunosuppression;
IS-: without immunosuppression

TABLE 2. Sites of implantation of nonencapsulated islets and islets 
survival rate (days)

FIGURE 1. Most common sites of implantation of encapsulated islets

Peritoneal cavity

Subcutaneous tissue

Liver

Encapsulated islet

Other sites of implantation were: subcutaneous tissue 
(n = 2500 islets; 58 days of viability), peritoneal cavity (n = 
10000 islets; 37 days of viability) and bone marrow (n = 1250 
islets; 21 days of viability).

DISCUSSION

The concept of  islet transplantation is not new. 
Investigators as early as the English surgeon Charles Pybus 
(1882–1975) attempted to transplant pancreatic tissue to 
cure diabetes. Most, however, credit the recent era of  islet 
transplantation research to Paul Lacy’s studies dating back 
to more than 3 decades. Lacy’s group(25) described a novel 
method to isolate islets using collagenase, paving the way for 
future of  in vitro and in vivo islet experiments. According 
to Hara et al.(16), Ballinger and Lacy demonstrated that 
intraportal islet transplantation corrected experimental 
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diabetes in rodents; since then, many transplantation sites 
have been tested. 

Subsequent studies showed that transplanted islets could 
reverse diabetes in both rodents and non-human primates(23, 

43). Lacy(26) observed the feasibility of islet cell transplantation 
as a therapeutic approach in the probable prevention of the 
diabetes complications in individuals. Improvements in isolation 
techniques and immunosuppressive regimens conducted in 
the first human clinical trials of islet transplantation in the 
mid of 1980. Tzakiset et al.(57) described the first successful 
trial of human islet allotransplantation resulting in long-
term reversal of  diabetes. Despite continued procedural 
improvements, only about 10% of islet recipients in the late 
of  1990 achieved euglycemia. Shapiro et al.(45) described 
seven consecutive patients who achieved euglycemia after 
islet transplantation using a steroid-free protocol and large 
numbers of donor islets.

In the last 10 years numerous studies were made on islet 
transplantation in the rodent. We reviewed 56 of these studies; 
19 articles (34%) concerned encapsulated islet and 37 (66%) 
non-encapsulated islet. 

Nonencapsulated islets may be injected into the liver 
(4, 16, 18, 19, 35, 44, 50, 52), kidney(5, 14, 15, 16, 17, 24, 27, 28, 32, 34, 35, 42, 46, 47), 
peritoneal cavity(11, 35), bone marrow(41) and subcutaneous 
tissue(22, 48). Ikebukuro et al.(19) showed that islets and bone 
marrow cells, when injected into the liver using irradiation 
as immunosuppression, can increase the functionality of the 
cells for more than 365 days. In addition, Kawakami et al.(22) 

discovered that basic fibroblast growth factor could increase 
vascularization and thus achieve islets viability for 112 days, 
when islets were injected in the subcutaneous tissue. 

Many factors can influence the islet viability and it is 
important to review them. While significant progress has 
been made in the islet transplantation field, many obstacles 
remain that currently preclude its widespread application. 
Three of the most important limitations are low tension of 
O2 where the islets are implanted, the limited supply of islets 
for transplantation and also the currently inadequate means 
for preventing islet rejection.

Encapsulated islets have been used in two ways: micro-
encapsulated islets and macro-encapsulated islets. Macro-
encapsulated islets have the advantage of being retrievable 
so that the functions of  islets inside can be evaluated at 
anytime. In contrast, micro-encapsulated islets are one or 
a few islets enclosed in semi-permeable membranes, which 
can provide a surface for diffusion, therefore maintaining 
the functions of islets inside. However, they are irretrievable 
after transplantation(38).

When islets are transplanted, 50% of  the tissue may 
be lost in the first few days; this is thought to be due 
to hypoxic death before vascularization develops(36). 
Revascularization begins in 7-10 days after transplant, 
when there’s already ischemic damage(21, 33). This delayed 
and insufficient revascularization deprives these islets of 
oxygen, resulting in cell death and graft failure(12).

The great advantage of the liver as the site of islet transplantation 
is dual blood supply, which allows the total occlusion of the 

portal venules, caused by embolization and the non-infarted 
site of transplantation, which is nourished by blood(4).

In the renal subcapsular space, islets are easily retrieved 
for histological study. However, vascularization is poor and 
leads to a low tension of oxygen.

When the islets are implanted into the rodent’s peritoneal 
cavity there is plenty of  blood supply to use of, which 
facilitates the wait for a new revascularization, but it is 
randomly chosen. 

