
ABSTRACT: There is little information on how different spatial arrangements affect modern maize hybrids under irrigation in the maize 

second growing season in Brazil. The objectives of this study were to evaluate the performance of maize genotypes with different canopy 

architecture as a function of different spatial arrangements in the Southeast Brazil. Two maize hybrids with semi-erect (DKB 390) and erect  

(DKB 230) leaves were cultivated during the second season and evaluated for different plant densities (4, 7 and 10 × 104 plants·ha−1) and 

row spacings (0.25, 0.50 and 1.00 m), under irrigation in a tropical environment. The increase in plant density increased plant height and 

ear insertion height, but reduced stalk diameter. The absorbed photosynthetically active radiation and the leaf area index also increased 

in higher plant densities, with a reduction of the SPAD index. The increase in plant density enhanced grain yield, however, there was no 

difference of yield between different row spacings. The hybrid DKB 230 (upright leaves) showed greater yield potential compared to DKB 

390 (semi-upright leaves). The critical leaf area index was 5.2 and 4.3 for the hybrids DKB 230 and DKB 390, respectively. The estimated 

plant density that provides the maximum yield are 9.7 × 104 and 8.8 × 104 plants·ha−1 for the hybrids DKB 230 and DKB 390, respectively.
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INTRODUCTION

Maize is one of the most cultivated cereals in the world, which produced an average of 1.15 billion tons per year in the last three 
seasons, and Brazil is the third largest producer in the world, after the United States and China. Brazil produced, on average from 
2015/2016 to 2017/2018 growing seasons, 81.5 million tons per year (CONAB 2021), equivalent to 7.1% of the world production 
(FAO 2020). Maize is among the main agricultural commodities produced in Brazil, only in the 2019/2020 growing season an 
area of 18.5 million hectares was cultivated with this crop, of this total, 74% comes from the second season (CONAB 2021).

Maize cultivated in the second cropping is usually sown between January and April, after soybean or dry beans. Cultivation 
in this period of the year subjects plants to different conditions of solar radiation, photoperiod, temperature and water 
availability when compared to maize cultivated in the main season. However, this is not always considered when positioning 
the recommended plant spatial arrangements for the cultivars, that is, plant density and row spacing.

The plant spatial arrangement of maize is related to sowing, which is recognized to be one of the crop management 
practices that most affects crop yield (Ferreira et al. 2019). As production costs have increased in recent years, it is necessary 
for growers to seek for a spatial arrangement, i.e., seeding rate and row spacing, that maximize yield.
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Crop yield depends on the ability of the vegetation cover to intercept adequately the incident photosynthetic active 
radiation, which is a function of the available leaf area, the canopy architecture and the light conversion efficiency 
(Bhattacharya 2019). Plant arrangement can be adjusted through plant density, row spacing and plant distribution in 
the row, where variations in the distance between plants in the row and between rows results in different crop spatial 
arrangements (Almeida Júnior et al. 2018). The plant spatial arrangement aims to distribute the canopy morphological 
structure to increase the ability to intercept light (Baret et al. 2018; Caron et al. 2012), its photosynthetic efficiency (Evers 
and Bastiaans 2016) and the overall crop yield (Zhai et al. 2017). The canopy light distribution influences the energy 
balance, the accumulation of biomass, the growth and development of plants (Wiechers et al. 2011; Caron et al. 2012).

In the past, the ideal maize plant density ranged from 5.5 to 7.2 × 104 plants·ha–1 (Fancelli and Dourado Neto 2000). 
Some studies suggest that high plant densities may increase the maize yield in modern cultivation, but for this a genotype 
with adequate plant architecture is necessary (Liu et al. 2017) and also resistant to lodging (Sher et al. 2017). With the 
transformations in the maize plant provided by genetic improvement in modern hybrids, it is necessary to evaluate their 
performance, especially for the second growing season under irrigation.

Higher maize plant densities, otherwise, can result in increased plant sterility and, therefore, lower yield. On the other 
hand, lower plant densities can also result in lower yield (Fawcett et al. 2017). It is necessary to look for an adequate spatial 
arrangement for each hybrid and each sowing season. The recommended sowing density for maize in second season is 
about 20% lower than that indicated for the main season, due to the greater probability of water deficit throughout the 
crop cycle, but in irrigated systems it is not a limitation.

In the past, the row spacing commonly used for maize was concentrated between 0.80 and 0.90 m, mainly due to 
fit to the mechanized harvest platform, since it was unsuitable for spacings below 0.80 m (Fancelli and Dourado Neto 
2000). Meantime, this problem has been overcome and there are platforms adaptable to harvesters with spacing down to 
0.45 m already. Thus, it is becoming increasingly common to use reduced spacing in maize (Cruz et al. 2009). The row 
spacing generally ranges from 0.45 to 0.90 m, and, in some cases, smaller row spacing can increase grain yield (Argenta 
et al. 2001), but it can also enhance severely foliar diseases (Fancelli and Dourado Neto 2000). Maize with upright leaves 
usually tolerate higher plant density when cultivated in the main season (Dourado Neto et al. 2003) and, possibly, this 
is also valid for the second cultivation season.

