
ABSTRACT: The silverleaf whitefly Bemisia tabaci biotype B is one of the most important 

sucking pests of common bean, which causes severe damages and requires frequently 

synthetic insecticides spraying to protect crop productivity. The use of common bean cultivars 

resistant to whitefly attack is an important strategy within an integrated pest management (IPM) 

program. The biological development of B. tabaci confined to 17 bean genotypes was evaluated 

in greenhouse trials to verify the occurrence of antibiosis. Whitefly adults were released on 

plants of these genotypes to oviposit, afterward the incubation period of eggs, nymphal period, 

complete development period (egg–adult), and viability of the silverleaf whitefly nymphs were 

recorded. As main results, genotype CHIP 300 prolonged the developmental period from egg 

to adult (~10 days) and BRS Estilo, Arcelina 4, IPR Garça, Tybatã, CHIP 300, IPR Eldorado, 

H96A102-1-1-1-52, SCS-202-Guará and CHIB 06 caused nymphal mortality, suggesting high 

levels of antibiosis and/or antixenosis. These genotypes may be helpful in common bean 

breeding programs aimed at developing commercial cultivars resistant to B. tabaci biotype B.
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INTRODUCTION 

Common bean (Phaseolus vulgaris L., Fabaceae) has great socioeconomic importance in Brazil, being widely consumed 
as a source of proteins and minerals for people´s diet (Carvalho et al. 2014), and besides that, it is a source of income for 
thousands of agricultural producers, especially family farmers (FAO 2015). The occurrence of insect pests and diseases of 
common bean are one of the main causes for the reduction of bean productivity (Moraes et al. 2006; Costa et al. 2018).

The silverleaf whitefly, Bemisia tabaci (Gennadius 1889) (Hemiptera: Aleyrodidae) biotype B, is one of the main sucking 
pests that colonize common bean crops (Musa and Ren 2005; Boykin et al. 2018). Bemisia tabaci is considered a complex 
of cryptic species that are morphologically indistinguishable, with a total of 43 identified species (De Barro et al. 2011; Tay 
et al. 2017). Some authors considered biotype B as Middle East-Asia Minor 1 (MEAM1) (Dinsdale et al. 2010; De 
Barro et al. 2011). However, the authors of the present study chose to use the older nomenclature that is still adopted by 
many researchers.

Bemisia tabaci biotype B can cause severe direct and indirect damage to the plants. The direct injury is due to feeding of 
nymphs and adults, which suck the phloem sap and inject toxins, impairing the vegetative and reproductive development 
of the plants (Villas Bôas 2005). Due to the large volume of honeydew excreted during feeding, there is usually an increase 
in the incidence of sooty mold (Capnodium sp.), with negative impacts on photosynthesis and crop productivity (Musa and 
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Ren 2005; Naranjo and Legg 2010). In addition, B. tabaci biotype B is an important vector of pathogens, as it can transmit 
virus species of various genera such as the Bean golden mosaic virus, which can cause losses of up to 100% in production 
(Garrido-Ramirez et al. 2000; Aragão and Faria 2009).

The management of silverleaf whitefly in common beans has been carried out almost exclusively using synthetic 
insecticides from different chemical groups. However, there are several reports of resistance of whitefly populations to 
active ingredients, jeopardizing the effectiveness of this control tactic (Horowitz et al. 2002; Alon et al. 2008; Houndete 
et al. 2010; Ma et al. 2010). Moreover, the abusive use of synthetic insecticides can negatively impact the environment, in 
particular the systemic insecticides that act by contact and ingestion (neonicotinoids based), cause undesirable effects on 
nontarget organisms, pollinators and natural enemies, as well as their leaching capacity in groundwater (Desneux et al. 
2007; Furlan and Kreutzweiser 2015; Alford and Krupke 2017). Thereby, around the only control method used, it makes 
necessary searching for new control strategies in an efficient and environmentally safe manner, according to the integrated 
pest management (IPM) precepts. The IPM is a dominant paradigm that guides most aspects of implementation of 
insect pest management, whose philosophy and history are well documented (Perkins 1982; Kogan 1998; Pedigo 2002).

