VITAMIN B₁₂ IN THE PATHOGENESIS OF SUBACUTE COMBINED DEGENERATION OF THE SPINAL CORD

Horacio M. Canelas *
Nelson de Carvalho **
Arnaldo Gama da Rocha *

The etiopathogenesis of subacute combined degeneration of the spinal cord (SCDSC) is still a matter of controversy. In spite of the numerous investigations made in the last years, concerning particularly the metabolism of vitamin B_{12} , some fundamental aspects of the disease process are still unknown. It is granted that the finding of deficient absorption of vitamin B_{12} and/or the absence of chlorhydropeptic secretion lead to the diagnosis of SCDSC in the face of a characteristic clinical picture. Nevertheless, recent researches on this subject evidence that it can not be stated, as some authors pretend $^{18,\ 24}$, that the funicular myelosis results exclusively from vitamin B_{12} deficiency. Typical clinical pictures of the disease have been reported in patients with normal absorption of cyanocobalamin $^{6,\ 31}$. Even achlorhydria is not a constant feature of the affection $^{2,\ 8,\ 18,\ 26,\ 31,\ 34}$.

In order to study the relationship between the absorption of vitamin B_{12} and SCDSC, 29 cases of this disease were studied. The absorption of labeled vitamin B_{12} was compared with the severity of the symptomatology as a whole, and particularly with the signs of involvement of the peripheral or central nervous system.

MATERIAL AND METHODS

Material — Twenty-nine cases of SCDSC were studied. The diagnosis was based on the following criteria: (a) Characteristic neurological picture, always represented, though in varied degree, by peripheral nerve (dysesthesias, muscle tenderness, hypoactive or absent deep reflexes, hypotonia, superficial hypoesthesia with a peripheral distribution in the limbs) and dorsal funiculi syndrome (impairment of deep sensation, Romberg's sign, ataxia of the extremities), and in most cases (23 patients) by a pyramidal syndrome (Babinski sign, spasticity, hyperactive deep reflexes, clonus, automatisms). The cerebrospinal fluid examination disclosed no alteration in the cell count or in the total protein content; in 14 cases the electrophoresis or CSF proteins was made, showing in 6 a rise of the concentration of β -globulin; the level of this globulin was significantly correlated to the severity of the nervous involve-

From the Department of Neurology of the Medical School* (Prof. Adherbal Tolosa) and the Center of Nuclear Medicine ** (Dr. Tede Eston) of the University of São Paulo, Brazil.

Read at the First International Congress on Nuclear Biology and Medicine, held in São Paulo, Brazil, September 20-26, 1964.

ment, and a trend to a negative correlation between β -globulin and excretion of vitamin B_{12} in urine was also found 28 . (b) Gastric achlorhydria in all cases, histamine-fast in 26; in 23 cases the anacidity was constitutional, in 5 (cases 3, 10, 16, 26, 29) it resulted from partial gastric resection, and in one (case 28) from total gastrectomy. (c) Changes of the peripheral blood, either of the macrocytic anemia type (9 cases) or iron-deficient anemia (11 cases). (d) Signs of inhibited maturation of the bone marrow examination in 8 cases (Table 1).

			Gastric	Excretion of labelled B_{12} (%)	
Case — File nº	Blood	Bone marrow	acidity	Single	Plus IF
1 — 2975E	Normal	Inhib. mat.	Absent	21.56	
2 — 3533E	h.A.	_	Absent	11.20	
3 — 3575E	h.A.	Normal	Absent*	16.90	
4 — 3710E	Normal	Normal	Absent	21.37	
5 — 3736E	Normal	Normal	Absent	13.72	
6 — 3 854E	M.H.A.	Inhib. mat.	Absent	10.67	
7 — 4459E	Normal	Normal	Absent	11.55	_
8 5600E	M.A.		Absent	15.75	
9 — 42325A		_	Absent	12.10	
10 — 437479	h.A.	_	Absent*	11.86	
11 — 1881E	M.H.A.	Inhib. mat.	Absent	0.00	5.56
12 — 2016E	M.H.A.	Normal	Absent	6.02	0.00
13 — 4932E	Normal	-	Absent	5.70	7.00
14 — 5181E	h.A.	Inhib, mat.	Absent	0.50	8.10
15 — 5210E	Megalo	Inhib. mat.	Absent	6.90	3.00
16 — 5322E	h.A.	Normal	Absent*	8.60	4.50
17 — 5466E	Normal	Inhib. mat.	Absent	0.80	3.80
18 — 2443E	h.A.	Normal	Absent	0.80	10.32
19 — 2623E	M.H.A.	Normal	Absent	3.52	18.30
20 — 4396A	M.H.A.	Normal	Absent	0.37	21.07
21 — 4480A	M.H.A.	Inhib. mat.	Absent	1.05	10.88
22 - 5108E	Normal	Normal	Absent	5.40	14.00
23 — 5635E	h.A.	-	Absent	0.80	13.30
24 — 5875E	h.A.	Normal	Absent	3.10	14.50
25 — 3385E	h.A.	Normal	Absent	8.14	_
26 — 4846E	M.H.A.	Inhib, mat.	Absent	2.40	_
27 — 5757E	Normal	Normal	Absent	9.20	_
28 - 465108	h.A.	_	Absent	0.71	_
29 — 523732	h.A.	_	Absent	0.32	