Some authors mention that the adjustment in the plant arrangement can increase maize yield by around 15%, mainly 
due to the better interception of photosynthetically active radiation (Kappes et al. 2011). Despite all the advances in 
determining the best row spacing and plant density for maize hybrids, the improvement of cultivation based on the specific 
characteristics of each hybrid, such as leaf area index (LAI), leaf angle (between leaf base and stalk) and optimization 
of light interception, are not used in practical terms for the allocation of hybrids. Those attributes should be updated 
for maize hybrids with high yield potential used currently, as well as how they perform in different plant arrangements. 
There is a lack of information on the best plant arrangement in modern maize hybrids, especially those used in Brazil 
in the second season and under irrigation.

The objectives of this study were to evaluate the performance of maize hybrids with different canopy architecture 
in function of different plant arrangements and row spacing under irrigation in the second growing season in 
Southeast Brazil.

MATERIAL AND METHODS

Field experiment

The field experiment was carried out in the 2018 growing season in a tropical environment located in Piracicaba, SP, 
Brazil (22°42’S and 47°38’W, 538 m altitude) under humid subtropical climate (Cwa, Köppen) (Alvares et al. 2013), with 
average annual rainfall of 1,328 mm and average annual temperature of 21.6 °C. The soil was classified as a Typic Hapludox 
(Soil Survey Staff 1999).
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Experimental design

The experimental design consisted of randomized blocks in a 2 × 3 × 3 factorial scheme, with three replicates. Two maize 
hybrids were chosen, DKB 230 PRO3 (upright leaf architecture) and DKB 390 PRO3 (semi-erect leaf architecture) sown in 
three row spacings (0.25, 0.50 and 1.00 m, RS25, RS50 and RS100, respectively) and plant densities (4, 7 and 10 × 104 plants·ha–1, 
D40, D70 and D100, respectively). The plot size was 24 m2 (6 × 4 m), with a useful area of 8.0 m2, excluding borders.

Management practices

Prior to sowing, seeds were treated with clothianidin (600 g·L–1) and chlorantraniliprole (625 g·L–1) at a rate of 
2.5 mL per kg of seeds. After harrowing and furrowing, the maize was sown manually on January 15, 2019. When the 
plants presented three fully expanded leaves, thinning was performed to obtain the proper plant densities for each 
treatment.

The basic fertilization was 20 kg·[N]·ha–1 and 100 kg·[P2O5]·ha–1 (monoammonium phosphate). After the 
emergency, a topdressing application of 120 kg·[K2O]·ha–1 (KCl) was carried out. At the phenological stages V4 and V6  
(Ritchie et al. 1966) two applications of 100 kg·[N]·ha–1 (urea treated with N-(n-butyl) thiophosphoric triamide 
[NBPT]) were also used. Phytosanitary management was carried out properly and provided the best conditions for 
plant development.

Evaluations

The stalk diameter (SD) and plant height (PH) were evaluated based on the average of five plants per plot at stages V13, 
V17 and R1. Stalk diameter was evaluated between the first and second knots above soil surface, while the height of the plants 
and ears was measured from the soil to the insertion of the tassel. The ear height (EH) was measured based on the distance 
from the ground to the ear insertion at the R1 growth stage.

At stages V8, V13, R1, R3 and physiological maturity, light interception (LI) and LAI were evaluated with the 
light meter (LAI-250A, LI-COR Inc., Lincoln, Nebraska) and the plant canopy analyzer (LAI-2200, LI-COR Inc., 
Lincoln, Nebraska), respectively. Light interception was evaluated by the difference between the global incident 
photosynthetically active radiation (PARI) at the top of the canopy and both the reflected PAR (PARR) and the 
transmitted PAR (PART). The PARI was evaluated at 0.3 m above the top of the canopy with the sensor horizontally 
facing upwards. The PARR was evaluated at the same position with the sensor horizontally facing downwards. The 
PART was obtained at ground level by the average of eight evaluations measured in the longitudinal and transversal 
directions to the plant row. The evaluations of PAR were carried out at noon in open sky conditions, without clouds, 
while LAI was evaluated at dusk with diffuse light. The absorbed PAR (PARA) by the plant canopy was calculated 
by the difference according to Eq. 1:

					     PARA = PARI – PARR – PART � (1)

or in relative terms using the subscript R, Eq. 2 was used:

					     PARAR = 1 – PARRR – PARTR	�  (2)

The LAI and PARA data were adjusted using a mathematical model to determine the critical LAI and the maximum LAI. 
Critical LAI was determined when the LAI intercepted 90% of PARA (Gifford and Jenkins 1982). Based on the derivative 
of the equation between LAI and PARAR, the maximum LAI was estimated.