Among alternative methods to chemical control, genetic resistance is highlighted through the cultivation of resistant 
genotypes (Smith 2005), which allows the maintenance of the pest population below the level of economic damage being 
highly compatible with other management tactics (Panda and Khush 1995; Smith and Clement 2012). Resistance is divided 
into three categories: antixenosis, antibiosis, and tolerance (Painter 1951), the latter being less common (Smith 2005). 
During this process there are behavioral or biological changes in the insects, and, in other cases, there may be a reaction 
of the plant itself, but without even affect the pest-insect (Lara 1991). Antibiosis appear when the plant adversely affects 
the biology of the insect that attempts to use it as food, interfering in its cycle of development, reproduction, and survival, 
among other biological parameters (Painter 1951; Panda and Khush 1995; Smith 2005; Baldin and Beneduzzi 2010). 
Antibiotic genotypes generally promote high mortality in the early stages, reduction of adult fecundity, reduction in larval 
and nymph size and weight, and prolongation of the immature phase (Panda and Klush 1995). The present study focused 
on the category antibiosis-resistance.

However, studies involving the characterization of bean genotypes on whitefly still have not evaluated a wide range of 
germplasm (Oriani and Lara 2000; Oriani et al. 2005; Torres et al. 2012; Peixoto and Boiça Júnior 2014; Silva et al. 2014), 
which motivated the conduction of the present study. Some genotypes of P. vulgaris have already been evaluated for resistance 
to B. tabaci biotype B, and some have been characterized as having antixenotic and/or antibiotic factors (Oriani et al. 2005, 
Torres et al. 2012; Peixoto and Boiça Júnior 2014; Silva et al. 2014).

Thus, this study evaluated the biological performance of B. tabaci biotype B confined to 17 genotypes previous selected 
from 78 genotypes, in order to characterize the possible expression of antibiosis.

MATERIAL AND METHODS

The study was carried out in a greenhouse in Botucatu, SP, Brazil (22° 85’S, 48° 26’ W), between November and December 
2017. The experiments were conducted in the greenhouse under partially controlled conditions (temperature of 25.68 °C 
with a maximum of 35.99 °C and minimum of 15.37 °C, mean relative humidity of 59 ± 10%, and natural light).

Obtaining the genotypes

The 17 bean genotypes used in this study (Table 1) were selected from preliminary trials with B. tabaci (Santos 2018). 
The commercial genotype ‘Pérola’ was included as a whitefly susceptibility standard (Silva et al. 2014). The genotypes were 
provided by the Agronomic Institute of Campinas (IAC), SP, Brazil, and by the Agricultural Research and Rural Extension 
Company of Santa Catarina (EPAGRI), Chapecó, SC, Brazil, and are a part of the Germplasm Banks of these institutions. 
Before their use in the trials, the genotypes were grown in pots (1.7 L) containing a mixture of soil (dark red latosol), 
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washed coarse sand, and autoclaved organic matter (tanned manure), in a ratio of 1:1:1 (v/v/v), and commercial substrate 
(Plantamax, Joinville, SC, Brazil) in a ratio of 3:1 (v/v). The plants were housed in a greenhouse, free from insect infestation, 
and received the fertilization recommended for the crop (Fancelli 2010). When they reached the phenological stage V3-V4 
(Valle et al. 2012), the plants were used in the trials.

Table 1. Common bean genotypes (Phaseolus vulgaris L., Fabaceae) evaluated for resistance to Bemisia tabaci biotype B and their respective 
genealogies. 

Genotype Germplasm bank Genealogy/Origin/Characteristics Resistance history

BRS Esplendor EMBRAPA It originated from the crossing CB911863/AN9123293 Not evaluated

SCS 204 Predileto EPAGRI Selected from population MN 13337 introduced from CIAT Not evaluated

BRS Estilo EMBRAPA It originated from junction EMP 250/4/A769///A429/ 
XAN 252//V8025/PINTO VI114, carried out in 1991 at CIAT

Not evaluated

BRS Notável EMBRAPA Crossing lineages A769/4/A774///A429/XAN 252//V8025/ 
G 4449//WAF 2/A55//GN31/XAN 170 Not evaluated

CHIB 06 EPAGRI Lineage obtained by the crossing between Ouro Branco 
and Iraí Not evaluated