Table 1 — Subacute combined degeneration of the spinal cord: identification and diagnosis. M.H.A. = macrocytic hyperchromic anemia; h.A. = hypochromic anemia; Inhib. mat. = inhibition of maturation; IF = intrinsic factor; * = slight response to histamine.

According to the result of the urinary excretion test of vitamin B_{12} , the patients were divided into four groups: (1) patients with normal absorption (cases 1-10); (2) patients with deficiency of vitamin B_{12} absorption, not corrected by intrinsic factor, i.e. malabsorption syndrome (cases 11-17); (3) patients with deficiency of intrinsic factor of the pernicious anemia type (cases 18-24); (4) patients with deficient absorption in which the test of B_{12} + IF was not performed; 3 patients in this last group had been submitted to gastrectomy and an intrinsic factor deficiency could be presumed "i,", but the finding of a malabsorption syndrome (with steator-rhea disclosed by the labeled triolein test) in other patient who suffered gastric resection (case 16) prevented the inclusion of them in group 3.

Methods — The neurological involvement was evaluated in a semiquantitative way 5 . Each patient received a score for the peripheral, dorsal funiculi and pyramidal syndromes (Table 2).

The absorption of labeled vitamin B_{12} (in the first cases Co^{60} and lately Co^{57}) was studied through the Schilling's urinary excretion test 25 . Levels of excretion lower than 10 per cent were considered as indicative of deficient absorption. When abnormal results were found, the test was repeated with the association of intrinsic factor *, except in the last 5 cases.

The results were submitted to conventional statistical analysis.

Group	Case	Peripheral syndrome	Dorsal funiculi syndrome	Pyramidal syndrome	Total
	1	36	103	23	162
	2	30	76	60	166
absorption	3	10	18	34	62
pti	4	32	10	0	42
orl	5	62	125	20	207
sq	6	76	19	0	95
ದ	7	44	19	15	78
al	8	62	76	0	13 8
Ħ	9	86	92	16	194
Normal	10	20	9	0	29
		458	547	168	1,173
	11	24	71	78	173
_	12	50	116	110	276
lou	13	34	35	40	109
pti	14	86	133	45	264
or	15	20	10	45	75
sq.	16	75	86	67	228
Malabsorption	17	54	74	39	167
Z		343	525	424	1,292
	18	14	24	54	92
r	19	20	36	5	61
ct v	20	17	38	5 0	105
fa nc	21	28	5	34	67
rinsic fac deficiency	22	147	101	0	248
ısi	23	30	81	108	219
Intrinsic factor deficiency	24	10	10	79	99
II		266	295	330	891
	25	102	136	69	307
n n	26	125	139	122	386
ni nt io	27	80	100	4	184
err iei rpt	28	8	9	0	17
Undetermined deficient absorption	29	18	10	30	58
Un d al		333	394	225	952

Table 2 — Subacute combined degeneration of the spinal cord: neurological symptomatology (quantitative evaluation).

^{*} LAFI — Laboratório Farmacêutico Internacional, São Paulo, SP.

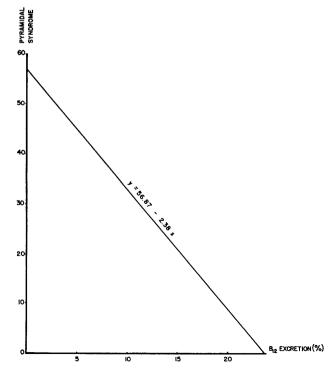
RESULTS

Our results (Tables 3 and 4) show that the normality of vitamin B_{12} absorption can not refute the diagnosis of SCDSC, made on the grounds of achylia, hematological alterations and the classical neurological picture. The whole neurological picture showed no significant correlation with the absorption of vitamin B_{12} (Table 5).

