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in neurology
Inteligência artificial e Big Data em neurologia
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ABSTRACT
Recent advances in technology have allowed us access to a multitude of datasets pertaining to various dimensions in neurology. Together with 
the enormous opportunities, we also face challenges related to data quality, ethics and intrinsic difficulties related to the application of data 
science in healthcare. In this article we will describe the main advances in the field of artificial intelligence and Big Data applied to neurology 
with a focus on neurosciences based on medical images. Real-World Data (RWD) and analytics related to large volumes of information will 
be described as well as some of the most relevant scientific initiatives at the time of this writing.
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RESUMO
Os recentes avanços na tecnologia nos permitiram acessar uma infinidade de conjuntos de dados pertencentes a várias dimensões da 
neurologia. Juntamente com as enormes oportunidades, também enfrentamos desafios relacionados à qualidade dos dados, ética e 
dificuldades intrínsecas relacionadas à aplicação da ciência de dados na área da saúde. Neste artigo descreveremos os principais avanços 
no campo da inteligência artificial e Big Data aplicados à neurologia com foco nas neurociências baseadas em imagens médicas. Dados do 
mundo real (RWD) e análises relacionadas ao grande volume de informações serão descritos, bem como algumas das iniciativas científicas 
mais relevantes no momento da redação deste artigo.
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INTRODUCTION

What is Big Data and why do we need artificial 
intelligence

Technological advances in medicine have been evolving 
gradually over the past three decades. However, in the past 10 
years we have seen an exponential increase in the number of 
publications related to data analytics of large samples of patients 
as well as the use of neural networks to analyze complex data 
sets1. In fact, by the end of 2020 it was estimated that we should 
have reserved around 5,200 Gb per individual in our population 
– on average (considering that our society is characterized by 
inequalities, data per capita also varies a lot)2.

Before we begin to describe the main advances in this field 
it is important to define a few aspects related to the defini-
tion of terms. In this paper we should use the term Big Data 
Analytics as the new class of strategy and tools designed to 

analyze large volumes of complex data. Sejdic and Falk have 
defined Big Data in the context of Health care as, “…high vol-
ume, high diversity biological, clinical, environmental, and 
lifestyle information collected from single individuals to large 
cohorts, in relation to their health and wellness status, at one 
or several time points”3. And we should understand that this 
definition includes the sense of usefulness in different con-
texts, aiming at application in single cases. Paradoxically, we 
need to be able to understand human variability through Big 
Data analytics as a critical step to provide insights required in 
Precision Medicine to address a single patient. In order to reach 
this goal, we propose a human-centric conceptual framework 
converging Behavior, Biological and Ambient data (Figure 1). 
The unimaginable complexity of analytics of such complex 
and large datasets can only be faced using sophisticated com-
puter systems1. In this scenario the use of advanced analytical 
tools, most of them heavily based in Artificial Intelligence (AI) 
solutions, is paramount in dealing with such large data sets4.

NEUROLOGY AND TECHNOLOGY
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ARTIFICIAL INTELLIGENCE, MACHINE LEARNING 
AND DEEP LEARNING

The AI field is not new: the first concepts date from as early 
as the 1940s5. Nowadays – and especially over the recent years, 
AI has taken the main stage in various dimensions of our daily 
life. Although this long delay can be explained by many factors, 
reduced computational processing cost and increased data 
access were the two key points allowing AI to flourish. There 
are many definitions for AI and one of the simplest is: a com-
putational system aimed at imitating human intelligence. It 
can be divided into two main types: a) specific, ‘weak’, or nar-
row AI (NAI) representing solutions dedicated to solve single, 
focused problems (however usually very complex or tedious for 
humans) and b) full, or global, ‘strong’ AI – also called Artificial 
General Intelligence (A.G.I.) representing a concept more linked 
to what we define as general intelligence: the ability to under-
stand or learn any intellectual task that a human being can. 
To the date of this writing, no consensus has been achieved 
regarding the existence of systems capable of A.G.I., although 
some authors have pointed out that complex neural network 
designs have come close to this definition. By and large, the 
narrow AI is the most common form of AI used in daily rou-
tine – and has revolutionized several areas in our society: from 
entertainment to financial. Interesting to note is that ‘narrow’ 
AI is responsible for the ‘largest range’ of applications based on 
Big Data. Another term frequently found when dealing with 
sophisticated algorithms is machine learning (M.L.). In fact, 
M.L. is one type of artificial intelligence, based on computa-
tional structures designed to6 resemble neural networks. The 
way M.L. works is based on designing computer codes in a way 
that it can “learn” by comparing its results with reality. In this 
way, M.L. can be trained to perform as accurately as possible 
depending on data quality. A more sophisticated type of M.L. 
is called Deep Learning (D.L.), which basically represents a 

very sophisticated ML architecture. For instance, a recent D.L. 
network called GPT3 uses more than 185 billion parameters 
and is capable of reading more than 500 billion tokens (a con-
cept that can be thought of as an approximation of a word). 
Astonishingly, GPT3 has been able to compose poems in vari-
ous author styles and have outperformed other networks in 
language translation tasks6.

