# BRAGANTIA

Boletim Técnico do Instituto Agronômico do Estado de São Paulo

Vol. 20

Campinas, junho de 1961

Nº 21

# ESTUDO HIDROLÓGICO DE PEQUENAS BACIAS E SUA APLICAÇÃO λ IRRIGAÇÃO (¹)

Rino N. Tosello, engenheiro-agrônomo, Seção de Irrigação, Instituto Agranômico

#### RESHMO

No presente trabalho faz-se o estudo hidrológico de pequenas bacias situadas na Estação Experimental «Dr. Theodureto de Camargo», do Instituto Agronômico, em Campinas, com base em dados coligidos no período de junho de 1945 a julho de 1947. Duas das bacias, respectivamente de 120 e 180 hectares de área, são contribuintes de uma terceira bacia, de 522 hectares, limitada em sua parte inferior pela barragem de terra de uma velha reprêsa. As vazões das duas pequenas bacias e do ladrão da reprêsa foram medidas com calhas «Parshall» durante aquêle intervalo de tempo. Os dados foram analisados por meio de diagramas simples e acumulados, das vazões das bacias e das precipitações mensais. São também apresentados diversos diagramas de Rippl para ilustrar a aplicação prática dos dados.

Comparações de dados de evapotranspiração obtidos dos estudos hidrológicos, com dados de evapotranspiração potencial calculados pelo emprêgo da fórmula de Thornthwaite, mostraram uma surpreendente concordância, em tôrno de uma média mensal de 80 milímetros, obtida para períodos de 13 meses.

As porcentagens de vazão das bacias em relação ao volume das precipitações foram, em média, de 26,5%, da qual apenas uma pequena parcela (3% da precipitação total) é atribuída à enxurrada. Os restantes 23,5% da vazão das bacias acredita-se serem devidos à água percolada do solo que atingiu o lençol freático. As perdas totais (infiltração + evaporação) verificadas por efeito do armazenamento de água, represadas pela antiga barragem de terra, foram estimadas em tôrno de 50% da vazão total de alimentação. Acredita-se que poderiam ser menores se a barragem fôsse construída por processos modernos, que implicam na impermeabilização quase total da estrutura. Verifica-se que há uma defasagem nos máximos e mínimos observados para as precipitações e vazões das bacias estudadas, mais acentuada no inicio da estação chuvosa devido ao fenômeno de retenção de água pelo solo. Essa defasagem assume aspectos de particular importância nos estudos de disponibilidade de água, revelando ser bastante precário o método de determinação da vazão, em uma época qualquer, sem a continuidade necessária.

<sup>(1)</sup> Resumo do trabalho apresentado ao 1 Congresso Nacional de Conservação do Solo, realizado em Campinas, Estado de São Paulo de 17 a 23 de julho de 1960. Recebido para publicacação em 3 de março de 1961.

## 1 — INTRODUÇÃO

Uma das principais fontes de água para a irrigação de áreas agrícolas do Estado de São Paulo é a proveniente do armazenamento de água, mediante a construção de barragens de terra nos locais adequados das pequenas bacias, cujas áreas podem ou não estar totalmente circunscritas aos limites da propriedade agrícola.

A fim de avaliar a disponibilidade de água para a irrigação, principalmente quando a capacidade das fontes de suprimento é fator limitativo, torna-se necessário um estudo hidrológico detalhado das bacias contribuintes, que nas pequenas bacias pode ser limitado a um registro das vazões dos córregos de possível aproveitamento, durante um intervalo de tempo suficiente para a obtenção dos dados básicos, complementados pelo registro das precipitações pluviométricas ocorridas na área.

Todavia, com a rápida expansão da prática da irrigação por aspersão, principalmente para a cultura de hortalicas, tomate e batatinha, em diversas regiões do Estado, as firmas comerciais incumbidas de projetar o sistema ficam impossibilitadas de coletar os elementos básicos necessários, porquanto o lavrador interessado geralmente tem pressa no uso do equipamento e a coleta prolongada de dados pode resultar contraproducente aos interêsses comerciais da firma. Assim, para que o projeto não fique despido inteiramente de técnica, tem sido preocupação normal das firmas responsáveis, em caso de dúvida quanto à capacidade das fontes de suprimento de água, solicitar do lavrador a estimativa ou a medição das vazões dos córregos em época de sêca, ou então obter a medição da vazão, muitas vêzes por intermédio do próprio técnico da firma, em uma época qualquer do ano, não raro uma única vez, adotando então um coeficiente de segurança baseado em algum critério técnico que nem sempre evita a possibilidade de incorrer em sérios erros de estimativa-

A fim de contribuir para o conhecimento do estudo hidrológico das pequenas bacias, bem como das perdas provenientes do armazenamento de água, foi empreendido o estudo descrito no presente trabalho, com base em dados coletados no período de junho de 1945 a julho de 1947, em pequenas bacias da Estação Experimental Central «Dr. Theodureto de Camargo», em Campinas. Intervalo relativamente curto, para o estudo aprofundado de questões hidrológicas, serve, no

entanto, para dar uma idéia da ordem de grandeza das variáveis envolvidas, e ilustrar os métodos de análise empregados.

Como a acumulação de água é feita para atender finalidades diversas, como industriais, agrícolas, de abastecimento de água às populações, para fins hidrelétricos, recreativos e ornamentais, sanitários, defesa contra inundações etc., os estudos hidrológicos, mesmo de pequenas bacias, apresentam interêsse geral e formam subsídio valioso como componentes que são de maiores bacias, para estudos de obras de maior importância.

## 2 — MATERIAL E MÉTODOS

O método empregado para o estudo descrito neste trabalho foi o conhecido na literatura norte-americana como «inflow-outflow method», que pode ser livremente traduzido como o «método do balanço das vazões de entrada e saída», sendo o mais exato para a finalidade quando aplicado a bacias naturais, porque se atém a mensurações diretas.

As medições de vazão foram feitas por intermédio de calhas medidoras «Parshall», construídas de cedro, com tábuas de 1" de espessura e tratadas com «Carbolineum». O emprêgo dessas estruturas, de construção mais difícil que os vertedouros, tornou-se necessário devido à baixa declividade das correntes de água nos locais de medição, não permitindo represamento de água a montante, sob pena de extravasar parte da água do leito dos córregos.

Conforme o desenho apresentado na figura 1, as dimensões da calha foram adaptadas do modêlo 1/2 A de Hardesty (5), por ser êste o modêlo cujos limites de leituras de vazão estavam de conformidade com a amplitude de variação das vazões esperadas das bacias. No quadro 1 são apresentados os dados de vazão daquele modêlo de calha medidora em função da altura de água a montante do estrangulamento, para o caso da vazão livre, sem afogamento.

Foram instaladas três calhas medidoras, numeradas de 1 a 3, respectivamente para medir as vazões provenientes das bacias aqui denominadas de «Conservação do Solo», «Horticultura» e do ladrão da reprêsa «Santa Genebra». Para facilitar futuras referências, as bacias de captação correspondentes a cada calha serão designadas respectivamente de bacia 1, bacia 2 e bacia 3, compreendendo esta última tôda a área de captação situada a montante da crista da barragem daquela reprêsa, envolvendo as áreas das bacias 1 e 2.

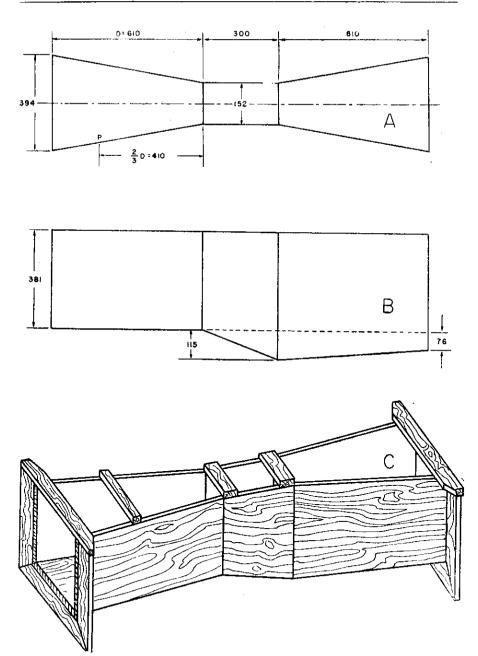



Figura 1. — Desenho esquemático da calha medidora "Parshall" modêlo 1/2 A de Hardesty. A, vista de cima; B, vista de lado; C, perspectiva da calha construída de madeira.

