
ABSTRACT: Rhodiola rosea L. is an endangered medicinal plant distributed in mountains 

and in high latitude regions. For its conservation, sustainable methods for the obtaining of its 

bioactive compounds must be developed. This work hypothesized that leaf, stem and rhizome 

explants of R. rosea from different geographical origins respond differently to inoculation with 

Rhizobium rhizogenes agropine strain ATCC43057. The objective was to generate R. rosea hairy 

roots (HRs) containing rol-genes. These HRs could be cultivated under axenic conditions for 

the extraction of the medical compounds rosavinoids and salidroside. Hereby, production of 

bioactive compounds could be improved per plant biomass. Thirteen R. rosea accessions 

of Alpine, Scandinavian, Nordic Gene Bank (NGB) and Russian origins were compared for 

their explant survival and HR formation. Significant differences were observed among plants 

from different geographical origins, where the NGB leaf explants exhibited up to 70% of HR 

formation and the Russian accessions did not exhibit HRs at all. Moreover, maintaining explants 

in light conditions after R. rhizogenes inoculation resulted in higher explant survival and HR 

formation rate (35%) when compared with explants kept in darkness (9%). Taken together, an 

efficient HR formation in roseroot by inoculation of R. rhizogenes following culturing in light was 

reported as a required step. This work represents a stepping-stone to R. rosea HR cultivation 

in bioreactors as well as regenerating whole plants. Hence, it is initiating a novel route towards 

high-throughput production of bioactive compounds as well preventing depletion of natural 

roseroot populations.
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INTRODUCTION

The medicinal plant Rhodiola rosea L. (roseroot, golden root or arctic root) has multiple uses in traditional and 
modern medicine, such as treating mental and physical fatigue, stress-induced depression, anxiety and high-altitude 
sickness (Anghelescu et al. 2018). Its wide application range is based on its health-promoting and adaptogenic properties, 
including mental and physical stimulation (avoiding fatigue and stress) (Zhang et al. 2016; Bangratz et al. 2018). The plant’s 
pharmacological activity is based on the phenylpropenoid compound rosavin and its derivatives, which are only present 
in R. rosea, and salidroside, found in most Rhodiola species (Peschel et al. 2018).

Increasing demand of R. rosea-derived products has led to over-exploitation of plants from their natural habitats, 
which has placed R. rosea as an endangered species in several countries and posing the imminent risk of low quality and 
adulteration of roseroot related products (Booker et al. 2016). Since cultivation of this plant is challenging and costly, new 
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sustainable approaches for obtaining R. rosea products are needed to avoid depletion of its natural sources. In roseroot, 
several clonal propagation approaches targeting both the content of secondary metabolites and conservation have been 
pursued e.g. induction of organogenic and callus cultures, regeneration, and micropropagation. However, the outcome 
often varies significantly (as reviewed by Tasheva and Kosturkova 2012a; Grech-Baran et al. 2015). A promising strategy 
for the enhancement of bioactive compounds in plants is the insertion of root oncogenic loci (rol) genes from the soil-born 
bacterium Rhizobium rhizogenes, which has been reported to increase the content of ginsenosides in Panax ginseng (Kochan 
et al. 2018), artimisinin in Artemisia spp. (reviewed by Kayani et al. 2018), among other medicinal plants (Singh et al. 2018).

The distinctive morphology of hairy roots can allow a marker-free selection of the successful inoculations (Weber et al. 2008; 2010; 
Dehghan et al. 2012). The objective of the current study was to establish hairy root cultures (HR) of R. rosea following transformation 
with R. rhizogenes. The effect of different explants from thirteen accessions of this endangered species from the Alps, Russia, Scandinavia 
and the Nordic Gene Bank have been studied and presented in this paper. This work hypothesize that leaf, stem and rhizome explants of 
R. rosea from different geographical origins respond differently to inoculation with Rhizobium rhizogenes agropine strain ATCC43057.