The SPAD index of the 13th leaf was evaluated in five moments from leaf emission to senescence by the chlorophyll 
meter (Minolta SPAD-502 - Konica Minolta).
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At the physiological maturity, the mass of one thousand grains (1,000-grain weight), rows per ear and grains 
per row were analyzed based on average values of five plants per plot. Grain yield and dry matter were obtained 
by harvesting all plants in a useful area of the plot (8 m2) and the water content of the grains was corrected to  
130 g·kg–1. The number of grains per area was obtained through the relationship between grain yield and the  
1,000-grain weight.

Meteorological data

Average rainfall and air temperature of the experimental periods were obtained through a meteorological station located 
1 km from experimental site. During the experiment, the accumulated rainfall was 412 mm, the accumulated irrigation was 
336 mm (Fig. 1a) and the average temperature was 24.4 °C (Fig. 1b). The accumulated global radiation was 2144 MJ·m–2 
and the accumulated net radiation was 1124 MJ·m–2 (Fig. 1c).
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Figure 1. Meteorological data for the 2018 second maize season (from sowing until Apr. 20): daily and accumulated rainfall and irrigation 
(a); daily maximum, average, and minimum temperatures (b); daily and accumulated global solar radiation (c) across the crop cycle in 
Piracicaba, São Paulo, Brazil.
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Statistics

Data were subjected to analysis of variance (ANOVA) and normality and homogeneity of residue distribution. When 
ANOVA indicated significant difference or interaction between the factors (α = 0.05), the data were subjected to the Tukey’s 
test at the level of 5% significance. From the derivatives of the regression models generated between plant density and yield, 
and between PARAR and LAI, the plant density that achieved de maximum yield and the LAI that intercepted the maximum 
PARAR were obtained, respectively. Statistical analysis was performed using the R program (Version 3.0), with the aid of the 
statistical packages Agricolae, ExpDes and Laercio.

RESULTS

Stalk diameter, PH and ear insertion height

At the V13 stage, the stalk differed between row spacing (Table 1), in which RS25 and RS50 did not differ from each other 
(28.7 and 28.8 mm, respectively) and had a larger diameter than plants from RS100 (27.5 mm) (Fig. 2a). At V13, the SD also 
presented an interaction between hybrid and plant density (Table 1). Unfolding the plant densities for the hybrid DKB 390, 
the SD presented the following order: D40 = D70 > D100, while for the hybrid DKB 230, the SD presented the following order: 
D40 > D70 > D100. Unfolding the hybrids, for the D40, the hybrids did not differ from each other, while for D70 and D100 the 
hybrid DKB 390 had a larger SD than the DKB 230 (Fig. 2a).

Table 1. Significance (p-value) by the F test of the variables stalk diameter, plant height and ear insertion height at 13th fully expanded leaf 
(V13), 17th fully expanded leaf (V17), and/or at flowering (R1) when subjected to different row spacings, plant densities and maize hybrids during 
2018 growing season in Piracicaba, São Paulo, Brazil.

Variable
Stalk diameter Plant height Ear height

V13 V17 R1 V13 V17 R1 R1

Row spacing (RS) **0.014 ns0.213 ns0.319 ns0.255 ns0.160 ns0.232 ns0.745

Plant density (D) **0.000 **0.000 **0.000 **0.000 **0.002 **0.004 **0.000

Hybrid (H) **0.000 **0.000 **0.001 **0.000 **0.000 ns0.190 **0.000

D × RS ns0.063 ns0.669 ns0.639 ns0.732 ns0.667 ns0.689 ns0.567

D × H *0.028 ns0.307 *0.026 ns0.888 ns0.655 ns0.750 ns0.670

RS × H ns0.478 ns0.418 ns0.331 ns0.619 ns0.255 ns0.314 ns0.844

RS × D × H ns0.822 ns0.871 ns0.808 ns0.980 ns0.917 ns0.552 ns0.480
ns, nonsignificant; ** and * significant by F-test at 1% and 5% respectively; bold values are p ≤ 0.05.

At the V17 stage, the SD presented a difference between hybrids and between plant densities, without interaction  
(Table 1). Among the plant densities, the diameter at the V17 stage presented the following order: D40 > D70 > D100  
(Fig. 2a). Among hybrids, the diameter was 11.7% larger for DKB 390 compared to DKB 230 (Fig. 2a).

At the R1 stage, the SD showed interaction between hybrids and plant densities (Table 1). Unfolding the plant densities, 
for the hybrid DKB 390, the diameter presented the following order: D40 = D70 > D100, while for the hybrid DKB 230, the 
following order: D40 > D70 = D100 (Fig. 2a). Unfolding the hybrids, the SD D40 and D100 had no difference between hybrids, 
while for D70 the hybrid DKB 390 presented a larger SD than the DKB 230 (Fig. 2a).