These terms can be confusing, but a conventional way to 
express the relationship between AI, M.L. and D.L. is the fol-
lowing: AI is the broader term, applicable to a technique that 
allows computers to mimic human intelligence, using logic, 
if-then rules, decision trees, and M.L. (including D.L.); M.L. is 
the AI ​​subset, which includes more sophisticated statistical 
techniques that allow machines to improve tasks with expe-
rience. The category includes deep learning; finally, D.L. is the 
subset of M.L. comprising algorithms that allow the software 
to train itself to perform tasks such as speech and image rec-
ognition, resulting from multilayered neural networks for large 
amounts of data (Figure 2). 

Taken together, AI benefits from a large volume of data 
and Big Data Analytics heavily depends on AI techniques. It 
would not be possible to enable the generation of new insights 
and decision-rich information without both Big Data and AI 
combined.

This challenge cannot be tackled solely by technical feats 
from the AI methods alone: it requires an interdisciplinary 
team effort. The combination of networks formed by human 
and artificial intelligence is perhaps the most challenging and 
key ingredient7,8. 

THE USE OF BIG DATA IN NEUROLOGY

A few examples illustrate the use of AI studies in neurol-
ogy. One example of how methods based on artificial intelli-
gence can help to better understand diagnostic information 

Figure 1. Conceptual Data Frame for organizing Datasets in health. The three human-centric dimensions involve biological data 
(“Omics”), daily-living context (“Ambient”) and decision-making (“behavior”).
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Figure 2. Differences and relationship between Artificial Intelligence, Machine Learning and Deep Learning.

 

 
  

present in magnetic resonance images is provided by a study 
performed in a sample of elderly patients with Alzheimer’s 
disease compared to a healthy age-matched control group9. 
Since the key sign of A.D. in MRI data is volume loss and con-
sidering that healthy aging is also related to brain volume loss, 
it is even more difficult to distinguish late-onset A.D. patients 
from controls. In that particular study it was possible to dif-
ferentiate between the two groups by using solely the informa-
tion contained in the structural MRI data by using a support 
factor machines algorithm which achieved a discriminating 
power of 88.2% [CI95% ; 72.5%–96.7%] (Sensitivity=92.8% [CI 
95% ; 66.1%–99.8%], Specificity=85.0% [CI 95% ; 62.1%– 96.8%].

Another challenge to applying artificial intelligence algo-
rithms to medical data relies on a subgroup of patients that 
are not easily found within one single context. This is the case 
of rare disease patients or patients in an ICU sector of a hospi-
tal. In both cases it is difficult to concentrate on a large num-
ber of patients in the same condition in just one institution. 
First, when one aims at analyzing a large number of patients 
one must certainly deal with different protocols, cultures and 
access to treatment or diagnostic criteria. These challenges of 
multi- center studies make it even more complex to analyze 
the data. In particular, the use of AI algorithms based on D.L. 
techniques require a large number of samples. Moreover, it is 
key for clinical applications to validate their results in differ-
ent contexts in order to better understand the performance 
regarding false positives or false negatives. Successful external 
validation methods are fundamental for clinical adoption of 
AI. As an example, our group has provided insight on how to 
validate artificial intelligence algorithms in different hospitals 
in low/middle income countries7.

An interesting use of AI is to help bridge the gap between 
pathology and radiology. Algorithms based on D.L. can be used 
to better assess the spatial correspondence between pixels 
from pathology tissue samples and MRI data. For instance, 
Ushizima et al. have developed a computational pipeline to 
identify and segment imunostained phospho-tau antibodies 
areas in billion-pixel digital pathology images and successfully 
process over 500 slides from two whole human brains span-
ning several terabytes of images. The proposed convolutional 
neural network for immunohistochemistry samples, IHCNet, 
was able to match the tau-marked regions to MRI brains pro-
viding a pathway to better understand the role of in vivo neu-
roimaging techniques10.