QUADRO 1. — Vazão livre da calha medidora Parshall de 6" de estrangulamento, em 1/s convertidos dos dados apresentados por Parshall (9)

|                                 |                                      |                                      |                                           |                                      | .                                         |                                              |                                           |                                      |                                           |
|---------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|-------------------------------------------|----------------------------------------------|-------------------------------------------|--------------------------------------|-------------------------------------------|
| Altura                          | Vazão                                | Altura                               | Vazão                                     | Altura                               | Vazão                                     | Altura                                       | Vazão                                     | Altura                               | Vazão                                     |
| ст                              | 1/3                                  | <i>w</i> 2                           | 1/3                                       | ш                                    | 1/3                                       | cm                                           | s/1                                       | ш                                    | 1/3                                       |
| 3.0<br>3.4<br>3.7<br>4,0<br>4,3 | 1,42<br>1,70<br>1,98<br>2,27<br>2,55 | 9,1<br>9,8<br>9,8<br>10,1<br>13,1    | 8,78<br>9,06<br>9,63<br>10,20<br>10,76    | 18,0<br>18,3<br>18,6<br>18,9<br>19,2 | 19,54<br>20,11<br>20,67<br>21,52<br>22,09 | 24,1<br>24,4<br>24,7<br>25,0<br>25,3         | 33,13<br>33,98<br>34,83<br>35,68<br>36,25 | 30,2<br>30,5<br>30,8<br>31,1<br>31,4 | 49,28<br>50,13<br>51,26<br>52,11<br>52,96 |
| 4.4 k. k. k.<br>6 \$ 5 1 1 1 8  | 2,83<br>3,12<br>3,40<br>3,96<br>4,25 | 13.4<br>13.7<br>14.0<br>14.3<br>14.6 | 11,04<br>11,61<br>12,18<br>12,74<br>13,31 | 19.5<br>19.8<br>20,1<br>20,4<br>20,7 | 22,66<br>23,22<br>24,07<br>24,64<br>25,20 | 25.6<br>25.5<br>26.5<br>26.5<br>26.8<br>26.8 | 37,10<br>37,95<br>38,52<br>39,36<br>40,21 | 31,7<br>32,0<br>32,3<br>32,6<br>32,9 | 53,81<br>54,66<br>55,79<br>56,64<br>57,49 |
| 6,1<br>6,4<br>6,7<br>7,0<br>7,3 | 4,53<br>5,10<br>5,38<br>6,23         | 14,9<br>15,2<br>15,5<br>15,8<br>16,2 | 13,59<br>14,16<br>14,73<br>15,29<br>15,86 | 21,0<br>21,3<br>21,6<br>21,9<br>22,3 | 26,05<br>26.62<br>27,47<br>28,04<br>28,89 | 27,1<br>27,4<br>27,7<br>28,0<br>28,3         | 41.06<br>41.91<br>42.48<br>43.33<br>44.18 | 33,2<br>33,5<br>33,8<br>34,1<br>34,4 | 58,34<br>59,19<br>60,04<br>61,17<br>62,02 |
| 7,6<br>7,9<br>8,2<br>8,5<br>8,8 | 6,51<br>7,08<br>7,36<br>7,93<br>8,21 | 16,5<br>16,8<br>17,1<br>17,4<br>17,7 | 16,43<br>17,28<br>17,84<br>18,41<br>18,97 | 22.6<br>22.9<br>23.2<br>23.5<br>23,8 | 29,45<br>30,30<br>31,15<br>31,72<br>32,57 | 28.7<br>29.0<br>29.3<br>29.6                 | 45,03<br>45,88<br>46,73<br>47,58<br>48,43 | 34,7<br>35,1<br>35,4<br>35,7<br>36,0 | 62,87<br>64.00<br>64.85<br>65,70<br>66,84 |

Os locais para a instalação das calhas foram cuidadosamente escolhidos a fim de assegurar vazão sem afogamento, para facilitar as leituras de altura de água, que assim eram feitas apenas a montante, e garantir maior precisão nas medições de vazão, feitas diàriamente durante todo o período de observações.

As precipitações ocorridas na área em estudo foram obtidas por intermédio de um dos pluviômetros instalados na bacia 1, após verificar-se que as diferenças de precipitações entre pluviômetros não eram apreciáveis pouco afetando os totais mensais.

As áreas das bacias foram demarcadas e planimetradas em mapa topográfico da Estação Experimental acrescida da parte complementar obtida por um levantamento realizado no campo, com base em outros mapas existentes, de áreas circunvizinhas. Para a demarcação das bacias foi empregado o método do traçado de linhas de maior declive, sucessivamente perpendiculares à curva de nível imediatamente superior, a partir de um lado e outro do ponto de convergência no córrego, até o ponto de convergência das linhas de maior declive, o que se verifica no ponto mais elevado de cada bacia. Para o caso da bacia 3, a linha da crista da barragem serviu de partida para a demarcação da área dessa bacia,

Para a análise dos dados hidrológicos, o método geralmente adotado é o da construção e exame de gráficos especialmente recomendados para a finalidade. Os gráficos comumente usados, e que foram adotados neste trabalho, são os denominados pluviogramas e hidrogramas, simples e acumulados das observações mensais. Os hidrogramas acumulados, inclusive os pluviogramas, são também denominados curva de massa (2, 4, 7). Todavia, Davis (1) reserva essa designação aos hidrogramas da vazão acumulada, deduzidas as perdas inevitáveis por infiltração, evaporação etc., conforme foi originalmente usado em 1882 por Rippl, citado por Horton (3), para estudos de suprimento de água e energia elétrica. Por essa razão, os diagramas em que se comparam as vazões líquidas com as demandas recebem a denominação de diagramas de Rippl, porém essa denominação tem sido generalizada também para os diagramas envolvendo as vazões brutas.

#### 3 — RESULTADOS OBTIDOS

No quadro 2 são apresentados os dados mensais simples e acumulados de vazão das bacias 1. 2. 3. do conjunto das bacias 1 e 2, aqui de-

signadas bacia 1+2 e do ladrão da reprêsa, sendo que a vazão da bacia 3 foi estimada através da redução dos dados de vazão das bacias 1 e 2, conforme está adiante indicado.

No quadro 3 são apresentados os dados de porcentagem das vazões do ladrão, em relação aos totais das vazões da bacia 1+2 e em relação aos dados estimativos das vazões da bacia 3, bem como os dados ajustados das vazões acumuladas das bacias 1, 2, 1+2 e do ladrão, obtidos multiplicando-se os dados de vazão acumulada do quadro 2 pelas porcentagens médias do quadro 3, para a construção dos diagramas de Rippl, correspondentes à ilustração dos problemas de armazenamento de água, adiante discutidos.

No quadro 4 são apresentados os dados mensais, simples e acumulados, das precipitações e dos volumes das precipitações nas bacias 1, 2 e 1+2, bem como as porcentagens das vazões das bacias correspondentes em relação ao volume das precipitações. Essas porcentagens, se expressas em frações da unidade podem ser comparadas aos coeficientes de deflúvio mensal, denominados por Ongaro (8) coeficientes de Pasini, como homenagem ao engenheiro que os empregou em 1910 para obtenção do coeficiente de redução mensal de chuva, de grande aplicação em cálculo de rêde hidráulica de drenagem, estabelecendo também as bases para o desenvolvimento do moderno método racional («rational method») de estimativa da enxurrada máxima, errôneamente atribuído a outros autores.

As áreas das bacias, obtidas da média de três leituras consecutivas de planímetro polar Amsler, para efeito de cálculo de volume das precipitações, foram as seguintes:

|             | Area m²   |
|-------------|-----------|
| Bacia 3     | 5 216 820 |
| Bacia 1     |           |
| Bacia 2     | 1 802 875 |
| Bacia $1+2$ | 3 150 107 |

Dividindo-se a área da bacia 3 pela área da bacia 1+2, obtém-se o fator f=1,6514 que multiplicado pelos dados de vazão da bacia 1+2, permite obter as estimativas de vazão da bacia 3, apresentadas no quadro 2.

Vazões médias mensais, simples e acumuladas das bacias, em metros cúbicos | QUADRO 2.

|       |         | Bacia  | a 1     | Bacia   | 2 8             | Васта     | 1+2       | Баста   | S (2)     | Ladrac           | ra0          |
|-------|---------|--------|---------|---------|-----------------|-----------|-----------|---------|-----------|------------------|--------------|
| Апо   | Mês     | ני     | ZU,     | n<br>n  | ZU <sub>2</sub> | $U_{1+2}$ | XU1+2     | Lī,     | ™.        | $\sigma_{\rm L}$ | $\Sigma U_L$ |
|       | 1       |        |         |         |                 |           |           |         |           |                  |              |
|       | Tul     |        |         |         |                 |           |           |         | _         |                  |              |
|       | Ago.    |        |         |         |                 |           |           |         |           |                  |              |
| 1945  | , t     |        |         |         |                 |           |           |         |           |                  |              |
|       | Out     |        |         |         |                 |           | _         |         |           |                  |              |
|       | Nov.    | 18 196 | 94 195  | 18 196  | 130 188         | 36 392    | 224 383   | 860 09  | 370 546   | 36 547           | 155 957      |
|       | Dez     |        |         |         |                 |           | _ '       |         |           |                  |              |
|       | In      |        |         |         |                 |           | -         |         |           |                  | _            |
|       | Lar     | 45 408 | 195 100 | 107 606 | 381383          | 153 014   | 576 483   | 252 687 | 952 004   | 95 341           | 356 988      |
|       | 1 cv.   |        |         |         |                 |           | -         |         | •         |                  | •            |
|       |         |        | _       |         | _               |           |           |         | _         |                  | _            |
|       | Maio    |        | _       |         |                 |           |           |         |           |                  |              |
| _     | Inn     |        |         |         | _               |           |           |         |           |                  | _            |
| 1946  | 111     |        |         |         | _               |           |           |         |           |                  | _            |
|       | 7 00    |        |         |         |                 |           |           |         | -         |                  | _            |
|       | , to    |        | _       |         |                 |           |           |         |           |                  | •            |
|       | اً د    |        |         |         |                 |           |           |         |           |                  | _            |
|       | Nov     |        |         |         |                 |           | -         |         |           |                  |              |
|       | Dez.    | 12 856 | _       |         |                 |           |           |         | -         |                  |              |
|       | 100     |        |         |         | ٠.              | 33 480    | ı         |         |           |                  |              |
|       | Ferr    |        |         |         | -               | 26 805    | _         |         |           | 12 193           | 1 111 810    |
|       | - L C V |        |         |         |                 | 61 253    |           |         |           |                  |              |
| 10.17 | Abr     |        |         |         |                 | 196 215   |           |         |           |                  |              |
|       | 1010    |        |         |         | -               | 177 551   |           |         | _         | _                |              |
|       | Tun     |        |         |         |                 | 130 870   |           |         |           |                  |              |
|       | Jul     | 43 819 | 869 714 | 83 298  | 1 581 561       | 127 117   | 2 451 275 | 209 921 | 4 048 034 | 64 201           | 1 460 784    |
|       |         |        |         |         |                 |           |           |         |           |                  |              |