IPR Eldorado IAC Crossing from Carioca 99 × G.N. Nebraska 1 Sel. 27 × BAT 614 Antixenosis (Silva et al. 2014)

IPR Garça IAPAR Uninformed Not evaluated

Iapar 81 IAC A248/EMP117/4/Bat 93/2/Carioca Sel.99/ 
G.N.Nebraska 1#27/3/SelAroana Antixenosis (Silva et al. 2014)

IPR Quero-Quero IAC 
Selection recurrent of genotypes BAT477, IAPAR 14, FT 84-29, 

Jalo EEP, A252, A77, Ojo de Liebre, ESAL 645, Pintado, Carioca, 
ESAL 645, P 85, P 103, H-4, AN910522, ESAL 624, Carioca MG

Not evaluated

SCS 202 Guará IAC Acess Jabola Bag IAC × IAC Tybatã Not evaluated

Arcelina 4 IAC Jalo Itararé × IAC Carioca Eté Antibiosis (Oriani and Lara 2000)

CHIP 348 EPAGRI
Accession of the Epagri germplasm bank 

(“Guarapuava black”), collected in the agricultural area of 
São Carlos - SC (collected in 2002)

Not evaluated

CHIP 300 EPAGRI Accession of the Epagri germplasm bank, collected in 
agricultural area of Chapecó - SC (collected in the 1980s) Not evaluated

Tybatã IAC Emp 81 × H853-50-2 Not evaluated

IAC Carioca Eté IAC L933 × LM30630-12-2 Not evaluated

H96A102-1-1-1-52 IAC (IAC Car. Aruã × G5686) × (Xan 251 . IAC Car. Akytã) 
× (IAC Car. Pyatã × Mar 1) × Pérola Not evaluated

Pérola IAC Selection in ‘Aporé’ Susceptible (Silva et al. 2014)

Colony of Bemisia tabaci biotype B

The initial population of B. tabaci biotype B was obtained from IAC and maintained in a greenhouse (2.5 × 2.5 × 2 m) closed 
on the sides and on the ceiling with glass and an anti-aphid screen. For the maintenance of the insects, cabbage plants [Brassica 
oleracea (L.) var. acephala] were grown in plastic pots (2.5 L), and were irrigated and replaced as needed, in order to maintain 
their nutritional quality and also the vigor of populations of B. tabaci biotype B. This population was also characterized was 
characterized before the start of the research to confirm the biotype (Walsh et al. 1991; Simon et al. 1994; De Barro et al. 2003).

Bioassays

The biological performance of B. tabaci biotype B on the different genotypes was evaluated to verify the possible expression 
of antibiosis-resistance. Accordingly, the leaves (of the middle third) of the genotypes were individualized with cages made of 
“fabric voile” tissue (15 × 15 cm), which were fixed to the petioles of the leaflets with a satin ribbon. With the aid of 
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a buccal aspirator, 150 pairs of whiteflies were collected from the breeding stock and released inside the cages, 
where they remained for 24 h, in order to obtain the eggs on the previously selected leaves. After this period, the 
cages were removed as well as the insects from the plants.

Under a stereoscopic microscope (40× magnification), the abaxial face of the leaflets was examined and an area 
containing 30 viable eggs per leaflet was delimited with Glitter (Acrilex, São Bernardo do Campo, SP, Brazil). Egg 
surplus was removed using cotton swabs (Cotonetes, Johnson & Johnson, São Paulo, SP, Brazil) (Cruz et al. 2014). 
Three pots per genotype were used and each leaflet (2 per plant) represented one replicate, totaling six replicates 
per genotype (n = 180), arranged under a randomized design.

The insects were daily observed to evaluate the following biological parameters: incubation period, duration of 
instars, total nymphal period, development period from egg to adult, mortality of nymphal instars, and nymphal viability.

Statistical analysis

The normality of residuals and homogeneity of variances were verified using the Shapiro-Wilk and Levene tests, 
respectively. When the assumptions were satisfied, the data were subjected to the analysis of variance using the 
F test and, when there was a difference between the treatments, the means were compared using the Fisher LSD test 
(p > 0.05). For all analyses, the statistical package PROC MIXED-SAS, version 9.2 (SAS Institute 2008) was used.