MATERIALS AND METHODS

Plant material

As R. rosea is known to be recalcitrant, different phenotypes/accessions of the species were tested. A total of 13 R. rosea 
accessions were used; R. rosea plants from Russian (R1 and R2), Scandinavian (S1 and S2) and Alpine (A1 and A2) origin 
(Strictly Medicinal, Williams, OR, US) as well as plants from the Nordic gene bank in Øsaker, Østfold, Norway (NGB1 to 
NGB7) were kindly provided by Gitte Bjørn Kjeldsen, Agrotech, Taastrup, Denmark. Rhodiola rosea plants of group A were 
revived from dormancy period in August 2016 (NGB1-5, 7) and group B plants were revived in December 2016 (A1, A2, 
R1, R2, S1, S2 and NGB6). Prior to inoculation, harvested leaves were surface-sterilized in 70% (v/v) ethanol for 1 min, 
followed by 15 min in 1.5% NaOCl (v/v) (AppliChem Panreac, Darmstadt, Germany) and 0.03% Tween20 (v/v) (MERCK, 
Hohenbrunn, Germany). Once sterilized, leaves were rinsed 3 times in sterile water and dried on sterile filter paper.

Inoculation with Rhizobium rhizogenes

The experiment targeted comparison of various R. rosea plant accessions as well as plant organs in respect to hairy root 
formation. Leaves, stems and rhizomes of R. rosea were inoculated with R. rhizogenes agropine strain ATCC43057 containing 
plasmid pRiA4 (Slightom et al. 1985; Jouanin et al. 1987). The inoculation process was based on Hegelund et al. (2017) 
with minor modifications. Bacteria were grown in malt, yeast and agar (MYA) medium (Tepfer and Casse-Delbart 1987).

Following sterilization, the base of the R. rosea leaves was cut off, in order to create fresh wounds for inoculation and these pieces 
were immersed into either inoculation (R. rhizogenes in MYA OD600 = 0.5) or control (MYA) solution for 30 min. Subsequently, 
explants were dried on filter paper, transferred to cocultivation media [half strength Murashige and Skoog medium (Murashige 
and Skoog 1962) with vitamins (Duchefa Biochemie), 15 mg·L-1 acetosyringone (Sigma-Aldrich, St. Louis, MI, USA), 4·gL-1 
gelrite (Duchefa Biochemie), pH 6] and incubated in darkness at room temperature for 48 h. The explants were then washed in 
sterile water containing 10 mg·L-1 timentin (ticarcillin/clavulanate, 15:1 mixture, Duchefa Biochemie), dried on filter paper and 
transferred to R-medium which consisted of half strength MS with 100 mg·L-1 timentin and 0.5 mmol·L-1 arginine (Sigma-Aldrich).

Hairy root induction

The effect of four genotypes, i.e. Alpine, Scandinavian, NGB and Russian, separated in two growth locations, i.e. outdoor 
and greenhouse, in the responsiveness to R. rhizogenes A4 was tested. Additionally, the light inducing effect was investigated 
by keeping explants either in darkness or in light (225 µmol·m-2·s-1) after cocultivation. Following inoculation, the explants 
were kept at room temperature and regularly monitored for first HR appearance (days), explants with HR, HR formation 
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rate (%) and contamination (%), i.e. fungi and/or bacterial growth. As a WT strain of R. rhizogenes, i.e. no antibiotic selection 
marker was used in the inoculation. Explants of Kalanchoë blossfeldiana ‘Molly’, highly responsive to this bacterial strain 
(Christensen et al. 2008), were used as a positive control. The HR clusters were separated from the explant once 2 cm growth 
was achieved, followed by maintenance in R-medium and sub-cultured to fresh medium every three weeks.

DNA extraction and polymerase chain reaction (PCR)

Hairy roots were harvested after approximately 9 weeks and minimum 3 series of subculturing to ensure the establishment of axenic 
putatively transformed lines. The DNA was extracted from the hairy roots with the DNA isolation kit from TaKaRa-Clontech (TaKaRa 
Bio Inc., Shiba, Japan) according to the manufacturer’s instructions. A NanoDrop (ThermoFischer, Waltham, MA, US) was used to 
measure DNA concentration and purity. Specific primer sets for fragments of rolB, aux1, virD2 and Rractin (control) (Table 1) were 
used. Polymerase chain reaction products were amplified in a DNA thermal cycler (MyCycler, Biorad, Hercules, CA, USA) with the 
following program: 95 °C for 10 min, 40 cycles of [95 °C for 30 s, 57 °C for rolB and aux1 / 52 °C for virD2 and Rractin for 30 s, 72 °C 
for 30 s] and 72 °C for 7 min. For separation of the amplified PCR products, these were mixed with GelRed (Biotium, Hayward, CA, 
USA) and subjected to TAE 1.5% agarose gel electrophoresis at 100 V for 55 min. Finally, the products were visualized under UV-light.