Group	Peripheral syndrome	Dorsal funicul syndrome	i Pyramidal syndrome	$T\ o\ t\ a\ l$	
Cases 1-11 Normal absorption	45.8±24.8	54.7±44.2	16.8±19.3	117.3± 64.4	
Cases 12-18 Malabsorption	49.0±25.0	75.0 ± 42.8	60.6 ± 24.5	184.6± 76.1	1
Cases 19-25 Intrinsic factor deficiency Cases 26-29	38.0±48.6	49.6 + 42.1±36.0	63.9 + 47.1±38.6	55 127.3± 74.8 36.9	165.0 ± 101.0
Undetermined deficient absorption	66.6±51.6	78.8 <u>±</u> 65.1	45.0±51.0	190.4±157.7	.0

Table 3 — Subacute combined degeneration of the spinal cord: averages of the neurological symptomatology according to the absorption of B_{μ} .

Group	Peripheral syndrome	Dorsal funiculi syndrome	Pyramidal syndrome	Total symptomatology
Cases 12-18				
Malabsorption	0.261	0.944	3.974*	1.971
Cases 19-25				
Intrinsic factor deficiency	0.437	0.622	2.148*	0.295
Cases 26-29				
Undetermined deficient absorption	1.076	0.854	1.583	1.222
Cases 12-29				
Deficient absorption	0.265	0.506	2.768*	1.350


Table 4 — Subacute combined degeneration of the spinal cord: significance of the difference (t) of neurological symptomatology in the groups with deficient B_n absorption, as compared to the averages in the group with normal absorption. *Significant value.

Actually, in spite of the views of Mollin and Ross 18 , and Richmond and Davidson 24 , several investigations 1 , 4 , 15 , 19 , 27 , 13 , 33 demonstrate that deficiency of Vitamin B_{12} is not, necessarily, a constant in SCDSC.

Our results evidence, however, that the pattern of the neurological picture varies with the degree of vitamin $\rm B_{12}$ absorption. While the peripheral and the so-called dorsal funiculi syndromes showed no difference in the groups with normal (cases 1-10) or deficient absorption (cases 11-29), the pyramidal syndrome — which unquestionably reflects the involvement of the spinal cord — is significantly more severe in the patients with deficient absorption (Table 4). Studying the correlation between vitamin $\rm B_{12}$ absorption and the degree of corticospinal tract lesion, a negative correlation was found (Table 5 and graph 1). Regarding the impairment of the deep sensation (generally restricted to disturbances of the vibration sense) and the consequent ataxia, it is not possible, on clinical grounds, to separate them from the other signs of peripheral involvement and to ascribe them sharply to a lesion of the fasciculi gracilis and/or cunneatus.

Pyramidal syndrome	r = -0.431	$t_r = 2.482$	0.02 > P > 0.01
	b = -2.38	$t_b = 2.482$	0.02 > P > 0.01
Total symptomatology	r = -0.129	$t_r = 0.676$	0.6 > P > 0.5

Table 5 — Correlation between the excretion of B_{ir} -Co⁵⁷ and the neurological picture in 29 cases of subacute combined degeneration of the spinal cord.

Graph 1 — Regression line between the pyramidal syndrome and the absorption of radioactive vitamin B_{iv}.

DISCUSSION

Trying to explain our results, we must remind that the study of the concentrations of vitamin B_{12} few days after repeated injections showed that in the brain they were one of the lowest 7 . But, in a long-term study, Whipple (apud Wangensteen 32) found that the brain stores one of the greatest amounts of vitamin B_{12} , which is only surpassed by the heart.

Vitamin B_{12} deficiency may decrease the coenzyme-A activity in the liver, thus hindering the systems of the lipid axon sheaths synthesis 22 ; actually, the maintenance of the myelin sheath is difficult in the presence of vitamin B_{12} deficiency (Alexander, apud Palva 22).

On the other hand, studies of the intracellular partition of folic acid and vitamin B_{12} concentrations $^{16,\ 20,\ 29,\ 30}$ showed that the vitamin is mainly stored in the mitochondria. Folic acid functions in several enzymic systems, while vitamin B_{12} is confined to certain enzymes of the mitochondria 30 . Vitamin B_{12} and folic acid take part in the synthesis of ribonucleic (RNA) and deoxyribonucleic acids (DNA) 12 , 21 , 23 but only vitamin B_{12} is essential for the reactions related to RNA synthesis 21 , while it is dispensable for the synthesis of DNA 3 .

The significance of the role of vitamin B_{12} in RNA synthesis is inferred from the fact that the RNA is metabolized mainly in the cytoplasm and nucleolus, being essential for the life of perennial cells, as the nerve cells; its deficiency would affect the long spinal axons 33 . According to our results, the vitamin B_{12} would be more significant for the integrity of the long corticospinal axons than for the peripheral nerves.