Trying to increase the blood supply of the graft soon after 
implantation, Cheng et al.(5) have injected vascular endothelial 
cells L and vascular endothelial growth factor (VEGF) to 
stimulate angiogenesis. The use of growth factors was made 
of in other works too(5, 33, 62). They saw that in chronically 
isquemic tissues these factors where decreased and that 
premature islet revascularization could improve the outcome 
of islet transplantation and enhance the graft survival. Yu 
et al.(62) combined SDF-1alfa and VEGF achieving not only 
new vessels but mature and stable ones.

In a different way, joining bone marrow - derived 
mesenchymal stem cells function as VEGF secretor to 
pancreatic islets, Figliuzzi et al.(12) also promoted vascularization. 
Johansson et al.(21) questioned the early capability of  forming 
new blood vessels, lost days later. They saw that the islets 
attract blood vessels but fail to grow and connect to recipient 
blood vessels. He then inhibited the angiostatic factors and 
restored that capability without any growth factors.

All of  these different approaches towards a better 
vascularization are new and of these, need yet to be sorted 
the best one.

The difficulty in isolating an adequate number of  islets 
lies on the fact that multiple donors are needed to get 
patients off  exogenous insulin after islet transplantation. 
Therefore, it is crucial to prepare large numbers of  viable 
and functional islets from a single donor pancreas for 
clinical transplantation.

It has been proven that the volume of  the capsules 
influences, since the larger the capsule more chances are 
there of  central necrosis(36). Besides necrosis, a major concern 
is that the low tension of  O2 can lead the release of  pro-
inflammatory factors. These pro-inflammatory factors elicit 
a host immune response even in the encapsulated islets. An 
alternative to prevent these factors is the use of  capsules. 
These can reduce immunogenicity by preventing cellular 
immune reactions while simultaneously transfers nutrients, 
oxygen and therapeutic factors. This permits the imitation of 
moment-to-moment fine regulation of the missing therapeutic 
factors, avoids a lifetime of  immunosuppressive therapy 
and allows the use of  non-human cells, thus overcoming 
the limited supply of  human donor cells(65).

Zhao et al.(64) have demonstrated that encapsulated 
islets cultured in 3D peptide nanofiber provides a superior 
simulated microenvironment for improving the viability and 
the secretion function of the islets.

Graft failure of encapsulated islets is usually interpreted 
as a consequence of a nonspecific body reaction against the 
capsules that results in fibrotic overgrowth of the capsules, 
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with ischemia and subsequent necrosis of  the islets(9). 
Pericapsular overgrowth should not impose a problem as 
long as the majority of the islet-containing microcapsules is 
not affected by overgrowth, and remains efficient(6). However, 
macrophage-derived factors from the overgrown part of the 
graft may affect the non-overgrown part.

An alternative to these are capsules with new components. 
Zimmermann et al.(65) have demonstrated that alginate based 
matrix with BaCl2 crystals enhances the immunoprotecting 
encapsulation and therefore stabilizes the membrane when 
in contact with the external Ba2+. Yun et al.(63) have reported 
that PEG-based chemical immunomodulation can provide a 
semi-permanent effective therapy that protects transplanted 
islets at least for 1 year when accompanied by cyclosporine. 
Furthermore, Vériter et al.(58) have tested originals alginates 
with respect to sterile lyophilized high mannuronated and 
they have had an optimum result with high mannuronated 
with high viscosity alginate.

Another option is the use of TheraCyteTM which is suited 
for the maintenance of islets in vivo by allowing cells to be 
loaded into the chamber at controlled densities and spatial 
configurations and the promotion of vascularization by the 
outer membrane of the device(51). In addition, Teramura et 
al.(54) have proposed as up-to-the-minute method for islet 
microencapsulation with amphiphilic poly (ethylene glyocol)-
conjugated phospholipid derivative (PEG-lipid) and DNA 
hybridization. This enables an individually islet encapsulation 
and no central necrosis have been observed.

Qi et al.(38) have suggested the use of  polyvinyl alcohol 
macro-encapsulated islets for long-term preservation 
(7 days) is better, because they allow overcoming the 
obstacles of  insufficient donors and the side effects of 
immunosuppressive drugs.

In the past decades, allograft survival improved 
because the development of  new and more specific  
immunosuppressive agents. 