At the V13 stage, the PH showed a difference between plant density and hybrids, without interaction (Table 1). Among 
the densities, the PH presented the following order: D40 < D70 < D100 (Fig. 2b). Among hybrids, the PH was 8.9% lower  
for the DKB 390 compared to the DKB 230 (Fig. 2b).
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At the V17 stage, the PH showed a difference between plant density and hybrids, without interaction (Table 1). Among 
the plant densities, the PH presented the following order: D40 < D70 = D100 (Fig. 2b). Among the hybrids, the PH was 14.3% 
lower for the DKB 390 compared to the DKB 230 (Fig. 2b).

At the R1 stage, the PH showed a difference only between plant density (Table 1). Among the plant densities, the PH 
presented the following order: D40 < D70 = D100 (Fig. 2b).

The ear insertion height showed a difference between plant density and hybrids, without interaction (Table 1). Among 
the densities, the ear insertion height presented the following order: D40 < D70 < D100 (Fig. 2b). Among the hybrids, the 
height was 15.7% higher in the DKB 390 compared to the DKB 230 (Fig. 2b).
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Figure 2. Stalk diameter (a), plant height (b) and ear height (c) of maize hybrids (DKB 230 and DKB 390) sown with different plant densities 
(plants·ha–1) and row spacings (m) in 2018 growing season in Piracicaba, São Paulo, Brazil. Letters classify the averages by the Tukey’s 
test at 5% significance. When there was interaction, lowercase letters classify hybrids, and uppercase letters classify row spacing or plant 
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Absorbed photosynthetically active radiation, LAI and SPAD index

The PARAR, LAI and SPAD index, evaluated by repeated measurements over time, showed a difference only among 
plant densities and between hybrids (Table 2). The PARAR presented the following order among plant densities 37 and  
58 days after emergence (DAE), D100 = D70 > D40; at 76 DAE, D100 > D40, while D70 did not differ between both; and at 101 DAE,  
D100 = D70 > D40 (Fig. 3a). The PARAR presented the following order between hybrids: at 76 DAE, DKB 390 > DKB 230, while 
in the other evaluations there was no difference between hybrids (Fig. 3b).

Table 2. Significance (p-value) of the variables photosynthetic active radiation absorbed relative (PARAR), leaf area index (LAI) and SPAD 
index by the F test, when subjected to different row spacings, plant densities and maize hybrids during 2018 growing season in Piracicaba, 
São Paulo, Brazil.

Variable SPAD index - evaluated in days after leaf emission

(p-value) 1 16 24 33 46 81

Row spacing (RS) ns0.280 ns0.719 ns0.483 ns0.5225 ns0.485 ns0.058

Plant density (D) **0.001 *0.013 **0.000 **0.000 **0.001 **0.001

Hybrid (H) **0.000 **0.000 **0.000 ns0.1978 **0.000 **0.001

D × RS ns0.185 ns0.105 ns0.182 ns0.4681 ns0.144 ns0.949

D × H ns0.127 ns0.105 ns0.299 ns0.3133 ns0.159 ns0.298

RS × H ns0.575 ns0.144 ns0.508 ns0.0694 ns0.353 ns0.609

RS × D × H ns0.517 ns0.585 ns0.977 ns0.423 ns0.390 ns0.422

LAI - evaluated in days after emergence

(p-value) 23 28 42 59 76 108

Row spacing (RS) *0.0298 ns0.735 ns0.240 ns0.656 ns0.235 ns0.160

Plant density (D) **0.005 **0.000 **0.000 **0.000 **0.000 **0.001

Hybrid (H) ns0.190 **0.000 **0.000 ns0.394 ns0.899 ns0.838

D × RS ns0.771 ns0.601 ns0.812 ns0.561 ns0.690 ns0.245

D × H ns0.173 ns0.117 ns0.713 ns0.626 ns0.099 ns0.121

RS × H ns0.312 ns0.589 ns0.675 ns0.874 ns0.899 ns0.391

RS × D × H ns0.457 ns0.845 ns0.910 ns0.637 ns0.067 ns0.919

PARAR - evaluated in days after emergence

(p-value) 37 58 76 101

Row spacing (RS) ns0.281 ns0.081 ns0.271 ns0.056

Plant density (D) **0.000 **0.000 **0.000 **0.000

Hybrid (H) *0.018 ns0.632 **0.001 **0.003

D × RS ns0.544 ns0.969 ns0.405 ns0.057

D × H ns0.222 ns0.278 ns0.726 ns0.080

RS × H ns0.089 ns0.080 ns0.517 ns0.711

RS × D × H ns0.479 ns0.603 ns0.906 ns0.296
ns, nonsignificant; ** and * significant by F-test at 1% and 5% respectively; bold values are p ≤ 0.05.