RESULTS

The duration of the embryonic development of B. tabaci biotype B in the different genotypes of common bean 
varied from 8.40 to 10.57 days, with the highest mean values observed in the genotypes SCS Predileto, BRS Notável, 
SCS 202 Guará, CHIP 300, and Arcelina 4 (Table 2). The genotypes Tybatã, Pérola, IPR Eldorado, and IPR Garça 
had the shortest incubation periods.

The genotypes BRS Estilo (2.48 days), Pérola (2.23 days), and Tybatã (2.20 days) differed from most of the genotypes 
(Table 2). For the second instar, the longest duration was observed in nymphs confined in CHIP 300 and CHIB 06 (7.54 
and 6.15 days, respectively), differing from the other genotypes (Table 2). Genotypes Pérola (2.62 days) and Tybatã 
(3.03 days) provided the shortest periods for the second instar of the whitefly. The highest durations for the third instar 
were verified in genotypes CHIP 348 (10.76 days), CHIP 300 (10.57 days), and IPR Eldorado (10.21 days), differing from 
most of the evaluated genotypes (Table 2). Pérola (4.23 days) and CHIB 06 (5.12 days) had the lowest average lengths for the 
third instar nymphs (Table 2). In the fourth instar, the nymphs confined to the genotypes CHIP 300, H96A102-1-1-1-52, 
Pérola, Arcelina 4, and IPR Quero-Quero presented a significant prolongation of the duration (between 6.15 and 
6.80 days), differing from most of the evaluated genotypes, mainly CHIB 06, SCS 202-Guará, SCS 204 Predileto, 
and CHIP 348 (Table 2).

There was a large variation in the total nymphal period of B. tabaci biotype B, with emphasis on the CHIP 
300 genotype (24.91 days), which extended the nymphal period by approximately nine days in comparison to the 
standard susceptible genotype (Pérola) (Table 2), differing from all other genotypes. In CHIP 348 (21.84 days) 
and H96A102-1-1-1-52 (21.60 days), intermediate prolongation was observed compared with the standard genotype, 
differing from most genotypes (Table 2). The largest prolongation of the egg–adult period was observed in the 
CHIP 300 genotype (34.22 days), which differed from all other genotypes (Fig. 1). In turn, the susceptible standard 
genotype (Pérola) had the shortest egg–adult developmental period (24.36 days) (Fig. 1).

As for the four nymphal stages of B. tabaci biotype B, no significant differences in mortality were observed among the 
genotypes for the first and third instars of the whitefly (Fig. 2). However, there was a marked mortality of second-instar 
nymphs, especially CHIP 300 (38.89%), H96A102-1-1-1-52 (30.00%), BRS Estilo (26.11%), and BRS Esplendor (23.89%), 
which differed from most of the genotypes evaluated (Fig. 2 b). In the fourth instar, high mortality rates were observed in 
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IPR Eldorado (26.11%), BRS Estilo (22.22%), Tybatã (19.44%), and IPR Garça genotypes (19.44%), differing from most of 
the genotypes (Fig. 2 d).

Table 2. Means (± SE) for incubation period, nymphal instar, and nymphal period of Bemisia tabaci biotype B in 17 common bean genotypes, 
in a greenhouse trial.

Genotype
Duration (days)

Incubation1 1st instar1 2nd instar1 3rd instar1 4th instar1 Nymphal period1

SCS 204 
Predileto 10.57 ± 0.25 a 1.84 ± 0.13 cde 3.40 ± 0.09 hg 9.00 ± 0.88 cdef 5.04 ± 0.28 ef 19.26 ± 0.71 ef

BRS Notável 10.35 ± 0.17 ab 1.78 ± 0.08 ed 4.18 ± 0.24 cdef 9.18 ± 0.25 bcde 5.63 ± 0.30 cde 20.50 ± 0.70 cde

SCS 202Guará 10.11 ± 0.20 abc 2.00 ± 0.06 bcd 3.58 ± 0.14 fgh 9.77 ± 0.26 abc 4.95 ± 0.02 ef 20.01 ± 0.33 ed