Recently it was stated that porcine islet xenotransplantation 
is possible using cyclosporine A (CsA) as an immunosuppressive 
agent. They isolated islets from adult pigs, cultured for 1.5-3 
weeks and transplanted in rodents using CsA. The treatment 
with CsA achieved graft survival to over 134 days(40).

A further immunosuppressive agent used is AEB-071 
(AEB). AEB-071 is a specific inhibitor of  protein kinase 
C, which prevents T-lymphocyte activation. Merani et al.(32) 
investigated the effect of  AEB on rat islet allotransplantation 
alone or in combination with CTLA4-Ig, mycophenolate 
mofetil or CsA in rodent allogeneic islets transplant 
model. They demonstrated that AEB is an appropriate 
immunosuppressive agent for islet transplantation, because 
it can prolong islet graft survival alone or with CsA, without 
toxicity on glucose metabolism.

In another study, researchers combined CsA with FTY720 
in islet xenotransplantation. They found that this combination 
inhibited almost all morphological signs of pig-to-rat islet 
xenograft rejection for up to 24 days after transplantation(30).

Fotiadis et al.(13) used mycophenolatemofetil (MMF) and 
CsA to check the positive or adverse effects of MMF as a 

single agent. They proved that the administration of MMF 
as immunosuppression agent was safe in an experimental 
model of islet allotransplantation and was equally effective 
with cyclosporine, with less toxicity.

Balamurugan et al.(2) described the effect of CsA, FK506 
or prednisolone monotherapy on preventing monkey islet 
graft rejection after xenotransplantation in a rodent model. 
Histological examination indicated that monkey islets survived 
in the presence of continuous high-dose of immunosuppressive 
monotherapy in rodents.

Most immunosuppressive drugs, that support successful 
allograft survival act by inhibiting or depleting T lymphocytes. 
Tautomycetin (TMC) is a specific inhibitor of  protein 
phosphatase 1, which has a role in cell-cycle control and 
T-cell activation and promotes T-cell-specific apoptosis. 
Wee et al.(60) investigated the effect of  TMC alone and in 
combination with CsA on rodent islet transplantation. They 
suggested that CsA and TMC act synergistically to reduce 
the function of  T-effector cells and enhance regulatory 
cell function in a rodent islet allotransplantation model.

Tacrolimus (FK506) is a different immunosuppressive 
agent used in the islet transplantation. Balibreadel et al.(3) 

evaluated in vitro islet low-dose tacrolimus response after 
pro-inflammatory stimulation. They found that in vitro 
cytoprotective effect of  low-dose tacrolimus on isolated 
rodent islets decreases both oxidative stress and apoptosis 
markers after stimulation of  pro-inflammatory mediators.

Activation of  both the coagulation and the complement 
cascades is one of  the serious obstacles to successful island 
engraftment. Tokodai et al.(56) suggested that C5a- inhibitory 
peptide combined with gabexatemesilate may be a useful 
approach to control the instant blood-mediated inflammatory 
reaction induced in clinical islet transplantation and one 
that is free of  side effects.

It was demonstrated that graft survival of  allograft 
islets transfected with indoleamine 2, 3-dioxygenase 
(IDO) transplanted without any immunosuppression was 
superior to the control group. It is known that IDO exerts 
immunoregulatory functions suppressing T-cell responses. 
These data demonstrated that IDO expression induced in islets 
by lipofection improved metabolic control of  streptozotocin-
diabetic rodents and prolonged allograft survival(10). 

The cytoprotection of chitosan hydrogels in xenogeneic 
islet transplantation was demonstrated by Yang et al.(61). It 
has showed that islets encapsulated in chitosan hydrogels 
secreted insulin in response to the glucose stimulation as 
naked islets with higher cell survival. This study indicates 
that the chitosan hydrogels deliver and protect encapsulated 
islets successfully in xenotransplantation.

Finally, a better insight into the causes of  microencapsulated 
islet graft failure may help in finding a way to improve 
graft survival. One important observation is that 
microencapsulated autograft and allograft survival rates 
are similar, which implies that graft failure is not caused 
by rejection due to allograft recognition(7). If  graft failure 
cannot be explained by allogratrejection, others factors 
must be involved. De Vos et al.(8) have showed that there 
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is a gradual decrease in islet function, a gradual increase 
in central necrosis, a continuous increased replication of 
islet cells, and a nonprogressive overgrowth of  a portion 
of  microencapsulated islet graft. Three important aspects 
of  the microencapsulated islet graft technique may be 
associated with these phenomena. The first is related to 
the biocompatibility, which explains the occurrence of 
overgrowth. The second is related to the immunoprotective 
properties of  the microcapsules. Immunoprotection is 
incomplete because capsules may allow the passage of 
small pro-inflammatory factors, which lead to cell death 
and dysfunction. The third factor is related to the great 
distance between the encapsulated islets and the blood 
supply. An important consequence of  the great diffusion 
distance is the limited supply of  oxygen, which leads to 
hypoxia, causes islet dysfunction and necrosis, and may 
be responsible for the increase in islet replication.