Leaf area index presented the following order among plant densities: at 23 and 28 DAE, there was no difference among densities; 
at 42 and 59 DAE, D100 > D70 > D40; at 76 DAE, D100 = D70 > D40; at 108 DAE there was no difference among densities (Fig. 3c). 
Leaf area index presented the following order between hybrids: at 23 and 28 DAE, there was no difference between hybrids; at 42 
DAE, DKB 230 > DKB 390; at 42, 59, 76 and 108 DAE, there was no difference between hybrids (Fig. 3d). The LAI showed a row 
spacing effect only in the first assessment, performed at 23 DAE, while in the other assessments there was no difference between 
row spacings (Table 2). At 23 DAE, LAI presented the following order among row spacings: R25 > R50 > R100 (data not shown).
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The SPAD index presented the following order among plant densities: at 1 and 16 days after leaf emission (DAL) there 
was no difference among densities; at 24, 33 and 46 DAL, D100 > D40, while D70 did not differ from both; and at 81 DAL, 
there was no difference among densities (Fig. 3e). The SPAD index presented the following order for the hybrids: at 1, 16 
and 24 DAL, the hybrid DKB 390 > DKB 230; at 33 DAL, there was no difference between hybrids; at 46 DAL, the hybrid 
DKB 390 > DKB 230; and, at 81 DAL, there was no difference between hybrids (Fig. 3f). Overall, the SPAD index was 22.4% 
higher for the DKB 390 hybrid compared to the DKB 230 hybrid, but the time from 13th leaf emission until leaf senescence 
was quite similar for both hybrids (Fig. 3f).
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100 x1000 plants·ha–1, respectively; RS25, RS50 and RS100 were row spacing 0.25, 0.50 and 1.00 m, respectively; DAE: days after emergence;  
DAL days after leaf emission.
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Based on the relationship between PARAR and LAI, the critical LAI (LAIC) was determined, which is the LAI at which 
PARAR reaches 95% (Figs. 4a, b). For the DKB 390 and DKB 230 hybrids, the LAIC was 4.3 and 5.2, respectively, and the 
maximum LAI was 4.9 and 5.3, respectively (Figs. 4c-d). For the DKB 390 hybrid, the LAI for the D100 exceeded the LAIC 
for all row spacings, and for the DKB 230 hybrid, the LAI for the D70 and D100 exceeded the LAIC also for RS50 and RS100.
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Figure 4. Relationship between photosynthetically active radiation absorbed (PARAR) and leaf area index (LAI) (a, b) and dynamics of 
leaf area index during the crop cycle (c, d), in two maize hybrids evaluated during 2018 growing season in Piracicaba, São Paulo, Brazil.  
The D40, D70 and D100 were 40, 70 and 100 x1000 plants·ha–1, respectively; RS25, RS50 and RS100 were row spacing 0.25, 0.50 and 1.00 m, 
respectively; DAE: days after emergence.

Yield and yield components

Yield presented a difference between plant density and hybrids without interaction (Table 3). Among densities, yield presented 
the following order: D40 < D70 = D100 (Fig. 5a). Among hybrids, yield was 16.1% lower for DKB 390 compared to DKB 230 (Fig. 5a).

Table 3. Significance (p-value) of the variables yield, mass of a thousand grains (MTG), grains per area (GA), harvest index (HI), dry matter 
at maturity (DM), ears per area (EA), grains per row (GR), rows per ear (RE) from two maize hybrids submitted to different row spacing and 
plant densities. 2018 growing season. Piracicaba, São Paulo, Brazil.

Variable Yield MTG GA HI DM EA GR RE

Row spacing (RS) ns0.958 ns0.365 ns0.266 ns0.090 *0.042 ns0.767 ns0.805 ns0.956

Plant density(D) **< .001 ns0.425 **< .001 **0.003 **< .001 **< .001 **< .001 **0.002

Hybrid **< .001 *0.028 **0.004 **< .001 ns0.313 **< .001 ns0.150 **< .001

RS × D ns0.838 ns0.407 ns0.740 ns0.613 ns0.735 ns0.750 ns0.784 ns0.641

RS × H ns0.241 ns0.727 ns0.699 ns0.060 *0.023 ns0.968 *0.049 ns0.852

D × H ns0.942 ns0.519 ns0.811 <0.001 **0.003 **< .001 ns0.060 ns0.975

RS × D × H ns0.521 ns0.617 ns0.255 ns0.262 ns0.208 ns0.375 ns0.214 ns0.764
ns, nonsignificant; ** and * significant by F-test at 1% and 5%, respectively; bold values are p ≤ 0.05.