(2) As vazues da bacia 3 foram obtidas multiplicando-se as vazões da bacia 14., pelo fator 1.6514, igual à relação entre as áreas dessa-

Porcentagens das vazões acumuladas do ladrão, em relação às vazões das bacias, e vazões fiquidas correspondentes das bacias e do ladrão, em metros cúbicos JUADRO 3.

| Ano Mês $\Sigma \Gamma_L / \Sigma U_{1+2}$ $\Sigma \Gamma_L / \Sigma U_3$ Mêdia Hacia I Hacia I Hacia 14. $\Sigma \Gamma_L / \Sigma U_{1+2}$ $\Sigma \Gamma_L / \Sigma U_3$ $\Sigma \Gamma_L / \Sigma U_4$ $\Sigma \Gamma_L / \Sigma U_3$ $\Sigma \Gamma_L / \Sigma U_4$ $\Sigma \Gamma_L / \Sigma U_$ |       |                                                              |                                      |                                  |         |         |           | - C - C - C - C - C - C - C - C - C - C |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------|--------------------------------------|----------------------------------|---------|---------|-----------|-----------------------------------------|---------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | ,                                                            | das                                  | vasões do la                     | drāo    |         | Vasões lí | quidas (³)                              |         |
| Jun.         6642         40,5         53,7         21113         33 544         54           Jul.         Ago.         40,5         53,7         21 113         33 544         71           Ago.         66,3         40,2         53,7         21 113         33 544         71           Ago.         66,3         40,2         53,7         27 779         44 144         71           Set.         66,5         38,1         38,2         27 779         44 144         71           Out.         66,5         42,1         55,8         551,0         38 76         57 16         95           Nov.         68,3         41,4         54,9         61 271         72 645         125           Jan.         61,9         37,4         49,6         74 24         135 221         137           Jan.         61,9         37,7         40,7         96 665         138 34         28           Mario         62,3         38,3         50,8         112 30         37         38           Jul.         65,3         39,4         52,3         200 86         54         37         38           Ago.         66,1         39,4         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ano   | Mess                                                         | Σι' <sub>L</sub> /Σι' <sub>1+2</sub> | ΣU <sub>L</sub> /ΣU <sub>3</sub> | Média   | Bacia 1 | - 1       | Bacia 1+2                               | Ĺadrão  |
| Jun.         66,9         40,2         53,7         21 113         33 544         54           Ago.         40,2         53,3         27 779         44 144         71           Ago.         66,3         40,2         53,3         27 779         44 144         71           Set.         63,5         38,5         51,0         38 760         57 116         95           Nov.         63,5         41,4         54,9         61 271         72 645         125           Dez.         68,3         41,4         54,9         61 271         72 645         115           Jan.         61,8         37,5         49,7         96 965         189 547         28           Amar.         62,2         37,7         50,0         125 365         253 527         37           Mar.         65,3         38,3         50,8         183 297         38         37           Mar.         65,1         39,4         52,3         260 93         474         78           Jun.         65,1         39,4         52,3         260 93         572 280         474           Ago.         66,2         39,4         52,3         260 93         574 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 1                                                            | 643                                  |                                  | ر<br>بر |         | 21 852    |                                         | 21 745  |
| Age.         66.3         40,2         53.3         27 779         44 144         71           Age.         64.5         39,1         51,8         33 429         50,56         84           Out.         66,5         38,5         51,0         38 760         57 116         95           Nout.         66,5         38,5         42,1         55,8         52 561         72 645         125           Nout.         66,3         47,4         54,9         61,271         92 221         153           Dr.z.         61,8         37,5         49,6         74 247         153 793         210           Fev.         62,2         37,7         50,0         125 365         183 57         37           Abr.         65,3         39,4         52,3         208 026         474         474           Mar.         65,3         39,4         52,3         208 026         474         474           Jul.         65,3         39,4         52,3         208 026         474         478         652           Jul.         66,3         39,4         52,3         200 034         557 080         820           Sec.         64,8         39,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | Jun.                                                         | 100                                  | 40.5                             | 53.7    |         | 33 544    |                                         | 36 583  |
| Set. Out.         64,5         39,1         51,8         33,429         50,756         84           Out.         60,5         44,4         55,8         51,0         33,760         57,116         95           Out.         60,5         41,4         55,8         51,0         37,6         125         96           Doz.         68,3         41,4         54,9         61,271         92,221         153           Jan.         61,9         37,7         49,6         74,247         135,73         210           Fev.         61,9         37,7         50,0         125,365         253,57         37,8           Abr.         62,2         37,7         50,0         125,365         37,3         37,8           Abr.         62,2         37,7         50,0         125,365         444         78           Abr.         63,3         38,3         52,3         208         35,7         37,8           Jun.         65,1         39,4         52,3         208         36,2         17,4           Ago.         64,8         39,2         52,3         20,9         36,2         17,4           Jun.         66,4         39,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | Jul.                                                         | 66.3                                 | 40,2                             | 53,3    |         | 44 144    |                                         | 47 688  |
| Out.         63,5         38,5         51,0         38 760         57 116         95           Nov.         Nov.         68,3         42,1         55,8         52 561         72 645         125           Nov.         68,3         44,1         55,8         52 561         72 645         155           Jan.         61,9         37,4         49,6         74 247         135 703         210           Fev.         62,2         37,7         50,0         125 365         253 527         37           Mar.         63,3         38,3         52,4         183 297         38         474           Mar.         65,1         39,4         52,3         208 026         4447 78         65           Jun.         65,1         39,4         52,3         208 026         4447 78         65           Jun.         65,2         39,4         52,3         206 934         557 080         84           Ago.         64,8         39,2         52,3         200 034         557 080         82           Jul.         64,5         39,0         51,8         270 908         569 291         84           Jan.         64,5         38,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1047  | Cot                                                          | 64.5                                 | 39.1                             | 51.8    |         | 50 756    |                                         | 54 335  |
| Now.         69,5         42,1         55,8         52,561         72,645         125           Dyz.         Dyz.         41,4         54,9         61,271         92,221         153           Dyz.         Dyz.         66,9         41,4         54,9         61,271         92,221         153           Fev.         61,9         37,7         50,0         125,365         189,547         286           Mar.         62,2         37,7         50,8         154,34         37,2         286           Abr.         65,3         38,3         50,8         154,34         320         37,3           Mar.         65,1         39,4         52,3         208         38,3         57,3           Jul.         65,1         39,4         52,3         208         38,9         57,3           Jul.         65,1         39,4         52,3         208         38,9         57,3           Jul.         65,1         39,4         52,3         20,9         444,778         65,2           Ago.         64,8         39,2         52,3         20,9         50,2         84           Out.         64,8         39,0         51,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 174   | Out                                                          | 2,59                                 | 38.5                             | 51.0    |         | 57 116    |                                         | 668 09  |
| Jan.         68,3         41,4         54,9         61271         92 221         153           Jan.         61,8         37,4         49,6         74 247         135 793         210           Fev.         61,9         37,5         49,7         96 965         189 547         286           Mar.         62,2         37,7         50,0         125 365         253 527         378           Abr.         62,2         37,7         50,0         125 365         253 527         286           Abr.         65,3         38,3         52,4         320 208         474         378           Jun.         665,1         39,4         52,3         208 026         447 778         657           Jun.         65,2         39,4         52,3         260 934         502 281         738           Jul.         65,2         39,4         52,3         260 934         557 080         818           Ag.         64,8         39,2         52,3         260 934         557 080         818           Set.         64,8         39,0         51,3         287 353         583 574         89           Dez.         64,2         38,3         50,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | Now                                                          | 69.5                                 | 42.1                             | 55.8    |         | 72 645    |                                         | 87 024  |
| Jan.         61,8         37,4         49,6         74 247         135 793         210           Fev.         61,9         37,5         49,7         96 965         189 547         286           Mar.         62,2         37,7         50,0         125 365         253 527         378           Abr.         62,2         37,7         50,0         125 365         253 527         378           Abr.         65,3         39,4         52,3         208 026         447         78           Jun.         65,1         39,4         52,3         208 026         447         78           Jun.         65,1         39,4         52,3         208 026         447         78           Jun.         65,1         39,4         52,3         208 026         447         78           Jun.         65,2         39,4         52,3         260 934         557 080         818           Set.         39,2         52,3         260 934         557 080         818           Set.         38,9         51,6         282 400         578 50         87           Nov.         63,9         38,3         50,8         299 34         504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | Dez                                                          | 68,3                                 | 41,4                             | 54,9    |         | 92 221    |                                         | 104 839 |
| Jan.         61,9         37,5         49,7         96 965         189 547         286           Fev.         62,2         37,7         50,0         125 365         253 527         378           Abr.         62,2         37,7         50,0         125 365         253 527         378           Abr.         65,3         39,4         52,4         183 297         389 983         573           Maio         65,1         39,4         52,3         208 026         444 778         652           Jul.         65,1         39,4         52,3         260 934         502 281         577 080           Ago.         66,2         39,4         52,3         260 934         562 291         840           Ago.         66,2         39,0         51,8         276 539         574 247         850           Out.         64,5         39,0         51,8         276 539         574 247         850           Nov.         64,5         38,9         51,3         282 400         579 800         882           Jan.         63,9         38,3         50,8         299 347         893         77 253         684 972         882           Abr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 1                                                            | 819                                  | 37.4                             | 49.6    | 74 247  |           | 210 040                                 | 129 777 |
| FeV.         65.2         37,7         50,0         125 365         253 527         378           Abr.         Abr.         65,3         38,3         50,8         154 324         320 208         474           Abr.         65,3         39,5         52,4         183 297         389 983         573           Maio         65,1         39,4         52,3         208 026         444 778         65           Jul.         66,1         39,4         52,3         206 934         502 281         849           Ago.         65,2         39,4         52,3         260 934         509 281         840           Ago.         64,5         39,0         51,8         276 539         577 287         850           Out.         64,5         39,0         51,8         276 539         574 247         850           Nov.         64,5         38,9         51,3         282 400         579 800         862           Nov.         63,9         38,5         51,3         287 353         588 574         870           Fev.         63,9         38,3         50,3         311 126         604 094         915           Abr.         60,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | Fan                                                          | 610                                  | 37.5                             | 49.7    | 96 965  |           | 286 512                                 |         |