Table 1. Polymerase chain reaction (PCR) primers.

Gene Sequence Product size (bp)

rolB* 5´-GATATCCCGAGGGCATTTTT-3´ 
5´-GAATGCTTCATCGCCATTTT-3´ 182

Aux1  5´-CATAGGATCGCCTCACAGGT-3´
5´-CGTTGCTTGATGTCAGGAGA-3´ 199

VirD2  5´-AGTCGTGATCGCAAGGAGAT-3´
5´-TGTCTCCAATGCAATCCGTA-3´ 445

Rractin 5´-TGGAGAAGATCTGGCATCAC-3´
5´-CAGCCTGAATGGCAACATAC-3´ 171

*Lütken et al. 2012. VirD2 and Rractin primers were designed using NCBI sequences from Rhizobium rhizogenes agropine strain ATCC43057 and JX431891.1, 
respectively as queries in Primer 3 (http://bioinfo.ut.ee/primer3-0.4.0/)

Statistical analysis

All the statistic studies were performed with the GraphPad Prism 7.03 program, where significance was assessed through 
t-test (p < 0.05). The transformation overview is presented in Table 2. Each individual plant provided explants to at least two 
independent transformation experiments on which the number of explants varied according to availability, ranging from 20 to 80.

RESULTS AND DISCUSSION

In the current study, hairy roots were successfully induced from leaves of R. rosea  (Fig. 1) of diverse geographical origin 
by R. rhizogenes strain A4. In addition, different culture conditions were evaluated in terms of viability of surface sterilized 
explants and HR formation rate. This represents an initial step towards the obtaining of a transformed R. rosea plant.

Cultivating R. rosea in greenhouse decreased in vitro contamination

Leaf explants from experiments TE1-TE3 were collected from plants kept outdoor (Taastrup, Denmark) (TE1 and TE2 
from plant NGB1 and TE3 from plant NGB2), which caused a high contamination rate (100% in TE2 and TE3) and the 
discard of the plant material. Such difficulties related to the surface sterilization of R. rosea plants from collected wild 
material were also reported by Khapilina et al. (2016) and Tasheva and Kosturkova (2010), who tested several sterilization 

http://bioinfo.ut.ee/primer3-0.4.0/
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Table 2. Overview of inoculation experiments. †: HR = hairy roots,  : Rr = Rhodiola rosea, ‡: Kb = Kalanchoë blossfeldiana

Transformation 
event (TE)

Plant 
material

Plant 
species 

Dormancy 
revival

Transformed 
(+) / 

control (-)

Plant 
location 

outdoor(O)/
greenhouse 

(G)

In vitro 
conditions 

light /
darkness

Number 
of 

explants

First 
HR† 

(days)

Explants 
with HR

HR 
formation 
rate (%)

Contamination 
rate (%)