6.0
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The relationship between yield and plant density among the hybrids presented a quadratic adjustment for the hybrid 
DKB 390 (ŷ = -0.0013x2 + 0.2287x; R² = 0.67) and linear for DKB 230 (ŷ = -0.0013x2 + 0.2517x; R² = 0.66) (Fig. 5b). Based 
on this adjustment, the plant density that provided the highest yield for the hybrid DKB 390 was 8.8 × 104 plants·ha–1 and 
for the hybrid DKB 230 was 9.7 × 104 plants·ha–1.

The 1,000-grain weight showed a difference between hybrids, without interaction (Table 3). Among hybrids,  
1,000-grain weight was 7.5% lower for DKB 390 compared to DKB 230 (Fig. 5c). The number of grains per area showed a 
difference between plant density and hybrids, without interaction (Table 3). Among the densities, the number of grains per 
area presented the following order: D40 < D70 = D100 (Fig. 5d). Among hybrids, the number of grains per area was 9.8% lower 
for DKB 390 compared to DKB 230 (Fig. 5d). The harvest index showed an interaction between plant density and hybrids 
(Table 3). Within the hybrids, the harvest index in the DKB 390 hybrid presented the following order: D40 = D70 > D100, and, 
in the hybrid DKB 230, the harvest index did not differ between plant densities (Fig. 5e). Within densities for D40, the harvest 
index was lower for DKB 390 compared to DKB 230, the harvest index did not differ between hybrids for D70, and the harvest 
index was lower for DKB 390 compared to DKB 230 for D100 (Fig. 5e).
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Figure 5. Yield (a), harvest index (b), 1,000-grain weight (c), grains per area (d) and dry matter (e and f) for maize hybrids under different plant 
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The dry matter showed an interaction between row spacing and hybrids (Table 3). Within the hybrids, for the DKB 390, 
the dry matter presented the following order: RS25 > RS50 = RS100, while in the hybrid DKB 230 the dry matter did not differ 
between the row spacings (Fig. 6a). Within the row spacings, the dry matter was higher in the hybrid DKB 390 compared 
to the DKB 230 for RS25, while in the other row spacings there was no difference between hybrids (Fig. 6a).

The dry matter also showed an interaction between plant densities and hybrids (Table 3). Within the hybrids, for the 
DKB 390 hybrid, the dry matter presented the following order: D40 < D70 < D100, whereas for the hybrid DKB 230, the dry 
matter presented the following order: D40 < D70 = D100 (Fig. 6a). Within plant densities, the dry matter did not differ between 
hybrids for D40 and D70, and for D100 the dry matter was higher for the hybrid DKB 390 compared to DKB 230 (Fig. 6a).

The number of ears per area presented an interaction between plant density and hybrids (Table 3). For both hybrids, the number 
of ears per area presented the following order: D40 < D70 < D100 (Fig. 6b). Within plant densities, for D40 and D70, the number of ears per 
area was lower for DKB 390 compared to DKB 230, and the number of ears per area did not differ between hybrids on D100 (Fig. 6b).

The number of grains per row showed an interaction between row spacing and hybrids (Table 3). Within hybrids, the number 
of grains per row did not differ between the spacing. Within the row spacing, in RS25 the number of grains per row was greater 
for the DKB 390 compared to the DKB 230, there was no difference between the hybrids for the other row spacings (Fig. 6c).

The number of rows per ear showed a difference between plant density and hybrids, without interaction (Table 3). 
Among the densities, the number of rows per ear presented the following order: D40 = D70 < D100 (Fig. 6d). Among hybrids, 
the number of rows per ear was 13.3% higher in DKB 390 compared to DKB 230 (Fig. 6d).
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DISCUSSION

Stalk diameter, PH and ear insertion height

From D40 to D100 for both DKB 390 and DKB 230 hybrids, the PH and ear insertion height increased; however, it 
reduced the SD of the plants (Fig. 2). These results corroborate with other authors, who mention that the SD is inversely 
influenced by plant density (Almeida Júnior et al. 2018; Demétrio et al. 2008; Stacciarini et al. 2010; Sangoi et al. 2002; 
Brachtvogel et al. 2012). For the hybrid DKB 390 grown in a tropical environment, increasing the plant density from 5 × 
104 to 8 × 104 plants·ha–1 reduced the SD in a linear fit (Santos et al. 2018).

The low interference of row spacing in the analyzed variables agrees with Skonieski et al. (2014), who evaluated row spacing 
of 0.40, 0.60 and 0.80 m and, similarly, did not observe differences in PH, ear insertion height and SD. This information 
also corroborates Pereira et al. (2017) and Afférri et al. (2008).

Higher plant densities tend to increase PH (Calonego et al. 2011). The increase in plant density can cause greater 
intraspecific competition for light, which results in greater height growth at the expense of radial stalk growth (Stacciarini 
et al. 2010; Calonego et al. 2011).