CHIP 300 10.05 ± 0.21 abc 1.66 ± 0.09 e 7.54 ± 0.39 a 10.57 ± 0.30 a 6.80 ± 0.35 a 24.91 ± 0.46 a

Arcelina4 9.96 ± 0.17 abc 1.84 ± 0.13 cde 4.44 ± 0.25 cd 7.72 ± 0.67 g 6.17 ± 0.23 abc 20.27 ± 0.74 ed

BRS Esplendor 9.80 ± 0.17 bc 1.84 ± 0.18 cde 4.23 ± 0.31 cdef 8.33 ± 0.54 efg 5.63 ± 0.36 cde 19.94 ± 0.21 ed

Iapar 81 9.72 ± 0.05 bcd 2.14 ± 0.05 bc 4.01 ± 0.03 defg 8.58 ± 0.07 defg 5.25 ± 0.08 de 19.74 ± 0.07 def

CHIP 348 9.72 ± 0.24 bcd 1.87 ± 0.04 cde 4.19 ± 0.12 cdef 10.76 ± 0.41 a 5.11 ± 0.30 e 21.84 ± 0.30 b

IAC Carioca Eté 9.69 ± 0.22 bc 1.65 ± 0.08 e 4.78 ± 0.29 c 8.57 ± 0.10 defg 5.69 ± 0.22 bcde 20.18 ± 0.13 de

IPR 
Quero-Quero 9.62 ± 0.19 cd 1.97 ± 0.07 bcd 3.91 ± 0.25 defg 9.29 ± 0.32 bcde 6.15 ± 0.32 abc 20.86 ± 0.39 bcd

H96A102-1-1-1-52 9.62 ± 0.30 cd 1.89 ± 0.07 cde 3.79 ± 0.26 defg 9.65 ± 0.34 abcd 6.74 ± 0.40 a 21.60 ± 0.46 bc

CHIB 06 9.53 ± 0.16 cde 2.05 ± 0.05 bcd 6.15 ± 0.35 b 5.12 ± 0.07 h 4.27 ± 0.04 f 18.53 ± 0.17 f

BRS Estilo 9.07 ± 0.43 def 2.48 ± 0.14 a 4.27 ± 0.40 cde 7.99 ± 0.78 fg 5.97 ± 0.64 abcd 20.58 ± 1.00 bcde

IPR Garça 8.92 ± 0.33 efg 2.14 ± 0.25 bc 4.11 ± 0.17 cdef 8.68 ± 0.30 cdefg 5.35 ± 0.19 de 20.14 ± 0.26 de

IPR Eldorado 8.86 ± 0.36 fg 2.04 ± 0.14 bcd 3.71 ± 0.08 efg 10.21 ± 0.22 ab 5.63 ± 0.10 f 20.51 ± 0.25 cde

Pérola 8.66 ± 0.17 fg 2.23 ± 0.00 ab 2.62 ± 0.01 i 4.23 ± 0.02 h 6.44 ± 0.02 ab 15.73 ± 0.02 g

Tybatã 8.40 ± 0.04 g 2.20 ± 0.05 ab 3.03 ± 0.03 hi 8.87 ± 0.04 cdefg 5.63 ± 0.07 cde 19.52 ± 0.07 ef

F 6.61 3.88 22.35 16.56 7.31 16.70

df 16.81 16.81 16.81 16.81 16.81 16.81

p value <0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
 
1Means followed by the same letter in the column do not differ statistically from one another by the Fisher LSD Test (p > 0.05).

Figure 1. Means (± SE) of the development period from egg to adult (in days) of Bemisia tabaci biotype B in 17 common bean genotypes, in a 
greenhouse trial. Means followed by the same letter in the column do not differ statistically from each other by the Fisher LSD Test (p > 0.05).
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Figure 2. Means (± SE) of mortality per nymphal instar of Bemisia tabaci biotype B when confined in 17 common bean genotypes. Means 
followed by the same letter in the column do not differ statistically from each other by the Fisher LSD Test (p > 0.05).

The highest nymphal viability (85%) was observed in the Pérola genotype, which differed from the other evaluated 
materials (Fig. 3). The genotypes CHIB 06 (29.13%), Arcelina 4 (29. 44%), CHIP 300 (30%), BRS Estilo (34.16%), and IPR 
Eldorado (35.55%) showed the lowest viability indexes for the immature phase of the whitefly (Fig. 3).