Several other possibilities using AI applied to neurology, 
especially neuroimaging, have emerged: from emergency or in 
hospital use11 to large scale studies12. However, there are still 
challenges to be tackled. A particular point is related to ethi-
cal and responsible use of Big Data and AI technologies. As we 
have learned from past experience, there is a need to carefully 
assess the possibilities of health gain and examine possible 
legal consequences. Recent studies have shown previously 
unforeseen possibilities, such as decoding brain states or even 
visual information13 and their corresponding ability to expose 
personal experiences of previously inaccessible information14. 
A recommended reading is an interesting historical view with 
future perspectives provided by Christos Davatzikos15.

BIG DATA NEUROIMAGING 

Neuroimaging and graphic methods are a valuable source of 
information. There is a variety of neuroimaging data types and 
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hybrid equipment (i.e. PET-MR systems; EEG-MR/fNIRS-EEG 
and other combinations allow for simultaneous data acquisi-
tion) that are able to provide converging information in a one-
stop-shop manner. These datasets can provide information not 
only related to brain form and function in healthy subjects, 
but also in patients with injury and dysfunctional conditions. 

When analyzing data from multiple sources, commonali-
ties present in brain injury and/or disease mechanisms can be 
extracted from large-scale multimodal neuroimaging. Using 
sophisticated image data analytics, it is possible to provide 
evidence that indicates possible novel biomarkers to further 
explore in normative reference samples. Moreover, some bias 
from ‘conventional’ science may be tested with large datasets. 
For instance, one study using functional Magnetic Resonance 
Imaging showed that, after analyzing 3,317 subjects, the results 
from a previously considered ‘large sample’ of 272 subjects were, 
actually, not reproduced16.

Currently there are various initiatives based on patient 
populations which have considerable potential for revealing 
disease mechanisms combined with genetic, phenomic, and 
other associated data sources in a Big Data environment17. A 
remarkable achievement was a publication of 123,984 MRI scans 
to depict biomarkers throughout human lifespan between 115 
days post-conception to 100 years of age18. In the following para-
graphs we summarize some of the OpenScience Large Dataset 
Initiatives available for improving knowledge particularly in 
Neurology (among other medical specialties):

	y The Human Connectomme Project is a multicenter 
initiative funded by the US government comprising 
more than 1,200 subjects that were analyzed by high 
resolution MRI techniques and specific demographic 
and behavior data19. The project has evolved into a 
Connectome Coordination Facility that added some 
groups of patients covering different contexts: nor-
mal lifespan, young adults and connectomes related 
to specific diseases (Epilepsy Connectome Project; 
Anxiety and Depression in Teenagers; The Structural 
and Functional Connectome Across Alzheimer’s 
Disease Subtypes and Human Connectomes for Low 
Vision, Blindness, Sight Restoration). A large number 
of publications have followed that initiative – details 
can be found at https://www.humanconnectome.org/;

	y The Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
is one of the first Dataset initiatives comprising not 
only MRI data but also clinical information about each 
subject including recruitment, demographics, physical 
examinations, and cognitive assessment data as well as 
PET data (PIB, FDG, FLORBETAPIR, FLORBETABEN, 
and TAU IMAGING)20. The initiative has also added 
818 Whole Genome Sequences (WGS) from its par-
ticipants (128 with AD, 415 with MCI, 267 controls and 

8 of uncertain diagnosis) in 2012. To date the ADNI 
dataset has been used in more than 3,300 scientific 
publications (https://adni.loni.usc.edu/);

	y The United Kingdom BioBank (UKBB) is a large-scale 
biomedical database and research resource, contain-
ing genetic and health information from 500,000+ UK 
participants aged between 40 and 69 recruited since 
2006 and living in the UK, as part of a large-scale pro-
spective study. The database contains high-resolution 
Brain MRI as well as blood, urine and saliva samples, 
together with detailed information about their lifestyle 
and clinical visits. The study uses three 3T MRI systems 
dedicated to collect neuroimaging data, and in 2017 
the initiative released a paper analyzing functional and 
structural brain MRI from 15,847 individuals, all col-
lected under the same imaging protocol – an important 
difference from the ENIGMA consortium (see below). 
The data is made widely accessible by UK Biobank to 
researchers around the world. In particular, recent 
advances in polygenic risk scores for cardiac disease 
have been possible at least in part due to UKBB data21. 
A cardiovascular investigation of 100,000 individuals 
from the UKBB has been announced, comprising brain, 
cardiac and abdominal MRI, carotid ultrasound and 
DEXA22 (https://www.ukbiobank.ac.uk/);