TE1
NGB1 Rr 8/16 + O 53 - - - 46

NGB1 Rr 8/16 - O 26 - - - 75

TE2
NGB1 Rr 8/16 + O 79 - - - 100

NGB1 Rr 8/16 - O 34 - - - 100

TE3
NGB2 Rr 8/16 + O 67 - - - 100

NGB2 Rr 8/16 - O 31 - - - 100

TE4
NGB3 Rr 8/16 + G 80 27 15 18.8 0

NGB3 Rr 8/16 - G 32 - - - 0

TE5
NGB3 Rr 8/16 + G 40 - - - 25

NGB3 Rr 8/16 - G 21 - - - 0

TE6
NGB4 Rr 8/16 + G 61 29 5 8.2 0

NGB4 Rr 8/16 - G 23 - - 0

TE7

NGB5 Rr 8/16 + G 38 36 7 18.4 0

NGB5 Rr 8/16 - G 21 - - - 0

NGB6 Rr 12/16 + G 53 14 36 67.9 0

NGB6 Rr 12/16 - G 27 - - - 0

TE8

NGB7 Rr 8/16 + G 50 26 10 20 -

NGB7 Rr 8/16 - G 25 - - - -

R1 Rr 12/16 + G 50 - - - 16.6

R1 Rr 12/16 - G 25 - - - -

S1 Rr 12/16 + G 50 20 6 12 -

S1 Rr 12/16 - G 25 20 3 12 -

A1 Rr 12/16 + G 50 23 2 4 17

A1 Rr 12/16 - G 25 18 3 12 -

TE9

S1 Rr 12/16 + G 40 22 5 12.4 16.6

S1 Rr 12/16 - G 20 26 1 5 33.2

A1 Rr 12/16 + G 40 - - - 67.6

A1 Rr 12/16 - G 20 - - - 33.2

TE10

R2 Rr 12/16 + G 50 - - - 16.6

R2 Rr 12/16 - G 25 - - - -

S2 Rr 12/16 + G 50 - - - 33.2

S2 Rr 12/16 - G 25 - - - -

A2 Rr 12/16 + G 50 35 11 22 -

A2 Rr 12/16 - G 25 - - - -

TE11

R2 Rr 12/16 + G 50 - - - -

R2 Rr 12/16 - G 25 - - - 33.2

S2 Rr 12/16 + G 50 - - - 20

S2 Rr 12/16 - G 25 - - - -

A2 Rr 12/16 + G 50 32 5 10 16.6

A2 Rr 12/16 - G 25 - - - -

Positive 
control

Kb‡ - + G 20 14 20 100 0

Kb - - G 10 - - - 0
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methods on different explant tissues, and only 3 out of 14 combinations resulted in successful decontamination. Moreover, 
it is also likely that some of the contamination encountered could be due to overgrowth of R. rhizogenes, and additional 
washes with 10 mg·L-1 timentin and several rounds of subculture were conducted to inhibit R. rhizogenes (data not shown).

In order to avoid severe contamination due to an uncontrolled environment, the subsequent transformation experiments 
were performed using material from plants kept in a greenhouse environment for a week prior to inoculation. This resulted 
in much lower contamination rates for the greenhouse plant material (TE4-12) with an average contamination of 9% versus 
outdoor sourced (TE1-3) with an average of 86% (Table 2).

In vitro light exposure positively influenced hairy root formation

To investigate the optimal growth conditions to induce HR formation, the presence or absence of light on the HR regeneration 
phase were investigated. This study found that the inoculated explants produced more HR (35 ± 4 %) under constant light, while 
the explants kept in darkness conditions had lower HR formation (9 ± 1%) (Fig. 2 a). This dynamic change is described in the dark 
TE1-6 and light-conditioned T7-11 (Table 2). In more details, TE4 using leaves from NGB3 exhibited the first hairy root (HR) 
27 days after inoculation and the percentage of explants forming HRs reached 19%. TE5 was also performed on plant material 
from NGB3 as a repetition. However, the plant utilized in the experiment exhibited yellowish and weak leaves and the explants 
did not develop hairy roots. Hence, lack of consistency among independent inoculation experiments were generally encountered.

As reflected in the literature (Flem-Bonhomme et al. 2004; Grech-Baran et al. 2014), plant explants transformed with R. rhizogenes 
are typically kept in darkness for root formation, emulating roots naturally growing inside soil where there is no light. However, 
R. rosea is a plant that grows in northern regions, where light intensity is high and days are long during summer (Li et al. 2016). 
Moreover, periodic light was proven to have a positive effect on the performance of the tissue and the root generation in in vitro 
cultures of Glycine max and Agastache foeniculum by modulating organogenesis and growth (Nourozi et al. 2016; Chen et al. 
2018). Therefore, in the present work a novel strategy was pursued to compare the effect of darkness and light on explant survival.