SUMMARY

The absorption of labeled vitamin B_{12} in 29 cases of subacute combined degeneration of the spinal cord was studied. The diagnosis was based on the classical neurologic picture and on the presence of gastric achlorhydria and eventual blood or bone marrow changes. The neurologic manifestations were evaluated in a semiquantitative way and were correlated to the results of the urinary excretion test of vitamin B_{12} .

The absorption of vitamin B_{12} was not significantly correlated to the neurologic picture as a whole, or to the peripheral and dorsal funiculi syndromes. However, a significant negative correlation was found between the pyramidal syndrome and the absorption of vitamin B_{12} .

The results are confronted with the significance of vitamin B_{12} in the synthesis of myelin sheaths and ribonucleic acid, the essential role of RNA for the life of the nerve cells and the long axons being emphasized.

RESUMO

Papel da vitamina B_{12} na patogenia da mielose funicular.

Foi estudada a absorção da vitamina B_{12} radioativa em 29 casos de mielose funicular. O diagnóstico baseou-se na clássica sintomatologia neu-

rológica e na presença de acloridria gástrica e eventuais alterações hematológicas. As manifestações neurológicas foram avaliadas de modo semiquantitativo e correlacionadas com os resultados do teste de excreção urinária da vitamina \mathbf{B}_{12} .

Não foi verificada correlação significante da absorção da vitamina B_{12} , quer com a sintomatologia nuerológica total, quer com as síndromes periférica e funicular dorsal. Contudo, foi encontrada significante correlação negativa entre a síndrome piramidal e a absorção da vitamina B_{12} .

Os resultados são confrontados com o papel desempenhado pela vitamina B_{12} na síntese das bainhas de mielina e do ácido ribonuclêico, sendo salientada a importância dêste último para a vida das células nervosas e dos longos axônios.

REFERENCES

1. ADAMS, J. F.; TIMBURY, G. C. - Subacute combined degeneration developing during liver therapy. Brit. med. J. i:833-834, 1959. 2. BJÖRKENHEIM, G. — Neurological changes in pernicious tapeworm anaemia. Acta med, scand., suppl. 260, 1951. 3. BOLINDER, A.; REICHARD, P. — The biosynthesis of deoxyribonucleic acid by the chick embryo. III: The influence of vitamin B_{12} deficiency. J. biol. Chem. 234:2723-2727, 1959. 4. BOUDIN, G.; BARBIZET, J.; LABET, R. — Les neuropathies achyliques. Rev. neurol. 91:361-366, 1954. 5. CANELAS, H. M. — Quantificação clínica da sintomatologia neurológica. Rev. paul. Med. 63:178-184, 1963. 6. CANELAS, H. M.; TEIXEIRA-PINTO, J.; SHNAIDER, J. — Absorção da vitamina B. nas mieloses funiculares: estudo da absorção da radiocianocobalamina em 16 casos. Arq. Neuro-psiquiat. (S. Paulo) 19:1-10, 1961. 7. COOPERMAN, J. M.; LUHBY, A. L. TEL-LER, D. N.; MARLEY, J. F. - Distribution of radioactive and nonradioactive vitamin B_{i2} in the dog. J. biol. Chem. 235:191-194, 1960. 8. GEIGER, W.; FUHRMANN, W. - Zur Differentialdiagnose der funikulären Spinalerkrankung. Nervenarzt, 24: 290-298, 1953. 9. GELIN, G.; COIRAULT, R.; HAMED, E. B. - Vitamine B₁₂ et syndromes neuro-anémiques. Ann. Méd. 53:172-216, 1952. 10. GLASS, G. B. J. -Gastric intrinsic factor and its function in the metabolism of vitamin B_{12} . Physiol. Rev. 43:529-849, 1963. 11. GOLDSMITH, G. A.; HUNTER, F. M.; PREVATT, A. L.; UNGLAUB, W. B. — Vitamin B₁, and the malabsorption syndrome. Amer. J. Gastroent. 32:453-464, 1959. 12. INTROZZI, P. - Aspetti attuali clinici, ezio-patogenici e terapeutici dell'anemia perniciosa. Policlinico, sez. prat., 59:505-540, 1952. 13. JEWESBURY, E. C. — Subacute combined degeneration of the cord and achlorhydric peripheral neuropathies without anaemia. Lancet, ii:307-312, 1954. 14. JUHASZ, P. — Etude anatomique de 16 cas de syndrome neuro-anémique. Rev. neurol. 81: 25-43, 1949. 15. LAFON, R.; PAGES, P.; LABAUGE, R.; TEMPLE, J. P. — Le syndrome neuro-anachlorhydrique: à propos de 31 observations. Rev. neurol. 91:321-329, 1954. 16. LAUMONIER, R.; LAQUERRIÈRE, R. - Les variations de l'acide désoxyribonucléique (DNA) dans la dégénération hépatique. Rev. int. Hépatol. 12:633-654, 1962. 17. LOUS, P.; SCHWARTZ, M. — The absorption of vitamin B,, following partial gastrectomy. Acta med. scand. 164:407-417, 1959. 18. MOLLIN, D. L.; ROSS, G. I. M. — Vitamin B_{12} deficiency in the megaloblastic anaemia. Proc. roy. Soc. Med. 47:428-431, 1954. 19. MURPHY, W. P.; HOWARD, I. — A comparison of the effect of vitamin B_{12} with that of liver extract in the treatment of pernicious anemia during relapse and for maintenance. New Engl. J. Med. 247:838-840, 1952. 20. NEWMAN, G. E. J.; O'BRIEN, R. P.; SPRAY, G. H.; WITTS, L. J. — Distribution of vitamin B_{12} in rat liver cell fractions. In Henrich, H. C.: Vitamin B_{12} und intrinsic Factor. Enke, Stuttgart, 1962, p. 424-432. Cit. por Glass 10. 21. NIEWEG, H. O.; FABER, J. G.; De VRIES, J. A.; KROESE, W. F. S. - The relationship of vitamin B, and folic acid in megaloblastic anemias. J. Lab. clin. Med. 44:118-132, 1954. 22. PALVA, I. P. — Serum cholesterol level in vitamin B₁₂ deficiency of fish