| Amar.         65,3         38,3         50,8         154 324         320 208         474           Maio         65,1         39,4         52,4         183 297         389 983         573           Jun.         65,1         39,4         52,3         236 294         502 281         788           Jul.         65,1         39,4         52,3         236 294         502 281         788           Jul.         66,2         39,4         52,3         260 934         550 281         840           Set.         64,5         39,0         51,8         276 539         574 247         850           Out.         64,2         38,9         51,6         282 400         579 800         862           Nov.         64,2         38,7         51,3         287 447         870         862           Dez.         15,8         276 539         574 247         870         862         872           Jan.         63,9         38,7         51,3         287 353         583 574         873           Jan.         63,5         38,5         50,3         311 126         604 094         915           Abr.         60,4         36,9         36,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | Fev.                                                         | 200                                  | 37.7                             | 50.0    | 125 365 |           | 378 892                                 |         |
| Augin         65.3         39.5         52,4         183.297         389.983         573           Jun.         65.1         39,4         52,3         208.026         444.778         65.2           Jul.         65,1         39,4         52,3         206.934         502.281         738           Jul.         65,2         39,4         52,3         206.934         557.080         818           Ago.         64,8         39,2         52,0         270.908         569.291         738           Set.         64,5         39,0         51,8         276.539         574.247         850           Out.         64,5         38,9         51,3         282.400         579.800         862           Nov.         63,9         38,7         51,3         287.447         870         882           Jan.         63,5         38,5         51,3         289.347         893         588.972         882           Abr.         62,7         37,9         49,0         346.79         640.094         915           Abr.         60,4         36,6         48,3         398.907         723.661         1174           Jul.         59,6         36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | AL.                                                          | 63.3                                 | 38,3                             | 30.8    | 154 324 |           | 474 532                                 |         |
| Math         65.1         39,4         52,3         208 026         444 778         652           Jul.         65,2         39,4         52,3         208 024         502 281         738           Jul.         Ago.         65,2         39,4         52,3         260 934         557 080         818           Ago.         66,2         39,2         52,0         270 908         569 291         840           Set.         64,5         39,0         51,8         276 539         579 800         862           Nov.         64,5         38,9         51,3         282 400         579 800         862           Nov.         63,9         38,7         51,3         287 353         588 574         870           Jan.         63,5         38,5         50,8         299 347         593 717         893           Fev.         62,7         37,9         50,3         311 126         604 094         915           Mar.         60,4         36,6         49,0         346 979         640 034         1063           Jun.         50,6         36,1         416 593         757 568         1174           Jul.         36,1         416 593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | ADT                                                          | 2,53                                 | 30,5                             | 52.4    | 183 297 |           | 573 290                                 |         |
| Jul.         65,1         39,4         52,3         236 294         502 281         738           Ago.         Ago.         52,3         260 934         557 080         818         78           Ago.         Set.         52,0         270 908         569 291         840           Set.         64,5         38,0         51,8         270 908         569 291         840           Set.         64,5         38,0         51,8         270 908         569 291         840           Nov.         63,2         38,7         51,3         282 400         579 800         862           Dez.         53,2         38,7         51,3         287 353         589 574         870           Jan.         63,5         38,5         50,8         299 347         593 717         893           Fev.         62,7         37,9         50,3         311 126         604 094         915           Abr.         60,4         36,6         48,5         377 252         686 493         1063           Jun.         59,6         36,1         47,9         416 593         757 568         1174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1946  | Tunn                                                         | 65.1                                 | 39.4                             | 52,3    | 208 026 |           | 652 804                                 | 425 200 |
| Age.         65,2         39,4         52,3         260 934         557 080         818           Set.         64,8         39,2         52,0         270 908         569 291         840           Set.         64,5         39,2         52,0         270 908         569 291         840           Out.         64,5         38,9         51,6         287 400         579 800         862           Nov.         63,9         38,7         51,3         287 353         588 574         870           Jan.         63,5         38,5         51,0         293 936         588 972         882           Fev.         63,2         38,3         50,8         299 347         593 717         893           Mar.         62,7         37,9         49,0         346 979         640 094         915           Abr.         60,4         36,4         48,5         377 252         686 493         1063           Jun.         59,6         36,1         47,9         416 593         757 568         1174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                                              | 65.1                                 | 39,4                             | 52,3    | 236 294 |           | 738 575                                 |         |
| Set. Cour.         64,8 (4,5)         39,2 (2,0)         52,0 (270,908)         569,291 (270,908)         840           Out. Cour.         64,5 (4,5)         38,0 (4,5)         51,8 (4,5)         276,539 (4,5)         577,247 (4,5)         850           Nov. Dez.         63,9 (3,5)         38,7 (4,5)         51,3 (4,5)         287,353 (4,5)         579,800 (4,5)         862           Jan. Bez.         63,2 (3,5)         38,3 (4,5)         50,3 (4,5)         588,972 (4,5)         882           Fev. Bev. Bez.         62,7 (4,5)         37,9 (4,5)         346,979 (4,0)         640,034 (4,0)         346,979 (4,0)         640,034 (4,0)         346,979 (4,0)         640,034 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)         346,979 (4,0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | Ago                                                          | 65,2                                 | 39,4                             | 52,3    | 260 934 |           | 818 014                                 |         |
| Out.         64,5         39,0         51,8         276 539         574 247         850           Nov.         Nov.         63,9         38,7         51,3         287 353         588 574         870           Dez.         63,9         38,7         51,3         287 353         588 574         870           Jan.         63,2         38,3         50,8         299 347         593 717         893           Fev.         62,7         37,9         50,3         311 126         604 094         915           Abr.         60,4         36,9         48,5         377 252         686 493         1063           Jun.         60,1         36,1         48,3         398 907         723 661         1172           Jul.         59,6         36,1         47,9         416 593         757 568         1174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00 | 64.8                                 | 39.2                             | 52,0    | 270 908 |           | 840 199                                 |         |
| Nov.         64,2         38,9         51,6         282,400         579,800         862           Dez.         1,0         28,7353         583,574         870         862           Jan.         63,5         38,5         51,3         287,353         588,972         882           Fev.         63,2         38,3         50,8         299,347         593,717         893           Mar.         62,7         37,9         49,0         346,979         604,094         915           Abr.         60,4         36,9         49,0         346,979         640,732         987           Jun.         66,1         36,4         48,3         398,907         723,661         1172           Jul.         59,6         36,1         47,9         416,593         757,568         1117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                                                              | 64.5                                 | 39,0                             | 51,8    | 276 539 |           | 820 286                                 |         |
| Dez.         63,9         38,7         51,3         287 353         583 574         870           Jan.         63,5         38,5         51,0         293 936         588 972         882           Fev.         63,2         38,3         50,8         299 347         593 717         893           Mar.         62,7         37,9         50,3         311126         604 094         915           Abr.         61,0         36,9         49,0         346 979         640 732         987           Jun.         60,1         36,4         48,5         377 252         686 493         1063           Jun.         60,1         36,1         47,9         416 593         757 568         1174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | ACN                                                          | 64,2                                 | 38,9                             | 51,6    | 282 400 |           | 862 200                                 |         |
| Jan.       63.5       38.5       51.0       293 936       588 972       882         Fev.       63.2       38.3       50,8       299 347       593 717       893         Mar.       62,7       37.9       50,3       311 126       604 094       915         Abr.       60,4       36,9       49,0       346 979       640 732       987         Majo       60,4       36,6       48,5       377 252       686 493       1063         Jun.       59,6       36,1       47,9       416 593       757 568       1174         Jul.       36,1       47,9       416 593       757 568       1174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | Dez.                                                         | 63,9                                 | 38,7                             | 51,3    | 287 353 |           | 870 927                                 |         |
| Jan.         63.2         38.3         50,8         299 347         593 717         893           Mar.         62,7         37,9         50,3         311 126         604 094         915           Abr.         61,0         36,9         49,0         346 979         640 732         987           Maio         60,4         36,6         48,5         377 252         686 493         1063           Jun.         66,1         36,1         48,3         398 907         723 661         1172           Jul.         59,6         36,1         47,9         416 593         757 568         1174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                                              | 5 29                                 | 38.5                             | 51.0    |         |           | 882 908                                 | 560 805 |
| Mar.         62,7         37,9         50,3         311126         604 094         915           Abr.         61,0         36,9         49,0         346 979         640 732         987           Maio         60,4         36,6         48,5         377 252         686 493         1063           Jun.         66,1         36,4         48,3         398 907         723 661         1122           Jul.         59,6         36,1         47,9         416 593         757 568         1174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | Fort                                                         | 63.5                                 | 38.3                             | 50.8    |         |           | 893 064                                 |         |
| Abr.     61,0     36,9     49,0     346 979     640 732     987       Maio     60,4     36,6     48,5     377 252     686 493     1 063       Jun.     60,1     36,4     48,3     398 907     723 661     1 122       Jul.     59,6     36,1     47,9     416 593     757 568     1 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | Africa                                                       | 62,7                                 | 37.9                             | 50,3    |         |           | 915 220                                 |         |
| Maio 60,4 36,6 48,5 377 252 686 493 1 063 1 063 36,1 36,4 48,3 398 907 723 661 1 122 59,6 36,1 47,9 416 593 757 568 1 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.17 | Abr                                                          | 010                                  | 36.9                             | 49,0    |         |           | 987 711                                 | -       |
| 60,1 36,4 48,3 398 907 723 661 1122<br>59,6 36,1 47,9 416 593 757 568 1 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 124   | Moio                                                         | 409                                  | 36.6                             | 48,5    |         |           | 1 063 745                               | -       |
| 59,6 36,1 47,9 416 593 757 568 1 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | Inn                                                          | 60,1                                 | 36,4                             | 48,3    |         |           | 1 122 568                               | 674 550 |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 101                                                          | 59,6                                 | 36,1                             | 6,74    |         |           | 1 174 161                               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                                              | _                                    |                                  |         |         |           |                                         |         |