CONCLUSION

While significant progress has been made in the islets 
transplantation field, many obstacles remain to be overcome. 
Microencapsulation provides a means to transplant islets 
without immunosuppressive agents and may enable the 
performance of xenotransplantation. The use of alternative 
donor sources, fewer islets per capsule and the appropriate 
deployment location, such as the peritoneal cavity, may give 
a future perspective to the application of immunoprotective 
capsules and viability in clinical practice. A variety of strategies, 
such as genetic engineering, co-encapsulation, improvement 
in oxygen supply or the establishment of hypoxia resistance 
will also improve the islet transplantation performance. It 
remains to be determined which combination of strategies 
with encapsulation can fulfill the promise of establishing a 
simple and safe transplantation as a cure for diabetes.

Souza YEDM, Chaib E, Lacerda PG, Crescenzi A, Bernal-Filho A, D’Albuquerque LAC.  Transplante de ilhotas de Langerhans em modelos experimentais 
em roedores. Ilhotas encapsuladas realmente funcionam?  Arq Gastroenterol. 2011;48(2):146-52.

RESUMO – Contexto - Diabetes mellitus tipo I afeta cerca de 240 milhões de pessoas no mundo e 7,8% só nos EUA. Foi estimado que o custo de suas 
complicações fosse de 5%-10% dos custos mundiais em saúde. De acordo com a OMS (Organização Mundial de Saúde), espera-se que cerca de 300 
milhões de pessoas desenvolvam o diabetes mellitus até o ano de 2025. É esperado que o transplante de ilhotas pancreáticas seja menos invasivo 
que o transplante pancreático, opção atual de maior uso. Objetivos - Comparar as ilhotas encapsuladas e as ilhotas livres em roedores nos seguintes 
aspectos: local de implantação das ilhotas, número de ilhotas, viabilidade e imunossupressão. Métodos - A pesquisa bibliográfica foi conduzida com o 
uso de citações do MEDLINE/PUBMED e SCIELO que apresentassem termos sobre transplante de ilhotas em roedores no período de 2000 a 2010. 
Foram achados 2.636 artigos, mas somente 56 desse período foram selecionados. Resultados - Nos 56 artigos utilizados, 34% eram encapsulados e 66% 
eram não-encapsulados. Analisando ambos os tipos de transplante de ilhotas, a maioria delas encapsuladas, foi implantada na cavidade peritonial e 
as não-encapsuladas, através da veia porta, no fígado. A grande vantagem da cavidade peritonial como local de transplante era a oferta sanguínea. 
As células endoteliais e o fator de crescimento endotelial foram usados para estimular a angiogênese nas ilhotas, aumentando a vascularização 
rapidamente após a implantação. Foi também provada a influência das cápsulas, dado que quanto maior a cápsula maior era a chance de necrose 
central. Em alguns artigos, o uso de imunossupressão demonstrou aumento da expectativa de vida do enxerto. Conclusão - Enquanto algum progresso 
significativo não tenha sido obtido no campo de transplante de ilhotas, restam ainda muitos obstáculos a serem vencidos. A microencapsulação 
viabiliza o transplante de ilhotas sem o uso de imunossupressores, o que pode permitir o xenotransplante. O uso de fontes doadoras alternativas, 
menor quantidade de ilhotas por cápsula e local de implantação adequado, como a cavidade peritonial, podem dar melhor perspectiva na aplicação 
de cápsulas imunoprotegidas, aumentando viabilidade na prática clínica. Uma série de estratégias, como engenharia genética, coencapsulamento, 
melhora da oferta de oxigênio ou o estabelecimento de resistência à hipóxia também podem aprimorar os resultados do transplante de ilhotas. Deve-
se determinar ainda qual a combinação de estratégias com relação ao uso de ilhotas encapsuladas que possam cumprir com as promessas de um 
transplante simples e seguro para a cura do diabetes.

DESCRITORES - Diabetes mellitus tipo I. Transplante das ilhotas pancreáticas. Roedores.
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