In a pilot experiment, 24 explants from a R. rosea plant of Russian origin were placed in darkness and 24 explants of the same 
plant were subjected to a light intensity of approximately 225 µmol·m-2·s-1 and a light period of 16 h. After 17 days, the explants 
kept in darkness started exhibiting necrosis, while explants kept in light still maintained their green color (data not shown). 
This showed that R. rosea explants kept in light displayed longer viability than those kept in darkness. Leaf morphology was 
variable among plants from different geographical origins (Fig. 3) and they also responded differently to inoculation 

(a)

(d)

(b)

(e)

(c)

(f)

Note: (a) 2 days, (b) 1 week, (c) 2 weeks, (d) 4 weeks, (e) 6 weeks, (f) 8 weeks. Bars represent 1 cm.
Figure 1. Representative stages of hairy roots on leaves of Rhodiola rosea transformed with Rhizobium rhizogenes.
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(Fig. 2 b). Hence, the interplay between plant origin, genotype and leaf morphology is an important factor to take 
into consideration.

Overall, statistical analysis revealed that HR formation rate was significantly (p < 0.001) higher when the explants 
were kept in light prior to inoculation (Fig. 2a). This is supported by Siegień et al. (2013), who tested the effect of 
light on shoot regeneration and root genesis on explants and sterile plantlets of Linum usitatissimum. In that study, 
explants exhibited 30% higher shoot regeneration when cultured in light than when cultured in darkness, and root 
formation was similar in both conditions. Light has also proven to have a positive effect on Artemisia annua hairy 
root cultures obtained by inoculation with R. rhizogenes. In that study, hairy root cultures were exposed to five 
different light intensities. The lowest hairy root growth was observed in darkness and hairy root growth was greater 
as light intensity increased (Liu et al. 2002). However, another study performed on Stevia rebaudiana reported that 
hairy root organogenesis should be induced in darkness, while the subsequent growth of HR-cultures performed well 
only under continuous light of approximately 40 μmol photons·m-2·s-1 (Pandey et al. 2016). From these contradictory 
results, it can be deducted that the effect of light on organogenesis and performance of in vitro plant cultures differs 
significantly among plant species.
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Note: (a) Effect of light on HR formation rate, (b) influence of geographical origin on HR formation rate. * = p < 0.05, *** = p < 0.001.
Figure 2. Effect of light and geographical origin in response to transformation.

(a) (c)(b) (d)

Note: (a) NGB, (b) Alpine, (c) Scandinavian, (d) Russian. Bars represent 1 cm.
Figure 3. Morphological differences between plants.

Leaves were the most responsive tissue to transformation

Moreover, in TE5, stem explants were also used in order to test a different plant organ. However, the explants exhibited 
necrosis 2 weeks after inoculation (data not shown). Similarly, rhizomes were assessed as source of explants for inoculation, 
however no response was observed in terms of HR formation, and severe contamination developed and all the plant material 
died fast (data not shown).
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Geographical origin strongly affected the transformation rate

Several attempts succeeded in generating micropropagated vegetative material of R. rosea species (Tasheva and Kosturkova, 
2010; 2013; 2014). However, when conducting Rhizobium-mediated inoculation of R. rosea leaves and calli, Tasheva and 
Kosturkova (2012 b) observed that most of the explants were dead, infected or exhibited necrosis within 2–4 weeks after 
inoculation. In the current study, HR formation was observed on leaf explants originating from the Nordic Gene Bank, 
Alpine, and Scandinavian regions, leading to the first successful report of HR formation in this species.

Moreover, the HR formation rate in NGB and Alpine plants in inoculations where explants were kept in light conditions 
was significantly higher (p < 0.001 for NGB and p < 0.05 for Alpine) than in explants of Scandinavian and Russian origin 
(Fig. 2b). Rhodiola rosea is a highly variable species, and major morphological differences are observed not only among plants 
from different countries but also among accessions from the same country (NGB 2005; Serebryanaya and Shipunov 2009). 
Likewise, morphological differences among the plants from different geographical origin (Nordic Gene Bank, Scandinavian, 
Russian, Alpine) were observed in the present study (Fig. 2b). This high variability can affect the way R. rosea responds to 
inoculation with R. rhizogenes. This is in accordance with results revealed in this work, where plants grown at the same 
conditions, but with different geographical origins, responded differently to inoculation with R. rhizogenes.