tapeworm carriers. Ann. Med. intern. fenn. 52:195-198, 1962. 23. PRUSOFF. W. F.: TEPLY, L. J.; KING, C. G. — The influence of pteroylglutamic acid on nucleic acid synthesis in Lactobacillus casei. J. biol. Chem. 176:1309-1317, 1948. 24, RICHMOND, J.; DAVIDSON, S. - Subacute combined degeneration of the spinal cord in non-Addisonian megaloblastic anaemia. Quart. J. Med. 27:517-531, 1958. 25. SCHILLING, R. F. — Intrinsic factor studies. II: The effect of gastric juice on the urinary excretion of radioactivity after the oral administration of radioactive vitamin B.,.. J. Lab. clin. Med. 42:860-866, 1953. 26. SIURALA, M.; TAWAST, M. — Neurological changes in idiopathic atrophic gastritis. Ann. Med. intern. fenn. 44:13-24. 1955. 27. SPILLANE, J. D. — Nutritional disorders of the nervous system. In Elliot, K. A. V.; Page, I. V. & Quastel, J. H.: Neurochemistry. Thomas, Springfield, 1955, pp. 785-806. 28. SPINA-FRANÇA, A.; CANELAS, H. M. — Proteinograma do liquido cefalorraquidiano e do sôro sangüineo na mielose funicular. Arq. Neuro-psiquiat. (S. Paulo) 20:183-199, 1962. 29. STRENGTH, D. R.; ALEXANDER, W. F.; WACK, J. P. — Intracellular distribution of vitamin B₁₂ Co⁶⁰ in liver and kidney of B₁₂ deficient and normal rats. Proc. Soc. exp. Biol. (N.Y.) 102:15-18, 1959. 30. SWEND-SEID, M. E.; BETHELL, F. H.; ACKERMANN, W. W.; SWANSON, A. L.; KLEIN-SCHMIDT, E. F. — The intracellular distribution of vitamin B,, and folinic acid in mouse liver. J. biol. Chem. 190:791-798, 1951. 31. VICTOR, M.; LEAR, A. A. — Subacute combined degeneration of the spinal cord: current concepts of the disease process; value of serum vitamin B,, determination in clarifying some of the common clinical problems. Amer. J. Med. 20:896-911, 1956. 32. WANGENSTEEN, O. H. -Discussion of the paper by Goldsmith et al.". Amer. J. Gastroent. 32:464-465, 1959. 33. WINTROBE, M. M. — The search for an experimental counterpart of pernicious anemia. Arch. intern. Med. 100:862-869, 1957. 34. ZEMAN, W.; DeLAND, F. H. -Contribution to the pathogenesis of subacute combined degeneration of the spinal cord: report of two cases. Amer. J. clin. Path. 28:513-523, 1957.

Clínica Neurológica — Faculdade de Medicina da Universidade de São Paulo — Caixa Postal 3461 — São Paulo, SP — Brasil.