Changes in PH, ear and SD are direct physiological responses of plants to the environment to which they are submitted. 
Plants that are in higher plant densities are under greater intraspecific competition, perceived by the leaves since the first 
phenological stages by the proportion of red and distant red (Taiz and Zeiger 2013). They can also alter metabolism and 
promote height growth to increase light uptake (Taiz and Zeiger 2013).

Absorbed photosynthetically active radiation, LAI and SPAD index

Higher densities of maize plants increased the LAI and absorption of PARAR in the canopy of the plants, as well as 
reduced the SPAD index (Fig. 3a, c). Likewise, greater LAI and greater absorption of PARA was observed at the bolting 
stage (R1 phenological stage) when the plants had a larger number of leaves, still counting on the leaves of the lower part 
of the canopy. Row spacing did not consistently affect LAI in this study across the crop cycle. In another study, a similar 
result was observed using spacings ranging from 0.5 to 0.76 m (Westgate et al. 1997).

Sangoi et al. (2005) verified a linear increase in the LAI with the increase in the plant density of maize. With the higher 
LAI, a plant tends to have more interference or intraspecific competition in addition to providing higher maintenance costs 
(Loomis and Connors 1992).

According to Gardner et al. (1985), the maize crop needs LAI oscillating between 4 and 5 to optimize the use of solar 
radiation under favorable water and soil conditions. Other authors mention that the 95% light interception in maize occurs 
with LAI of 4.9, this being the maximum value that the plants should reach in the field (Maddonni et al. 2001; Westgate 
et al. 1997). Higher LAI does not always mean greater PARAR, as it depends on the efficiency of light energy conversion of 
the plant canopy.

The period of greatest radiation interception must occur between pollination to milky grain, which must result from the 
best combination between LAI and PARAR (Vieira et al. 2016). The interception efficiency of solar radiation in the maize crop 
is practically 100% when the crop is in the reproductive stage with a LAI greater than 5 (Müller and Bergamaschi 2005).

The interception of PARAR and LAI in the canopy decreases after the bolting, after this stage most of the photoassimilates 
are destined to produce grain, which explains the beginning of senescence of the leaves of the bottom part of the canopy 
(Fig. 4a, b). Some hybrids differ in leaf senescence (Pereira et al. 2017; Sangoi et al. 2013) due to the intrinsic characteristics 
of each genetic material.

Conversely to LAI, the SPAD index decreased with increasing plant density and this reduction was different between 
hybrids. The hybrid DKB 390 showed a higher SPAD index than the hybrid DKB 230, and this study hypothesizes that 
this can be justified by the fact that the first is less efficient in translocating nutrients from the leaves to the ear, so the leaf 
senescence was slower when compared to the second hybrid.
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The inversion of these parameters with the increase in plant density is related to the lack of radiation intercepted by the 
bottom part of the canopy, therefore the higher the LAI, the less radiation will reach the bottom part of the canopy, which 
decreased the photosynthesis and maintenance of metabolism. Likewise, hybrids that have a higher LAI have a higher 
energy expenditure for maintaining respiration and photorespiration.

Increasing plant density increases LAI and PARAR. The associations of these parameters increase the conversion efficiency 
in these plant spatial arrangements. Diffuse radiation, as it is multidirectional, is more efficient in penetrating the plant 
canopy when compared to direct radiation, and thus reaches the bottom part of the canopy (Buriol et al. 1995).

For the soybean crop, there is a higher conversion efficiency with a greater number of plants per area, which presented 
a higher leaf area index and possibly greater interception of diffuse radiation, thus increasing the conversion efficiency and 
soybean yield (Caron et al. 2019). Solar radiation is the main source of energy for the biological activity of plants. The way 
the plant can intercept and absorb PAR will determine its yield, since they are linked to the ability to perform photosynthesis 
(Kunz et al. 2007).

Yield and yield components

In this study, the best plant density with higher yield was for the hybrid DKB 390, with 8.8 × 104 plants·ha–1 (Fig. 5b), 
corroborating with Sangoi et al. (2005). The hybrid DKB 230 showed higher yield for the plant density of 9.6 × 104 plants·ha-1. 
The difference between higher yield between different plant densities of maize plants is mainly related to the increase in the 
number of grains per area (Santos et al. 2018). In high yield environments, where no water or nutritional stress occurred, yield 
was higher in higher plant densities compared to medium yield environments (Cruz et al. 2009). This information corroborates 
with the data obtained in this study with maize cultivated in the second season under irrigation.