(3) Exemplo de obtenção da vazão líquida: 51,5 × 23.380 ° 12.0

QUADRO 4. -- Precipitações e volumes das precipitações, simples e acumudadas, ocorridas nas bacias e coeficientes de deflú-

|      |                                                                              |                                                                                          |                                                                                                            | 01.                                                                                                                        | on respond                                                                                                                                                | curcs as                                                                                                                             | vazoes acui                                                                                                                                              | nuladas                                                                                                                        |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |                                                              |
|------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|      |                                                                              | ,<br>-                                                                                   | }                                                                                                          |                                                                                                                            | Volume                                                                                                                                                    | das precip                                                                                                                           | precipitações por                                                                                                                                        | . bacia                                                                                                                        | -                                                                                                                                           | Coeficiente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | qe                                                                                         | deflúvio                                                     |
| Ano  | Més                                                                          | Frecipi                                                                                  | pitações                                                                                                   | Bacia                                                                                                                      | 1 1                                                                                                                                                       | Bacia                                                                                                                                | ia 2                                                                                                                                                     | Bacia                                                                                                                          | 1+2                                                                                                                                         | Bacia 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bacia 2                                                                                    | Bacia 1+2                                                    |
|      |                                                                              | ч                                                                                        | Μħ                                                                                                         | V <sub>1</sub>                                                                                                             | MV <sub>1</sub>                                                                                                                                           | V <sub>2</sub>                                                                                                                       | $\Sigma V_2$                                                                                                                                             | V 1+2                                                                                                                          | ΣV <sub>1+2</sub>                                                                                                                           | NU1/<br>NV1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NU2/<br>NV2                                                                                | $\Sigma U_{1+2}/$ $\Sigma V_{1+2}$                           |
| 1945 | Jun.<br>Jul.<br>Set.<br>Out.<br>Dox.                                         | 199,3<br>14,5<br>129,0<br>35,5<br>129,0<br>199,4                                         | 213,8<br>215,8<br>215,8<br>251,3<br>380,3<br>606,2<br>805,6                                                | 270 291<br>19 665<br>2 712<br>48 145<br>174 950<br>306 366<br>270,426                                                      | 270 291<br>289 956<br>292 668<br>340 813<br>515 763<br>822 129<br>1 092 555                                                                               | 359 318<br>26 142<br>3 606<br>64 003<br>232 574<br>407 275<br>359 498                                                                | 359 318<br>385 460<br>389 066<br>453 069<br>685 643<br>1 092 918<br>1.452 416                                                                            | 629 609<br>45 807<br>6 318<br>112 148<br>407 524<br>713 641<br>629 925                                                         | m3<br>629 609<br>675 416<br>681 734<br>793 882<br>1 201 406<br>1 915 047<br>2 544 972                                                       | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 211,9<br>16,2<br>21,3<br>21,3<br>21,6<br>16,3<br>11,9                                      | 20,11<br>20,20<br>20,20<br>20,11<br>20,11<br>20,11           |
| 1946 | Jan.<br>Fev.<br>Mar.<br>Abr.<br>Jul.<br>Jul.<br>Ago.<br>Set.<br>Out.<br>Nov. | 369,3<br>150,8<br>88.7<br>39.1<br>16,5<br>34,0<br>1,3<br>35,8<br>124,0<br>128,2<br>170,5 | 1174,9<br>1325,7<br>1414,4<br>1453,5<br>1470,0<br>1504,0<br>1588,7<br>1590,0<br>1625,8<br>1749,8<br>1749,8 | 500 845<br>204 515<br>120 295<br>53 027<br>22 377<br>47 060<br>113 921<br>1 763<br>48.552<br>168 169<br>173 865<br>231 232 | 1 593 400<br>1 797 915<br>1 918 210<br>1 971 237<br>1 993 614<br>2 040, 674<br>2 154 595<br>2 156 358<br>2 204 910<br>2 373 079<br>2 546 944<br>2 778.176 | 665 811<br>271 877<br>159 917<br>70 493<br>29 748<br>62 561<br>151 444<br>2 344<br>64 544<br>2 344<br>64 544<br>2 33 360<br>2 31 132 | 2 118 227<br>2 390 104<br>2 550 021<br>2 650 262<br>2 712 823<br>2 864 267<br>2 864 267<br>2 866 611<br>3 154 715<br>3 154 715<br>3 385 847<br>3 693 241 | 1166 656<br>476 392<br>280 212<br>123 521<br>52 125<br>109 621<br>265 364<br>4 107<br>113 096<br>391 728<br>404 997<br>538 627 | 3 711 628<br>4 188 020<br>4 468 232<br>4 591 753<br>4 648 753<br>5 018 863<br>5 022 970<br>5 136 066<br>5 527 794<br>5 932 791<br>6 471 418 | 9,44<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>11,54<br>1 | 16,0<br>16,0<br>16,0<br>16,0<br>17,0<br>17,0<br>17,0<br>17,0<br>17,0<br>17,0<br>17,0<br>17 | 28,2<br>28,2<br>28,3<br>28,3<br>28,3<br>28,2<br>28,2<br>28,2 |
| 1947 | Jan.<br>Fev.<br>Mar.<br>Abr.<br>Maio<br>Jun.                                 | 325,5<br>280,4<br>94,4<br>73,3<br>52,6<br>14,3                                           | 2 374,0<br>2 654,4<br>2 748,8<br>2 822,1<br>2 874,7<br>2 889,0<br>2 933,2                                  | 441 443<br>380.278<br>128 025<br>99 409<br>71.336<br>19 394<br>59 944                                                      | 3 219 619<br>3 599 897<br>3 727 922<br>3 827 331<br>3 898 667<br>3 918 061<br>3 978 005                                                                   | 586 844<br>505 533<br>170 194<br>132 153<br>94 833<br>25 781<br>79 688                                                               | 4,280.085<br>4,785.618<br>4,955.812<br>5,087.965<br>5,182.798<br>5,208.579<br>5,288.267                                                                  | 1 028 287<br>885 812<br>298 219<br>231 562<br>166 169<br>45 175<br>139 632                                                     | 7 499 705<br>8 385 517<br>8 683 736<br>8 915 298<br>9 108 642<br>9 266 274                                                                  | 17,9<br>16,4<br>18,56<br>18,50<br>20,00<br>21,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24.2<br>24.2<br>24.2<br>27.57<br>27.2<br>28.8<br>9.9                                       | 23.1<br>21.0<br>22.5<br>24.5<br>25.5<br>25.5<br>36.5<br>5    |

### 4 - DISCUSSÃO

# 4.1 — ANALISE DOS DIAGRAMAS

Um exame minucioso dos diagramas apresentados na figura 2 (A, B) revela, de um modo geral, que as vazões mensais das bacias acompanham as precipitações com um certo atraso, verificando-se uma defasagem entre os máximos e mínimos correspondentes, que se atribui ao efeito da retenção de água por parte do solo e ao tempo que a água deve levar para atravessar a camada de solo, atingir o lençol freático e dêste escoar-se para os canais superficiais e alcançar a estrutura de medição; a enxurrada superficial, ou simplesmente enxurrada, conforme se verá mais adiante, representa parcela de pouca significação na interpretação dos dados mensais. Devido àquela defasagem, observa-se que as vazões mínimas das bacias ocorrem ainda em plena fase inicial da estação chuvosa, e os máximos quando a estação já entrou em declínio. A observação popular, de experimentados lavradores e matutos, que quando principiam as chuvas os córregos secam, encontra confirmação nos diagramas apresentados. A defasagem é mais evidente no início da estação chuvosa, pois que a terra então se encontra mais sêca e o volume de retenção de água é maior.

