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ABSTRACT 
Background: Sleep disorders induce anxiety and forgetfulness and change habits. The chemical hypnotic drugs currently used have serious 
side effects and, therefore, people are drawn towards using natural compounds such as plant-based healing agents. Abscisic acid (ABA) is 
produced in a variety of mammalian tissues and it is involved in many neurophysiological functions. Objective: To investigate the possible 
effect of ABA on pentobarbital-induced sleep and its possible signaling through GABA-A and PPAR (γ and β) receptors, in male Wistar rats. 
Methods: The possible effect of ABA (5 and 10 μg/rat, intracerebroventricularly) on sleep onset latency time and duration was evaluated 
in a V-maze model of sleep. Pentobarbital sodium (40 mg/kg, intraperitoneally) was injected to induce sleep 30 min after administration 
of ABA. PPARβ (GSK0660, 80 nM/rat), PPARγ (GW9662, 3 nM/rat) or GABA-A receptor (bicuculline, 6 μg/rat) antagonists were given 15 min 
before ABA injection. Diazepam (2 mg/kg, intraperitoneally) was used as a positive control group. Results: ABA at 5 μg significantly boosted 
the pentobarbital-induced subhypnotic effects and promoted induction of sleep onset in a manner comparable to diazepam treatment. 
Furthermore, pretreatment with bicuculline significantly abolished the ABA effects on sleep parameters, while the amplifying effects of 
ABA on the induction of sleep onset was not significantly affected by PPARβ or PPARγ antagonists. The sleep prolonging effect of ABA was 
significantly prevented by both PPAR antagonists. Conclusions: The data showed that ABA boosts pentobarbital-induced sleep and that 
GABA-A, PPARβ and PPARγ receptors are, at least in part, involved in ABA signaling.
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RESUMO 
Introdução: Os distúrbios do sono induzem a ansiedade e esquecimento e mudam hábitos. Os medicamentos hipnóticos químicos utilizados 
atualmente têm efeitos colaterais graves e, portanto, as pessoas são atraídas para o uso de compostos naturais, como agentes de cura 
à base de plantas. O ácido abscísico (ABA) é produzido em uma variedade de tecidos de mamíferos e está envolvido em muitas funções 
neurofisiológicas. Objetivo: Investigar o possível efeito do ABA no sono induzido por pentobarbital e sua possível sinalização por meio dos 
receptores GABA-A e PPAR (γ e β), em ratos Wistar machos. Métodos: O possível efeito do ABA (5 e 10 μg/rato, intracerebroventricularmente) 
no tempo de latência e duração do início do sono foi avaliado em um modelo de labirinto em V de sono. Pentobarbital sódico (40 mg/kg, 
intraperitonealmente) foi injetado para induzir o sono 30 minutos após a administração de ABA. PPARβ (GSK0660, 80 nM/rato), PPARγ 
(GW9662, 3 nM/rato) ou antagonistas do receptor GABA-A (bicuculina, 6 μg/rato) foram administrados 15 minutos antes da injeção 
de ABA. Diazepam (2 mg/kg, intraperitonealmente) foi utilizado como grupo de controle positivo. Resultados: ABA a 5 μg aumentou 
significativamente os efeitos sub-hipnóticos induzidos por pentobarbital e promoveu a indução do início do sono de forma comparável ao 
tratamento com diazepam. Além disso, o pré-tratamento com bicuculina aboliu significativamente os efeitos do ABA nos parâmetros do 
sono, ao passo que os efeitos amplificadores do ABA na indução do início do sono não foram significativamente afetados pelos antagonistas 
do PPARβ ou PPARγ. O efeito de prolongamento do sono do ABA foi significativamente prevenido por ambos os antagonistas do PPAR. 
Conclusões: Os dados mostraram que o ABA estimula o sono induzido por pentobarbital e que os receptores GABA-A, PPARβ e PPARγ estão, 
pelo menos em parte, envolvidos na sinalização ABA.