Sangoi et al. (2013), by testing a hybrid, also showed a quadratic response regarding grain yield at densities of 2.5, 5.0, 
7.5, 10 and 12.5 × 104 plants·ha–1. The greatest production obtained by the authors was 12,663 kg·ha–1, with a density of  
7.5 × 104 plants·ha–1; however, the optimal density calculated by the adjusted equation was 8.7 × 104 plants·ha–1. Another 
study reported the highest yield with the plant density of 8.25 × 104 plants·ha–1 (Pereira et al. 2017). Thus, greater grain 
yield with changes in plant arrangement, through the reduction of row spacing and plant density, have been strategies 
frequently reported in the literature (Calonego et al. 2011; Stacciarini et al. 2010; Takasu et al. 2014). The higher plant 
density is a strategy to increase the interception of solar radiation incident by the maize plant community, enhancing its 
use and, consequently, grain yield (Demétrio et al. 2008).

The increase in grain yield is related to how much the plant was able to assimilate and export its photoassimilates to 
the grains, and, in this way, it was possible to observe that the hybrid of upright leaf angulation, DKB 230, had higher yield 
when compared to DKB 390, of semi-upright leaves. The upright leaf angulation allowed greater light interception in the 
lower leaves and less shading, which made them remain viable as sources, rather than drains. In addition, upright leaves 
reduce self-shading and, therefore, possibly contribute to the higher yield of the DKB 230 hybrid. Maize plants also obtain 
photoassimilates from the stalk, so a larger stalk diameter may represent a greater redistribution of photoassimilates to the 
grains in the DKB 230 hybrid.

However, semi-upright angulations allow for a greater number of leaves between the lines and, consequently, greater 
self-shading. When the canopy presents greater self-shading, early senescence of the leaves is induced, which reduces source 
photoassimilated leaves, reduces the final yield, which may have occurred with the DKB 390 hybrid.

The evaluated plant densities did not influence the 1,000-grain weight; however, the DKB 230 hybrids presented higher 
1,000-grain weight when compared to the DKB 390. The fact that the DKB 230 hybrid has a lower number of rows per ear 
is offset by the increase in 1,000-grain weight, which justifies its higher yield.

What may have favored the 1,000-grain weight to have the same potential in all densities was because the plants were 
irrigated and were not subjected to water deficit. In another study without irrigation, a reduction in 1,000-grain weight 
was observed with the increase in plant density (Demétrio et al. 2008), which may be linked to the water stress factor. In 
another study, the highest grain weight per ear and 1,000-grain weight were observed at the density of 5 × 104 plants·ha–1 
and decreased at higher plant densities (Santos et al. 2018). These authors mention that the lower plant density reduced 
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the competition between plants for water and nutrients, in addition to less shading, which allocates more photoassimilates 
to grain filling.

Higher plant density is reported to decrease number of grains per ear (Sangoi et al. 2005). Plant density above the value 
considered optimal can, sometimes, cause ear sterility due to the mismatch in the differentiation of the ear in relation to 
the differentiation of the tassel (Sangoi et al. 2000).

There was no effect of row spacing on yield components in this study, and, in the past, it was already reported that row 
spacing has less influence on yield components when compared to plant density (Afférri et al. 2008; Demétrio et al. 2008; 
Kappes et al. 2011).

In crops with a higher density of plants and under good growing conditions, the additional ears result in greater grain 
yield by increasing the number of grains per area. However, this compensation occurs until the largest number of ears per 
area is no longer sufficient to compensate for the reduction in the number and mass of grains (Dourado Neto et al. 2003).

Despite all the advances in determining the best plant spacing and density for maize hybrids over time, the improvement 
of cultivation based on the specific characteristics of each hybrid, such as LAI and optimization of PARA, are not used in 
practical terms for the positioning of genotypes of maize. In this study, it was observed that for the conditions of irrigated 
maize in second growing season, plant density is the factor that presented the greatest effect in PARA throughout the crop 
cycle, as well as in yield, while row spacing presents greater plasticity in the evaluated hybrids. Small row spacings could 
even slightly increase dry matter, but it was not enough to increase grain yield in the conditions of this study.

CONCLUSION

In second maize season under irrigation in Southeast Brazil, the increase in plant density from 4 × 104 to 10 × 104 plants·ha–1 
increased grain yield, while row spacing from 0.25 to 1 m had no effect, regardless of the hybrid evaluated. The increase in plant 
density increased yield mainly due to the increase in the number of grains per area, the greater dry biomass and the greater 
number of ears per area. Along the growth cycle, the increase in plant density also increased PH, ear insertion height, PARA 
and the LAI, but reduced SD and the SPAD index.

The hybrid DKB 230 (upright leaves) had 16% higher grain yield potential when compared to DKB 390 (semi-upright 
leaves) considering the average of plant densities and row spacings evaluated. This, in part, can be attributed to a 21% 
higher critical LAI, consequently, a higher response to the increase in plant density compared to DKB 390. The DKB 230 
compared to DKB 390 also had 9% higher harvest index, an 8% higher 1,000-grain weight and a 10% higher number of 
grains per area. The estimated plant density that provided the maximum yield was 9.7 × 104 and 8.8 × 104 plants·ha–1 for 
hybrids DKB 230 and DKB 390, respectively.
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