A comparação dos diagramas das bacias 1 e 2 indica que apesar da diferença entre áreas das duas bacias, que é refletida nas vazões máximas, não houve diferença apreciável nas vazões mínimas, como poderia ser esperado; essa diferença de comportamento entre as duas bacias poderia ser atribuída a todos os fatôres diferenciais existentes, porém é possível que a topografia mais íngreme da bacia 2 tenha sido fator preponderante; os máximos e mínimos nas bacias 1 e 2 sofrem oscilações pràticamente semelhantes, observando-se as mesmas defasagens em relação ao pluviograma apresentado.

É interessante notar que em ambas as bacias tanto os máximos como os mínimos foram atingidos nos mesmos meses do ano, em dois anos consecutivos; os valores mínimos, também em dois anos consecutivos, nas duas bacias, atingiram práticamente a mesma ordem de grandeza, deixando a impressão de serem valores mais ou menos fixos, porém o intervalo curto de observação não permite que a inferência seja generalizada.

A forma da variação da última porção dos diagramas das bacias, especialmente nos meses de maio, junho e julho de 1947, difere tão

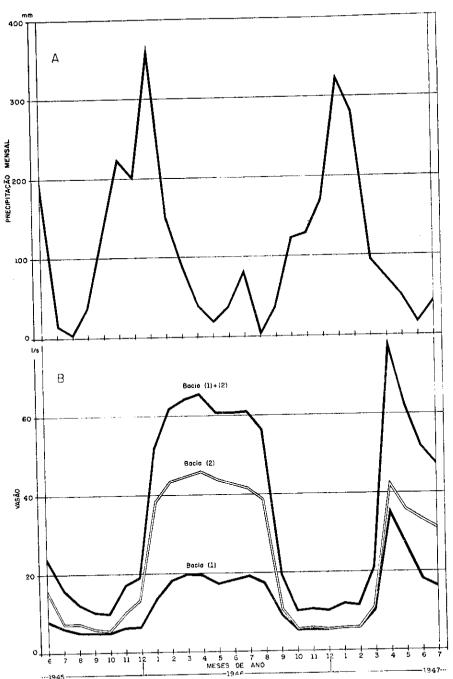



Figura 2. — A — Pluviograma das precipitações mensais; B — Hidrograma das vazões mensais observadas nas bacias 1, 2 e 1+2.

grandemente do que seria sugerido pela forma senusoidal dos diagramas, observada no período de junho de 1945 a abril de 1947, que se torna difícil estabelecer comparações, devendo-se atribuí-la a desigualdades na ocorrência das precipitações e modificações nas características de vazão das bacias. Deve ser notado, também, que o máximo da bacia 1 cresceu muito de um ano para outro, o mesmo não ocorrendo com o máximo da bacia 2, que permaneceu pràticamente igual ao do ano anterior.

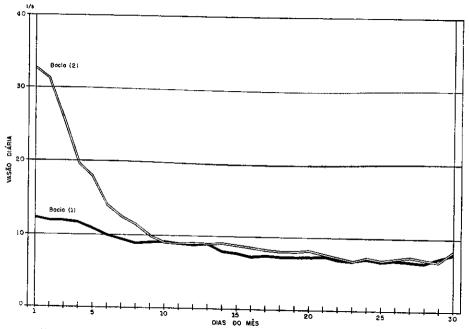



Figura 3. — Diagramas das vazões diárias do mês de setembro de 1946 observadas nas bacias 1 e 2.

Na figura 3 são apresentados os hidrogramas de vazão diária das bacias 1 e 2, referentes ao mês de setembro de 1946, mostrando que a oscilação de vazão foi bastante acentuada na bacia 2 tendo caído de cêrca de 33 para cêrca de 9 litros/segundo, no curto espaço de 10 dias, enquanto que na bacia 1 não houve oscilação tão acentuada, no mesmo período. Esta observação por si só basta para evidenciar a precariedade do método de determinação de vazão uma única vez, como base para o cálculo de disponibilidade de água para projetos de irrigação.

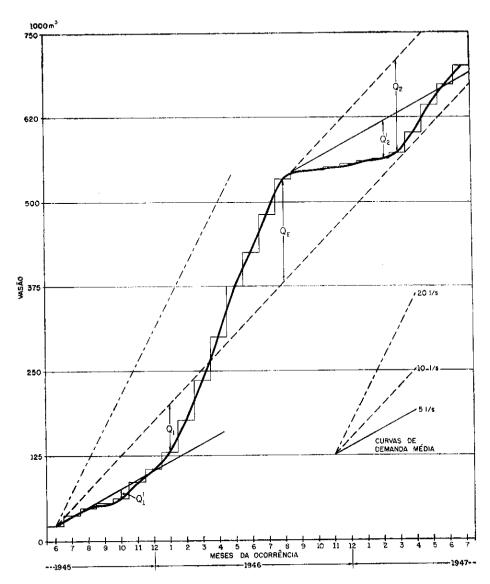



Figura 4, --- Curva de massa dos dados ajustados das vazões mensais da bacia 3 e diagramas comparativos de Rippl.

Nas figuras 4, 5 e 6 são apresentadas as «curvas de massa» ou sejam os diagramas de acumulação dos dados ajustados de vazão normal, com os diagramas de Rippl correspondentes, para ilustrar a aplicação prática dos dados obtidos. Como os princípios para a construção dos diagramas são os mesmos para as três figuras, será suficiente uma discussão sucinta das figuras 5 e 6 e mais detalhada apenas da figura 4, na qual são apresentados os diagramas de Rippl para as demandas médias contínas de 5, 10 e 20 l/s. As linhas paralelas às retas das demandas, traçadas a partir do início do intervalo, se não interceptam a curva de massa que se mantém abaixo da reta, como é o caso da demanda de 20 l/s, indica que a demanda excede a capacidade de suprimento da bacia; se houver in-

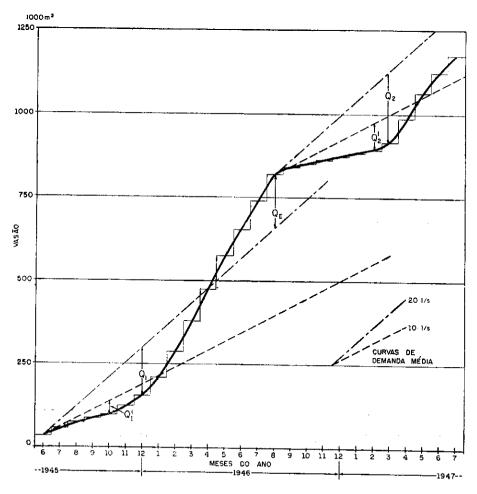



FIGURA 5. — Curva de massa dos dados ajustados das vazões mensais das bacias 1+2 e diagramas comparativos de Rippl.

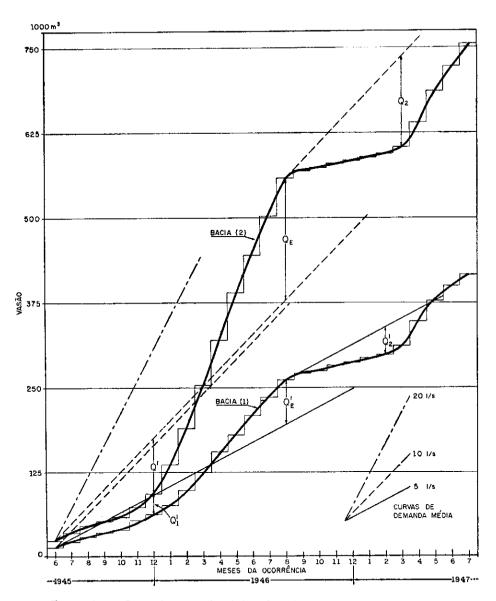



Figura 6. — Curva de massa dos dados ajustados das vazões mensais das bacias 1 e 2 e diagramas comparativos de Rippl.

terceptação e a curva de massa estiver abaixo da reta, como é o caso da demarda de 10 l/s, a ordenada máxima  $Q_1$  indicará a quantidade de água que deveria ter sido armazenada para atender a demanda no período de junho de 1945 a março de 1946; a partir de abril de 1946 até o fim do intervalo observa-se um excesso de volume em relação à demanda de 10 l/s, representado pela ordenada máxima  $Q_z$ ; todavia, no período de setembro de 1946 até o fim do intervalo de estudo, observa-se que a demanda excedeu o suprimento de um volume representado pela ordenada máxima  $Q_z$ , a qual representa o volume que deveria ter sido armazenado para atender a demanda.

Evidentemente para que o sistema de acumulações fôsse possível, na prática, as seguintes condições deveriam verificar-se: a)  $Q_{\rm r} > Q_{\rm 2}$ ; b) a reta de demanda de 10 l/s deveria interceptar novamente a curva de massa, dentro do intervalo de interêsse, mantendo-se  $Q_{\rm r}$  como ordenada; c) haver condições topográficas para o armazenamento econômico do volume  $Q_{\rm r}$ .

No caso da demanda de 5 l/s verifica-se a necessidade de armazenamento nos períodos de junho a novembro de 1945, cujo volume é representado pela ordenada máxima  $Q_1$ , e no período de setembro de 1946 a maio de 1947, cujo volume é representado pela ordenada máxima  $Q_2$ , não havendo dúvida quanto à capacidade do suprimento de garantir o fornecimento de água para o armazenamento necessário.