Palavras-chave: Ácido Abscísico; Sono; Pentobarbital; PPAR-beta; Receptores de GABA-A; Ratos.

Phytohormone abscisic acid boosts 
pentobarbital-induced sleep through activation 
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O fito-hormônio ácido abscísico estimula o sono induzido por fenobarbital por meio de 
ativação da sinalização de receptores GABA-A, PPARβ e PPARγ 
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INTRODUCTION

Today, sleep disorders are considered to be a serious ail-
ment that clearly increases health problems. GABA, melato-
nin and orexin receptors are known as pharmacodynamic 
targets for behavioral therapies that combat insomnia1. 
Targeting sleep problems is very important for preventing 
sleep disorder-induced problems such as anxiety and for-
getfulness, along with changes to habits2,3. However, several 
studies have shown that the chemical hypnotic drugs cur-
rently used have serious side effects and cause dependency4,5. 
Therefore, people are drawn towards using natural com-
pounds such as phytochemical substances6.

Abscisic acid (ABA) is an important plant growth reg-
ulator. It has very extensive activity in plants, including 
contributing to defensive/immune responses and regu-
lating some physiological plant activities such as circa-
dian rhythms7. In addition, it has been well documented in 
plants that there are significant interactions between ABA 
and the hormone melatonin8.

Chemical analysis has shown that ABA is endogenously 
expressed in animal tissues, especially in the hypothalamus, 
hippocampus, cortex and cerebellum9. There are several ABA-
mediated activities in mammalian cells, including migration, 
phagocytosis and generation of nitric oxide10,11,12. It has been 
shown that, as a signaling phytohormone, ABA promotes neu-
rotransmitter release and activates second messengers in neu-
ral and non-neural cells12,13,14. It has also been reported that 
both ABA and GABA can block the bitter taste receptors15. 

It has been demonstrated that the agents that target GABA-
ergic neurotransmission also have fundamental roles in boost-
ing pentobarbital-induced sleep and relieving insomnia16. 
However, no direct relationship between the GABAergic system 
and ABA in animal physiological activity has been shown.

Lanthionine synthetase C-like protein 2 (LANCL2) is 
related to plasma membrane and peroxisome proliferator-
activated receptors (PPARs) as subcellular receptors, and is 
involved in ABA-related activity in animal and plant tissues17,18. 
Clinical and behavioral investigations have shown that PPARs, 
which are members of a nuclear hormone receptor superfam-
ily with three subtypes (PPARα, PPARβ and PPARβ/δ) have 
significant controlling effects on the sleep-wake cycle19. It has 
been demonstrated that circadian locomotor activity is also 
affected by PPARs20. Furthermore, it has been shown that ABA 
can suppress the expression of inflammatory genes and is able 
to regulate physiological functions via PPARγ21,22. Our previous 
report has also shown that PPARβ/δ is involved in induction of 
ABA-induced antinociceptive effects23.

Since the possible effect of ABA on sleep has not yet been 
clarified, one part of the present study raised the question of 
whether microinjection of ABA could boost pentobarbital-
induced sleep behavior. In addition, the possible involvement 
of GABA-A and PPAR receptors (γ and β) in this phenome-
non was also investigated. 

METHODS

Animals
Male Wistar rats, aged 12 weeks and weighing 230–270 g, 

were used for the experiments. All of the animals were housed 
under controlled conditions with 12-h light/dark cycles and 
constant temperature (22±2°C), in the animal house of Shahid 
Bahonar University of Kerman. Food and water were available 
ad libitum. To ensure adaptation to manipulation, the ani-
mals were handled for 4 days before they were subjected to 
the behavioral tests. All the experiments followed the guide-
lines for ethical standards and were approved by the Animal 
Research Ethics Committee of the Kerman Neuroscience 
Research Center, Kerman, Iran (EC: 97/1)

Surgery
To ensure central administration of drugs and their vehi-

cles, sterile cannulation was performed under anesthesia 
with ketamine and xylazine (100 and 10 mg/kg intraperito-
neally (i.p.), respectively). Two stainless steel guide cannu-
las were implanted bilaterally into the brain ventricles at the 
coordinates of 0.8 mm posterior to the bregma, ±1.6 mm lat-
eral from the midline and 3.4 mm depth to the cortical sur-
face. After the surgery, the animals were maintained in sepa-
rate boxes and had one week of recovery before the start of 
drug injection and behavioral tests.