	y Cambridge Centre for Ageing and Neuroscience (Cam-
CAN), a large-scale collaborative research project at 
the University of Cambridge, UK together with the 
European Union Horizon 2020 LifeBrain project18,23,24. 
The Cam-CAN project uses epidemiological, cognitive, 
and neuroimaging data to understand how individuals 
can best retain cognitive abilities into old age (https://
www.cam-can.org/);

	y The Adolescent Brain Cognitive Development (ABCD) 
Study is a Research Consortium24 involving 21 research 
sites in the USA recruiting 11,880 children with ages 
ranging from 9-10. Participants will be evaluated for 
neurocognition, physical and mental health, social and 
emotional functions, and culture and environment. The 
study collects structural and functional brain imaging, 
bioassays, genetic and epigenetic data (https://abcd-
study.org/about/);

	y Cuban Human Brain Mapping Project (CHBMP) is a mul-
timodal neuroimaging and cognitive dataset from 282 
young and middle-aged healthy individuals acquired 
from 2004 to 2008 as a subset of a larger sample of 
2,019 participants25. Data contains resting-state elec-
troencephalograms (EEG), magnetic resonance images 
(MRI), psychological tests and demographic informa-
tion (age, gender, education, ethnicity, handedness, and 
weight) (https://chbmp-open.loris.ca/).
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CHALLENGES IN GENETICS BIG DATA ANALYTICS 
AND AI

Due to a large variability and complexity of data, added to 
the fact that it is virtually impossible to anonymize the data 
(bringing challenges for privacy data protection) the use of 
genetics in Big Data is still an untamed frontier. Even though 
initiatives have demonstrated the potential of Big Data Analytics 
applied to large genetic datasets, there are a few concerns. 
One of the first initiatives to use Big Data capabilities to better 
understand Human Genetics in neurology was the Enhancing 
NeuroImaging Genetics through Meta-Analysis (ENIGMA) 
Consortium. The initiative was formed in 2009 and is based 
on analyzing results (not raw data) from various researchers – 
typically aiming at tens of thousands of individuals in order to 
understand the effect of genetic variants in brain phenotype. 
The format is based on a meta-analytical platform to perform 
statistically sound analyses. It has more than 2,000 participat-
ing scientists from 45 countries, and over 50 working groups 
mainly organized toward producing disease-oriented research 
(substance use disorders, schizophrenia, bipolar disorders, 
major depression, posttraumatic stress disorder, obsessive 
compulsive disorder, epilepsy, and stroke)26. More information 
can be found at https://enigma.ini.usc.edu/.

Recently Naslavsky et al.27 have published a large data set 
of WGS data comprising 1,171 elderly subjects from a cohort 
based in São Paulo, Brazil. They were able to detect more than 
76 million variants of which 2 million were not yet described 
in previously published WGS data sets. Moreover, this popula-
tion sample has been studied regarding various aspects related 
to their characteristics from literacy, past clinical history and 
behavioral measures. Brain images from the same sample were 
acquired using a 3T MR system and an initial whole-brain 

quantitative analysis have replicated age-related changes and 
shown interesting features relative to male/female intracranial 
CSF spaces across several decades28. We hope the similar ini-
tiatives can promote and further develop the use of Big Data 
Analytics in our population.

WHERE TO START: SHARING INFORMATION AND 
EXPERIENCES

Innovative solutions are increasingly part of neurology, and 
in Medicine in general. However, is it understandable that we 
take a few cautionary steps in order to adopt technical solu-
tions concerning patient diagnosis, treatment and prognosis. 
Continuous medical education courses are gradually adding 
Data Science in their curricula. The approaches towards adop-
tion of AI and Big Data in daily practice are part of a much greater 
endeavor: it involves digital literacy. Emphasizing responsible 
use of these technologies, its drawbacks and opportunities 
should be emphasized. We should not aim to transform phy-
sicians into data scientists. Rather, organizing interdisciplin-
ary and friendly environments can be very productive. These 
experiences should be guided by adaptive strategies to bridge 
the gap between healthcare professionals and mathematicians 
and computer scientists. Datathon – a joint word resulting from 
adding “data” + “hackathon” – is an interesting approach. It is 
based on forming interdisciplinary teams, accentuating appli-
cation of the hackathon model to data analytics and provides 
an effective method to ‘break the ice’ between individuals with 
different backgrounds. The experience is not rarely associated 
with intensive exchange of ideas and frequently results in sci-
entific production, strengthening teamwork and building the 
framework for new projects29,30.
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