Na figura 5 verifica-se que para a demanda de 20 l/s haveria necessidade de armazenamento nos períodos de junho de 1945 a abril de 1946, cujo volume é representado pela ordenada máxima  $Q_1$  e no período de agôsto de 1946 até o fim do intervalo, cujo volume é representado pela ordenada máxima  $Q_2$ ; porém, como se verifica  $Q_E < Q_2$ , o sistema seria inviável na prática pela incapacidade do suprimento de fornecer a água necessária para o armazenamento. No caso de demanda de 10 l/s, verifica-se que o volume de armazenamento maior é  $Q_2$ , no período de agôsto de 1946 a abril de 1947, o qual seria viável em relação à capacidade de suprimento.

Na figura 6 os diagramas foram separados para as bacias 1 e 2 a fim de ilustrar a possibilidade de proceder a análises complementares, de forma que as necessidades totais de armazenamento possam ser racionalmente repartidas em relação à capacidade de suprimento de cada bacia. A demanda de 20 l/s está fora de cogitação por não interceptar

nenhuma das curvas de massa; a de 10 1/s seria viável na bacia 2 por verificar-se  $Q_{\rm g} > Q_{\rm p}$ , porém não seria viável na bacia 1 onde seria viável a de 5 1/s por verificar-se  $Q_{\rm p}^* > Q_{\rm p}^*$ .

Nos exemplos acima admitiu-se serem as demandas representadas pelas linhas retas apenas para fins didáticos, porque a solução dos problemas de armazenamento não é dificultada pela forma da curva de demanda.

Como as curvas de massa apresentadas nas figuras 4, 5 e 6 foram construídas com os dados líquidos de vazão das bacias, obtidos a partir dos dados observados, dos quais foram deduzidas as perdas totais inevitáveis, é oportuno, nesta altura, discutir o conceito das perdas.

# 4.2 — PERDAS DEVIDAS AO ARMAZENAMENTO

Ao ser a água acumulada pelo represamento, os seguintes fenômenos ocorrem simultâneamente:

- a) aumenta a superfície livre da água e portanto a evaporação;
- aumenta a superfície de contato da água com o solo e, portanto, a infiltração;
- c) aumenta a carga hidrostática da água sôbre o solo, acelerando o processo de infiltração;
- d) nas barragens de terra, a percolação através da estrutura pode ser fator importante de perdas de água;
- e) nas fundações inadequadas das barragens o fluxo (creeping) sob a estrutura pode constituir-se em fator preponderante de perdas de água:
- f) a presença da massa líquida por sua vez atua no sentido de refrescar o ambiente, diminuíndo a oportunidade de evaporação.

As perdas devidas à evaporação podem ser conhecidas pelo emprêgo de evaporímetros flutuantes ou estimadas com boa aproximação por meio de fórmulas adequadas; porém, as perdas devidas à infiltração são dificeis de ser medidas, embora possam ser teòricamente estimadas mediante fórmulas criteriosamente escolhidas e se proceda a determinação de permeabilidade no local ou em materiais colhidos do local da barragem, e pelo recurso a métodos mais elaborados, como o da

analogia elétrica, cujo emprêgo se vem ampliando no domínio da engenharia hidráulica, principalmente nos estudos de obras de maior vulto.

A medição da vazão do ladrão de uma reprêsa e das vazões que ocorrem na bacia correspondente proporcionam um método direto, seguro, de conhecimento das perdas totais que se verificam por efeito do armazenamento de água. Desde que se conheçam as perdas devidas à evaporação, por simples diferença se obtém as perdas devidas à infiltração total, inclusive as que ocorrem através da própria barragem. Como neste trabalho não foram feitas mensurações de evaporação, as perdas são as totais (evaporação+infiltração).

Para a computação dessas perdas foram obtidas as porcentagens de vazão do ladrão nas bacias 1+2 e 3 em relação às vazões mensais acumuladas e às vazões médias acumuladas dessas bacias, apresentadas no quadro 3. Conforme já foi discutido anteriormente, as estimativas mais prováveis das porcentagens de vazão do ladrão estão entre os valores da coluna  $\Sigma U_{\rm L}/\Sigma U_{\rm 1+2}$  e  $\Sigma U_{\rm L}/\Sigma U_{\rm 3}$ . A bacia 1+2 representa cêrca de 61% da área total da bacia da reprêsa, de forma que a vazão desta bacia é certamente maior do que a daquela, mas inferior aos valores indicados na coluna correspondente do quadro 2, por não se verificar a proporcionalidade vazão/área nas bacias estudadas. Não sendo possível uma estimativa exata das porcentagens de vazão do ladrão, em relação à bacia da reprêsa, acredita-se que os valores médios adotados podem ser aceitos em princípio, tendo sido os utilizados para as estimativas das vazões líquidas das bacias e do ladrão que aparecem no quadro 3.

Os valores médios das porcentagens de vazão do ladrão em relação aos dados acumulados sofreram oscilações relativamente pequenas, sendo que o maior valor assinalado foi de 55.8% e o menor o valor final de 47.9%, que representa a porcentagem líquida do ladrão verificada no intervalo de estudo. No entanto, convém observar que por se referirem a dados acumulados de vazão, pequenas diferenças em porcentagens indicam volumes crescentes de água, à medida que crescem os volumes acumulados.

É possível que, com a ampliação de estudos hidrológicos de pequenas bacias, chegue-se à determinação de porcentagens normais mensais, por estação do ano ou mesmo anual, para uso em projetos de acumulação de água. É óbvio que as perdas totais são imediatamente calculadas a partir das porcentagens de vazão do ladrão, e no caso presente alcançaram o total de 52.1% ou seja cêrca de 50%, perda que pela sua im-

portância e conforme o caso não poderá deixar de ser levada em consideração na solução dos problemas de armazenamento de água.

#### 4.3 — COEFICIENTES DE DEFLÚVIO

Os coeficientes de deflúvio, expressos em porcentagem, apresentados no quadro 4, para as bacias 1, 2 e 1+2, obtidos pela relação entre os totais acumulados de vazão das bacias e os totais acumulados dos volumes das precipitações respectivas, indicam que sofrem oscilação mensal e variam com as características das bacias, atingindo nas bacias 1 e 2 as médias de 21,9 e 29,9%, respectivamente, e média de 26,5% para a bacia 1+2. Esses valores comparam-se razoàvelmente com a média anual obtida para bacias norte-americanas (4) que é de 28,3% e a média de 20,0% geralmente indicada nos compêndios de engenharia, para projetos de abastecimento de água. É possível também que com a ampliação dos estudos hidrológicos das pequenas bacias, chegue-se à determinação de coeficientes normais, mensais, por estação do ano e mesmo anuais, para efeito de cálculos estimativos de vazão de bacias, a partir de dados de precipitação e área.

# 4.4 — ESTIMATIVAS DE AGUA DE PERCOLAÇÃO E DE EVAPOTRANSPIRAÇÃO

De acôrdo com os dados apresentados no quadro 4, do total de água precipitada na área da bacia 1+2, 26,5% foram mensurados através da vazão dos córregos correspondentes, perfazendo um total de cêrca de 9 266 274 × 0,265 = 2 455 563 m³, englobando a água que brotou do lençol freático, ou seja a água de percolação, e a que se evadiu da área sob a forma de enxurrada. Como existem os coletores de enxurrada da Seção de Conservação do Solo na bacia 1, é possível fazer uma estimativa bem aproximada das perdas de água em tôda a bacia; adotando-se a média de 3% sôbre o total das precipitações, com base nos dados apresentados por Marques (6), resulta um total de 9 266 274 × 0,03 = 277 988 m³, que deduzido do total escoado sob a forma de vazão, dá 2 455 565 — 277 988 = 2 177 575 m³ para o volume de água percolada que se evadiu da área. Expressando êsses valores em altura de água, ter-se-ia para todo o período estudado os seguintes totais:

| Environdo                                                   | mm  |
|-------------------------------------------------------------|-----|
| Enxurrada                                                   | 88  |
| Água escoada (oundida da d | 689 |
| Água escoada (evadida da área)                              | 777 |

Tendo-se computado o total de água precipitada e o total de água evadida da área sob a forma de água percolada e de enxurrada, a diferença deve expressar a água evapotranspirada, computada a variação de volume de água verificado sob a forma de retenção, tanto do solo como do lençol freático. Analisando-se os hidrogramas das bacias, apresentados na figura 2, e admitindo-se proporcionalidade entre volume escoado e acréscimo de capacidade do lençol, verifica-se que houve acréscimo no volume de retenção de água, ao término do intervalo de estudo, e sendo êsse acréscimo de difícil computação, os cálculos de água evapotranspirada em todo o intervalo careceriam de significação. Todavia, essa dificuldade pode ser afastada limitando as computações a um período em que as vazões retornam aos mesmos mínimos, no mesmo sentido de aproximação, a fim de evitar o efeito de histeresis tão comumente ligado aos fenômenos de água no solo. Verificando-se corresponder um dêsses períodos ao intervalo de outubro de 1945 a outubro de 1946 (13 meses), obtêm-se os seguintes volumes totais, calculados a partir dos elementos correspondentes dos quadros 2 e 4:

|                       | 1111 <sup>3</sup> |
|-----------------------|-------------------|
| Água precipitada      | 4 733 912         |
| Agua escoada          | 1.470.024         |
| Agua percolada        | 1.337.007         |
| Enxuriada             | 1/2/017           |
| Água evapotranspirada | 2 252 222         |
|                       | 3 253 988         |

Expressando esses volumes em altura mensal média de água obtém-se ·

| For the second        |     |         |    | mm           |
|-----------------------|-----|---------|----|--------------|
| Água precipitada      |     |         |    | 115,3        |
| Água escoada          | ٠.  |         |    | <b>3</b> 6,0 |
| Água percolada        | ٠.  |         |    | 32,5         |
| Enxurrada             | • • |         | ٠. | 3,5          |
| Água evapotranspirada | ٠., | · · · · |    | <i>7</i> 9,3 |

Procedendo-se a idêntico cálculo, correspondente ao período de maio de 1946 a maio de 1947 (13 meses) intervalo em que as vazões retornam pràticamente ao mesmo valor, obtêm-se os seguintes valores médios mensais em altura de água:

|                       | mm    |
|-----------------------|-------|
| Água precipitada      | 109,3 |
| Água escoada          | 30,7  |
| Água percolada        |       |
| Enxurrada             | 3,3   |
| Água evapotranspirada | 78,6  |

As médias mensais da água evapotranspirada nos períodos de outubro de 1945 a outubro de 1946 e de maio de 1946 a maio de 1947, foram pràticamente iguais, demonstrando que nesses períodos não deve ter havido efeito pronunciado de variação do volume de retenção de água, aliás de conformidade com a suposição feita anteriormente.