Drugs
(±)-cis and trans-ABA, GSK0660, GW9662 and bicuculline 

were purchased from Sigma-Aldrich (USA). Pentobarbital 
(40  mg/kg) and diazepam (2 mg/kg) (Exir Pharmaceutical 
Co. Iran) were dissolved in physiological saline and sepa-
rately administrated intraperitoneally in order to induce 
sleep. ABA, GSK0660, bicuculline and GW9662 were dis-
solved in dimethyl sulfoxide (DMSO), which was then diluted 
with artificial cerebrospinal fluid (aCSF). The ratio of aCSF 
to DMSO was 2:1 (v/v). ABA, GSK0660, GW9662 and bicu-
culline were administrated intracerebroventricularly (i.c.v.). 
These drugs were given in a volume of 1 mL/kg (i.p.) and in a 
total volume of 2 μL (i.c.v.). A guide cannula (22-gauge) using 
an injection needle (27-gauge) connected via a polyethylene 
tube to a 1 μL Hamilton microsyringe was used for drug injec-
tion. The injector (1 mm) was longer than the guide cannula. 

Experimental design
The rats were divided randomly into several experimental 

groups (n=6), as follows: ABA-treated groups (ABA), which 
were given ABA at doses of 5 and 10 μg/rat (i.c.v); vehicle-
treated groups (Veh), which were given ABA, GSK0660, 
GW9662 and bicuculline vehicles; a GSK0660 plus ABA-
treated group (GSK+ABA, i.c.v), which was given GSK (80 
nM/rat), 15 min before ABA injection; a GW9662 plus ABA-
treated group (GW+ABA, i.c.v), which was given GW9662 
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(3 nM/rat), 15 min before ABA injection; and a bicuculline 
plus ABA-treated group (bicuculline+ABA, i.c.v), which was 
given bicuculline (6 μg/rat), 15 min before ABA injection. 
All of the ABA and antagonist-treated rats were given pen-
tobarbital sodium (40 mg/kg, i.p), 30 min after ABA injec-
tion. In addition, diazepam (2 mg/kg, i.p.), pentobarbital and 
saline+pentobarbital groups were used as control groups. 
The experiment timeline is described in Figure 1. 

Evaluation of sleep latency and sleeping time 
(sleep duration) in rats using V-maze apparatus

The animals that lost their mobility due to pentobarbital 
injection were positioned on their back in a V-maze appara-
tus. Loss of mobility (righting reflex) for more than 5 min was 
considered to be the scale for sleep onset among the animals. 
The sleep latency time of the animals was recorded from the 
time of pentobarbital injection until 1 min after loss of mobil-
ity and the total duration of immobility was considered to be 
the duration of sleep (sleeping time), lasting until the animal 
recovery time.

Statistical analysis
The mean±standard error of the mean (SEM) was used as 

the scale for representing the data. The diazepam-treated group 
was considered to represent the baseline and all remaining 
groups were compared with diazepam-treated rats. Significant 
variations between the diazepam-treated group and the ABA 
or ABA-plus-antagonist treated groups were defined by using 
one-way ANOVA followed by a post hoc Tukey test. All differ-
ences represented by a p<0.05 were considered significant. 