Figure 3. Means (± SE) of the percentage of nymphal viability of Bemisia tabaci biotype B in 17 common bean genotypes, in greenhouse. 
Means followed by the same letter in the column do not differ statistically from each other by the Fisher LSD Test (p > 0.05).
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DISCUSSION

Reportedly, phytophagous insects consume large amounts of tissues and suck sap of various plant structures, despite 
the immense variation in the amount of nutrients, as well as the existence of innumerable physical and chemical barriers 
developed by plants to inhibit or prevent the attack (Bernays and Chapman 1994). However, the acceptance or rejection of 
host plants by insects depends on defense responses used by plants. Thus, successful colonization of pest insects depends 
on the presence or absence of various secondary metabolites associated with the possible host plant (Douglas 2018).

In general, insects attempting to colonize plants with antibiosis resistance, that is, plants with the capacity to affect 
their biology, present reductions in size and weight, diverse deformities, and prolongations in the lifecycle phases and, 
consequently, high mortality rates (Painter 1951). In the present study, the incubation period of the whitefly eggs in some 
of the evaluated genotypes was observed; in similar studies, the incubation period of the eggs of B. tabaci biotype B in bean 
genotypes ranged from 8.00 to 11.00 days (Torres et al. 2012; Peixoto and Boiça Júnior 2014). In the present study, the Tybatã 
and Pérola genotypes had the shortest incubation periods (8.40 and 8.66 days, respectively), consistent with the study by 
Peixoto and Boiça Júnior (2014), who observed that the incubation periods for these two genotypes ranged from 8.03 to 8.59 
days. The change in the incubation period may be associated with biochemical causes related to common bean genotypes, or 
even to environmental factors (Smith 2005). Some authors suggest that the pedicel, besides fixing eggs on the plants, works 
absorbing water and even other compounds present on the plant, interfering on the whitefly embryonic development on 
common bean (Gameel 1974, Byrne and Bellows Junior 1991). In another study with B. tabaci biotype B in common bean, 
authors suggest that prolonged incubation periods might be influenced by low temperatures and humidity (Oriani and 
Lara 2000). However, in the present study these factors have not been evaluated and may be considered in further studies.

Genotype CHIP 300 (24.91 days) prolonged the nymphal period of the whitefly by approximately nine days compared 
with the susceptibility-standard genotype, Pérola (15.73 days). Such an extension may be associated with the presence of 
morphological factors, such as waxiness and/or trichomes (Glas et al. 2012), or even by chemical factors associated with 
resistance (Bernays and Chapman 1994; Smith 2005; Douglas 2018). The high prolongation of the instars from insect pests 
in the genotypes CHIP 300, CHIP 348, and H96A102-1-1-1-52 suggests the occurrence of antibiosis and/or antixenosis 
type resistance in the respective genotypes (Painter 1951).

The largest prolongation from egg to adult was observed in the genotype CHIP 300 (34.22 days), which required approximately 
10 days more to complete the cycle compared with the susceptible Pérola genotype (24.36 days). This may be due to a lower 
nutritional adequacy or the presence of antibiotic factors in this genotype, which are aspects that must be better investigated 
in future studies. Based on the available literature, the duration of the egg to adult period varies between bean genotypes, 
and there are reports of periods between 16.20 and 41.00 days (Oriani and Lara 2000; Torres et al. 2012). Some references 
reported a large variation in the development period of the whitefly on cowpea genotypes (Cruz et al. 2014), cabbage (Villas 
Bôas et al. 1997), cotton (Prado et al. 2015), soybean (Cruz and Baldin 2016), tomato (Baldin et al. 2005), squash varieties 
(Baldin and Benduzzi 2010), melon (Baldin et al. 2012) and, more recently, peppers, where a duration of 30.25 days was 
observed (Pantoja et al. 2018), similar to the present study.

The genotypes CHIB 06 (29.13%), Arcelina 4 (29.44%), CHIP 300 (30.00%), BRS Estilo (34.16%), and IPR Eldorado 
(35.55%) caused low nymphal viability, also suggesting the expression of antibiosis resistance. However, some plants have 
combinations of chemical and morphological resistance factors with extremely inhibitory effects on insect-pest performance, 
making it difficult to isolate the causes related to antibiosis and/or antixenosis, as discussed by other authors (Panda and Khush 
1995; Smith and Clement 2012).