Hairy root phenotype was confirmed by PCR

In the current study, an agropine R. rhizogenes strain was used, hereby the transferred (T) DNA is part of a root inducing 
(Ri) plasmid, which harbors two distinct regions. The TL-DNA contains the rol-genes rolA, rolB, rolC and rolD, among others 
(Tepfer 2017; Otten 2018; Desmet et al. 2019), while the TR-DNA carries two genes involved in auxin synthesis (aux1 and 
aux2) (Camilleri and Jouanin 1991) and a rolB homolog, called rolBTr (Bouchez and Camilleri 1990). TL and TR regions of 
the Ri-plasmid can be integrated in the plant DNA independently, but the hairy root development is mainly attributed to 
the presence of the rol-genes from the TL region (Halder and Jha 2016). This system is often preferred to plant/cell callus and 
suspension cultures as it has a strong potential of mimicking the multienzyme biosynthetic potential of the parent plants with 
a relative low-cost production and without significant loss of metabolic activity (Banerjee et al. 2012; Häkkinen et al. 2016).

In order to confirm successful transformation, hairy roots derived from different accessions (NGB, Alpine and 
Scandinavian) were selected for PCR analysis. The rolB fragment represents the TL-DNA integration into the plant genome, 
and its presence was detected in all the putatively transformed samples, and it was absent in the nontransformed sample 
(Fig. 4). Hence, R. rosea – although being in the same family (Crassulaceae) as Kalanchoë – seems not to form adventitious 
roots to a similar extend (Christensen et al. 2008). Additionally, nontransformed adventitious “hairy-looking” roots can 
develop from non-inoculated tissue. This process is highly dependent on the plant species being transformed and up to 50% 
adventitious root formation has been observed on non-inoculated leaf explant in comparison to inoculated (Christensen 
et al. 2008). Hence, this issue needs to be taken in to consideration when assessing the hairy-root formation. An aux1 
fragment was chosen as representative for TR-DNA and was only present in the NGB transformed sample, indicating the 
combined TL+/TR+ insertion. The independent integration of TL and TR-DNA into the plant genome has a ratio favoring 
TL insertion alone instead of both TL and TR (Roychowdhury et al. 2015; Halder and Jha 2016), which was also the case 

Note: 1. NGB transformed, 2. Alpine transformed 1, 3. Alpine transformed 2, 4. Scandinavian transformed, 5. Scandinavian nontransformed, 6. Water, 7. R. 
rhizogenes A4 Ri-plasmid.

Figure 4. PCR products from DNA from hairy roots.

1 2 3 4 5 6 7

rolB

aux1

virD2

Rractin
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observed in this study. Moreover, a virD fragment, which is a part of the Ri-plasmid not integrated in the plant genome, 
was only present in the plasmid (positive control). Hence, absence of contamination by R. rhizogenes in the samples was 
demonstrated, verifying that the lines were true transformants. Rractin was chosen as a reference gene for R. rosea; however, 
only 2 of the 5 samples showed presence of this gene fragment (Fig. 4), likely due to the un-sequenced status of R. rosea 
and its high genetic variability (György et al. 2012). Although, further growth of the obtained HRs, both in Erlenmeyer 
flasks and bioreactors, was not achieved (data not shown), this work represents a stepping-stone to R. rosea HR cultivation 
as well as regeneration of whole plants. Hence, a novel route towards high-throughput production of bioactive compounds 
in HRs as well preventing depletion of natural roseroot populations is being outlined.

CONCLUSION

This study reports, for the first time, effective transformation of R. rosea with R. rhizogenes and the obtaining of viable 
hairy root cultures. The results indicated that light has a positive effect on survival of leaf explants of R. rosea after bacterial 
inoculation and resulted in higher HR formation rates. Additionally, differences in response to inoculation of R. rosea plants 
from different geographical origin, genotype and morphology were observed. Overall, the plant material provided by the 
Nordic Gene Bank was the most responsive to R. rhizogenes inoculation. Therefore, further studies on superior HR lines 
from this source should be conducted towards the obtaining of transformed R. rosea plants.
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