RESULTS

The effect of abscisic acid on sleep onset  
(sleep latency) and sleeping time (sleep duration) 
in pentobarbital-treated rats

The groups showed significant differences in sleep onset 
latency [F3, 27=60.211, p=0.001] and total sleep time [F3, 27=15.342, 
p=0.001]. The post-hoc Tukey comparison indicated that 
microinjection of ABA (5 μg/rat)+pentobarbital (40 mg/kg, i.p.) 
could reduce the latency time for sleep onset, in comparison 
with the negative control group, which was also comparable to 
diazepam-treated animals (Figure 2A). In addition, as shown in 
Figure 2B, microinjection of ABA (5 μg/rat)+pentobarbital sig-
nificantly increased the duration of sleep, compared with the 
vehicle and diazepam-treated groups (p<0.01). Moreover, ABA 
(10 μg/rat)+pentobarbital injection had a significant increas-
ing effect on sleep duration, compared with the control group 
(p<0.05) (Figure 2B). 

Effect of pretreatment of GABA-A antagonist on 
abscisic acid-induced sleep onset and duration

Significant differences in sleep onset latency [F4, 34=51.924, 
p=0.001] and sleep duration [F4, 34=31.931, p=0.001] were 
observed among the groups. Post-hoc comparison showed 
that bicuculline pretreatment, as a GABA-A antagonist, sig-
nificantly increased the latency time for sleep onset, in com-
parison with the ABA (5 μg)+pentobarbital group (p<0.001) 
(Figure 3A). As shown in Figure 3B, bicuculline significantly 
prevented increased sleep duration in ABA (5 μg)-treated rats. 

Figure 1. Experimental design and study timeline. 

***p<0.001; **p<0.01; *p<0.05 vs diazepam, #p<0.05; ##p<0.01; ###p<0.001 vs vehicle; ABA: abscisic acid. Data are represented as mean±standard error of the mean (SEM).

Figure 2. Effect of abscisic acid microinjection on sleep latency (A) and duration (B). abscisic acid was administered 
intracerebroventricularly, 30 min before pentobarbital injection (40 mg/kg, intraperitoneally). 
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Effect of pretreatment of PPARβ and PPARγ 
antagonists on abscisic acid-induced sleep onset 
and duration

Analysis on the V-maze data showed that the decreased in 
sleep latency that was induced by ABA could not be blocked by 
PPARβ and PPARγ antagonists (GSK0660 and GW9662, respec-
tively) (Figure 4A). However, the groups showed significant dif-
ferences in sleep duration [F3, 27=11.616, p=0.001]. As shown in 
Figure 4B, ABA-induced effects on sleep duration were com-
pletely prevented (p<0.001) by GSK0660 or GW9662 (Figure 4B). 

DISCUSSION

In the present study, we investigated the effects of the 
phytohormone ABA on pentobarbital-induced sleep and its 
possible signaling pathways through GABA-A, PPARβ and 

PPARγ receptors. The V-maze data indicated that microin-
jection of ABA (5 μg) could significantly boost the pentobar-
bital-induced subhypnotic effects and promote induction of 
sleep onset. This was comparable to diazepam treatment. 
Moreover, co-administration of bicuculline completely 
abolished the ABA effects on sleep parameters, while the 
effect of ABA on induction of sleep onset was not inhibited 
by PPARβ and PPARγ antagonists. Furthermore, the sleep 
prolonging effect of ABA was significantly prevented by 
those antagonists.

From pharmacological studies, it has been reported that 
drugs with similar effects on barbiturate targets could augment 
the effect of GABA on the GABA-A/benzodiazepine receptor-
Cl- channels complex24. There is evidence indicating that vita-
min A or pro-vitamin A-derived compounds have eminent roles 
in regulating the sleep cycle and have functional effects on the 
pineal gland25,26. ABA, as a vitamin A-like lipophilic substance, 

***p<0.001; **p<0.01; *p<0.05 vs diazepam; ###p<0.001 vs vehicle; ABA: abscisic acid. Data are represented as mean±standard error of the mean (SEM).

Figure 3. Effect of bicuculline pretreatment 30 min prior to abscisic acid (5 μg) on sleep latency (A) and duration (B). 
Pentobarbital (40 mg/kg, intraperitoneally) was administered to the rats, 30 min after abscisic acid.