In a study with the genotypes Iapar 81 and IPR Eldorado, high nymphal viability of whitefly was verified, with rates of 88.70 and 
69.30%, respectively (Silva et al. 2014), in contrast to the present study, where viability in the two genotypes did not exceed 45%. 
These divergences are probably associated with the methodological or climatic differences (uninformed temperature) employed 
in the study of these authors. Other studies reporting low rates of nymphal viability of whitefly to antibiosis were also described in 
different hosts, such as cowpea (45.50 to 89.10%) (Cruz et al. 2014), soybean (68.60% to 89, 60%) (Cruz et al. 2016), zucchini (36.10 
to 100%) (Baldin and Beneduzzi 2010), and peppers (0 to 25%) (Pantoja et al. 2018). As they negatively affect the performance 
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of the insect’s immature stages, the plants with antibiosis commonly cause high rates of nymphal or larval mortality, compromising 
the emergence of adults (Painter 1951; Panda and Khush 1995; Smith 2005), as verified in some genotypes in the present study.

The genotypes that demonstrated high levels of mortality in the different nymphal stages were CHIP 300, BRS Estilo, Arcelina 4, 
IPR Garça, and Tybatã. The mortality increased from the second instar, probably owing to increased insect feeding activity. Although 
the five genotypes showed a significant deleterious effect on the whitefly nymphs, it was observed in the CHIP 300 genotype that 
the effects were more intense, with common findings of individuals with deformities (Fig. 4 b), and difficulties in the molting 
processes (Fig. 4 d) and adult emergence (Fig. 4 f), compared with the same-stage individuals confined to the susceptible Pérola 
genotype (Fig. 4 a, c, e). The images (Fig. 4 b, d, f) indicate antibiosis as a mechanism of resistance in these genotypes. However, 
new studies are required to further elucidate the possible role of chemical resistance factors such as enzyme inhibitors or antibiotic 
compounds (alkaloids, flavonoids, and terpenoids) (Kubo and Hanke 1986) involved in the resistance of these materials.

Although the studies that characterized the expression of antibiosis in bean genotypes to whitefly are scarce, some 
authors have suggested that secondary compounds could be responsible for the negative effects on the biology of B. tabaci 
biotype B, as seeing in a study carried out with the Arcelina bean genotype 4 cultivated during the dry season, the nymphal 
mortality index of 80% of B. tabaci biotype B was verified (Oriani and Lara 2000). In the study, the authors suggested the 
presence of the arcelin protein as a possible resistance factor in the tested genotype, which may be responsible for the high 
mortality of insect nymphs. In soybean crop, it has been suggested that flavonoid-bearing genotypes may also negatively 
affect the biology of the whitefly (Vieira et al. 2016). In cotton genotypes, the presence of higher levels of gossypol in certain 
materials was negatively correlated with the biology of B. tabaci biotype B (Guo et al. 2013).

Figure 4. Different stages of development of Bemisia tabaci biotype B observed on leaflets of the susceptible bean genotypes Pérola (a, c 
and e) and of the CHIP 300 antibiotic resistant (b, d and f).

(a) (c) (d) (e) (f)(b)

CONCLUSION

Considering all the results obtained in the biological performance tests of B. tabaci biotype B in common bean genotypes, 
it was verified that the CHIP 300 genotype caused a greater prolongation of the egg to adult period of B. tabaci biotype B, 
indicating the expression of antibiosis and/or antixenosis. In addition, CHIP 300 and the genotypes BRS Estilo, Arcelina 4, 
IPR Garça, Tybatã, IPR Eldorado, H96A102-1-1-1-52, and CHIB 06 negatively affected the development (viability) of the 
whitefly, indicating high levels of resistance through antibiosis and/or antixenosis. However, the resistance factors associated 
with these materials must be better investigated by characterizing the biochemical composition of these genotypes. Thus, 
these genotypes may constitute important sources of resistance to B. tabaci biotype B for breeding programs to obtain 
resistant cultivars.
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