Comparando-se essas médias com as estimativas de evapotranspiração potencial obtidas pelo método de Thornthwaite, para os mesmos intervalos, conforme dados apresentados pelo autor em 1953 (10) em palestra realizada no Instituto Agronômico, obtêm-se:

| MÉTODOS DE ESTIMATIVA       | out. 1945 a out. 1946 | maio 1946 a maio 1947 |
|-----------------------------|-----------------------|-----------------------|
| Dados hidrológicos da bacia | . 79,3 mm             | 78,6 mm               |
| Fórmula de Thornthwaite     | . 81,2 mm             | 80,4 mm               |

É surpreendente a concordância entre as estimativas mensais de evapotranspiração atual e potencial, mesmo porque a distribuição pluviométrica na bacia não foi tão perfeita a ponto de ter evitado a ocorrência de qualquer período de sêca, embora deva ser citado que de acôrdo com o método de análise de sêcas utilizado pelo autor, com base em fórmulas de evapotranspiração, capacidade de retenção de água disponível pelo solo e profundidade efetiva do sistema radicular das plantas (10. 11) não tivessem mesmo ocorrido naqueles intervalos nenhuma sêca de importância.

A mesma concordância não se observa porém em outros períodos em que se verifica pronunciada desigualdade de vazões no início e fim do intervalo considerado, ressaltando o provável efeito das diferenças existentes no volume de retenção de água, como fator preponderante; mesmo para alguns períodos, em que a igualdade de vazão é atingida por fenômenos opostos, de ascensão e descensão, não se verifica concordância, podendo haver acentuada diferença entre as estimativas de evapotranspiração, como é o caso do intervalo de dezembro de 1945 a se-

tembro de 1946, obtendo-se o valor médio mensal de 58 milímetros para a evapotranspiração atual e de 77,5 milímetros para a potencial, diferença de cêrca de 25% calculada em relação à evapotranspiração potencial. Se bem que pequenas diferenças pudessem ser atribuídas à incapacidade das fórmulas empíricas de representar o fenômeno da evapotranspiração com exatidão, parece razoável admitir-se a existência de um efeito semelhante à histeresis, quer a vazão seja atingida pelo fenômeno de ascensão ou de descensão; não deve ser esquecido que as médias mensais escondem oscilações diárias que podem também contribuir para acentuar as diferenças.

### 5 — CONCLUSÕES

- a) As calhas medidoras «Parshall» oferecem boas possibilidades de emprêgo nos estudos de vazão de bacias, podendo ser construídas de madeira, concreto, chapas de alumínio ou metálicas galvanizadas, para lhes garantir duração compatível com a importância dos trabalhos, sendo que o modêlo deve ser escolhido de acôrdo com as vazões máximas e mínimas esperadas;
- b) O método adotado de balanço de vazão de entrada e saída de água na reprêsa, oferece grandes possibilidades para a determinação das perdas totais inevitáveis verificadas pelo efeito do armazenamento de água, que neste estudo foram estimadas em cêrca de 50% da vazão total de alimentação da reprêsa;
- As estimativas obtidas de porcentagens de vazão das bacias, em relação às precipitações, de respectivamente 21,9 e 29,9%, para bacias de 120 e 180 hectares, com média de 26,5% para a bacia de 300 hectares, estão dentro dos limites dos valores encontrados na literatura;
- d) Do total de água precipitada nas bacias estudadas, cêrca de 75% foi devolvida à atmosfera sob a forma de água evapotranspirada, com uma média mensal de cêrca de 80 milímetros; os restantes 25% foram escoados sob a forma de vazão mensurável dos córregos, dos quais se estima que cêrca de 3% o foram sob a forma de enxurrada superficial, tendo os restantes 22% percolado através do solo;

- e) Houve surpreendente concordância nas estimativas de evapotranspiração obtidas tendo em conta os dados hidrológicos das bacias e as obtidas com a aplicação da fórmula empírica de Thornthwaite evidenciando as possibilidades de aplicação dessa fórmula para estudos de ordem geral, conforme tem sido o critério seguido pelo autor;
- f) A comparação dos hidrogramas das bacias com os pluviogramas revela que há nítida defasagem nos máximos e mínimos, principalmente no início da estação chuvosa, quando é maior o efeito da retenção de água por parte do solo. Essa defasagem justifica o provérbio popular que diz: quando começam as chuvas os córregos secam e condena o processo de avaliação da capacidade de suprimento dos córregos pela determinação das vazões uma única vez, especialmente quando há dúvidas quanto ao suprimento de atender as demandas;
- g) O fenômeno de histeresis parece manifestar-se também na água do subsolo, afetando o volume de água retido, segundo as vazões sejam atingidas pelos processos de ascensão ou descensão do lençol freático.

# HYDROLOGIC STUDIES OF SMALL BASINS WITH APPLICATION TO IRRIGATION

#### SUMMARY

Some hidrologic studies were undertaken in the period of June 1945 up to July 1947, on small basins located in the «Dr. Theodureto de Camargo» Experiment Station, of the Instituto Agronômico in Campinas. Two of the basins, respectively of 120 and 180 hectares, were enveloped by a third basin of 522 hectare limited downstream by an earth dam. The inflow and outflow of the impounded water have been measured, as well as the flow of the two basins.

The data collected were analysed by means of simple and mass diagrams of surface flow and rainfall. Comparisons of the evapotranspiration data obtained from the hydrologic studies were made with potencial evapotranspiration data obtained by using Thornthwaite's empirical formula, with coincidentally remarkable agreement, with an average monthly evapotranspiration of about 80 milimeters.

The percentages of surface flow in relation to total rainfall were found to average about 26.5%, from which a small portion only (3% of the total rainfall) was attributed to surface runoff. The remaining 23.5% is believed to be the percolated water which appeared as ground water flow.

Total losses (infiltration + evaporation), occurring due to the accumulation of water by the old existing earth dam were estimated to be of the order of 50%

#### ESTUDO HIDROLÓGICO DE PEOUENAS...

of the total inflow, thus indicating that only 50% of the initial inflow could be used, the remaining being accounted as unavoidable losses. It is believed that part of these losses could be minimized if the dam structure were built according to modern techniques.

Rippl diagrams were used and its usefulness in solving problems of storage of water for irrigation purpose was shown by practical examples.

The method used in this work to determine the total losses in impounding water, if properly applied to measure the total inflow and outflow, is believed to yield the best results, since no estimated data are obtained but actually measured.

#### LITERATURA CITADA

- DAVIS, CALVIN V. Handbook of applied hydraulics. New York, Mc-Graw Hill Book Company, Inc., 1942. p. 115-116.
- GROVER, NATHAN C. & HARRINGTON, ARTHUR W. Stream flow. New York, John Wiley & Sons, Inc., 1943. p. 911.
- HORTON, R. E. Flood crest reduction by channel storage. New York. Trans. Am. Geo. Union, Part III: 820-825, 1941.
- 4. American Society of Civil Engineers, New York. Hidrology Handbook, 1949. p. 22 e 81. (ASCE — Manuals of Engineering Practice N.º 28)
- Armco Industrial e Comercial S. A., Rio de Janeiro. Manual de Hidrotécnica, 1943. p. 49-52.
- MARQUES, JOÃO Q. A. Processos modernos de preparo do solo e defesa contra a erosão. Bahia, Instituto Central de Fomento Econômico, 1950. p. 32-138. (Boletim n.º 19).
- MEAD, DANIEL W. Hidrology. New York, Mc-Graw Hill Book Company, Inc., 1950. p. 582.
- ONGARO, GIOVANNI. Il calcolo delle reti idrauliche di bonifica. Italia, Edizione Agricole Bologna, 1958. p. 38.
- 9. PARSHALL, R. L. Measuring water in irrigation canals with Parshall flumes and small weirs. U.S.D.A., 1950. 62 p. (Soil Conservation Services Circular N.º 843).
- 10. TOSELLO, RINO N. Interpretação das sêcas nas zonas cafeeiras do Estado de São Paulo. Campinas, Instituto Agronômico, 1953. (Palestra realizada na 90.º Reunião Científica).
- 11. Irrigação de cafèzal. Instituto Agronômico do Estado de São Paulo. I Curso de Cafeicultura, 1954. 3.ª Edição, 1957. p. [183]-193.