***p<0.001; *p<0.05 vs vehicle; ###p<0.001; ##p<0.01 vs abscisic acid; ABA: abscisic acid. Data are represented as mean±standard error of the mean (SEM). 

Figure 4. Effect of pretreatment of GSK0660 as antagonist of PPARβ/δ and GW as antagonist of PPARγ, 30 min prior to abscisic 
acid (5 μg), on sleep latency (A) and duration (B). The pentobarbital (40 mg/kg, intraperitoneally) was administered to the rats, 
30 min after abscisic acid.
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has beneficial regulatory effects on brain physiological func-
tions27. However, the vitamin A-like structure of ABA may have 
a critical role in inducing a pro-hypnotic effect. 

Production and distribution of endogenous ABA have 
been shown in several tissues in the mammalian brain such 
as the hypothalamus, which are involved in sleep/wake peri-
ods12. Numerous in vivo investigations have indicated that ABA 
directly or indirectly interferes with synaptic neurotransmis-
sion due to change in ion currents, and that it serves as a neu-
romodulator in the central nervous system13,14. For instance, 
ABA interacts with neurotransmitters and second messen-
gers such as glutamate, calcium and nitric oxide at synaptic 
levels10,14,28. It seems that the hypnotic effect of ABA is possi-
bly induced by its modulatory properties, in regulating neu-
rotransmitters that are involved in sleep induction. However, 
this issue needs to be clarified in further investigations.

The data showed that microinjection of ABA (5 μg) exhib-
its hypnotic effects via decreases in the pentobarbital-induced 
sleep onset time and prolonged sleep duration. The ABA effect 
was completely inhibited by bicuculline (6 μg). The pentobar-
bital-induced sleep model is ordinarily used as a behavioral 
protocol for assessing the pharmacological and physiological 
mechanisms of hypnotic drugs in rodents, as well as serving 
as a clinical target for treating insomnia problems29. GABA-A, 
as a negative modulator or inhibitory neurotransmitter, has 
reducing effects on brain excitability and augments sleep time 
through opening of Cl- channels30. It has been demonstrated 
that the inhibitory impact of ABA in blocking the bitter taste 
receptor is similar to GABA activity15. Therefore, it is possible 
that the observed effect of ABA is, at least in part, mediated by 
GABA-A receptor signaling. 

Several kinds of signaling pathways have been reported 
for ABA functions in animal cells. Here, the roles of PPARγ 
and PPARβ/δ signaling were also investigated with regard to 

the hypnotic effects of ABA. ABA and PPARs participate in 
a wide spectrum of physiological activities, such as homeo-
stasis control and physiological process regulation13,31,32. 
Through activation of PPARγ, ABA has an improving effect on 
insulin resistance and suppresses systemic inflammation21,22. 
It has been shown that PPARs are located in different parts of 
the CNS, particularly in hypothalamic neurons31. ABA, fatty 
acids, lipoproteins and eicosanoids are endogenous com-
pounds for binding to PPARs and triggering their activity33. 
Furthermore, some PPAR ligands can decrease body tem-
perature and induce sleep34. It has been reported that PPARγ 
is involved in sleep physiology via interacting with the cir-
cadian network35,36. The data showed that PPARγ antagonists 
inhibit the sleep-prolonging effects of ABA. In addition, we 
previously reported that the PPARβ/δ signaling pathway is 
involved in the analgesic effect of ABA in situations of acute 
and inflammatory pain23. Our present data indicated that 
the PPARβ/δ antagonist (GSK) also inhibited ABA-induced 
effects. It has been demonstrated that PPAR agonists mainly 
upregulate GABA-ergic genes in mice37. There is strong evi-
dence showing that PPAR-related neurosteroid generation 
has a modulating effect on GABA receptors and boosts pen-
tobarbital-evoked hypnotic effects38,39.

In conclusion, the results from the current study indicate 
that central injection of ABA has a promoting effect on pen-
tobarbital-induced sleep, and that bicuculline, PPARβ/δ and 
PPARγ signaling are involved in this effect. 
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