
ABSTRACT: EnlistTM technology is a new trait on soybean and corn conferring tolerance to auxinic-type (2,4-D choline) and graminicides 

(aryloxyphenoxypropionates – FOPs) herbicides. However, the occurrence of volunteer corn tolerant to 2,4-D and FOPs can become a 

significant weed on soybean cropping systems, affecting the crop yield and reducing seed quality. This research aimed to evaluate herbicides 

to EnlistTM volunteer corn control and their effects on plant development, crop yield, and physiological seed quality of EnlistTM soybean. 

Field experiment was performed in a complete randomized block experimental design with four replicates, using a density of 10 plants·m-2 

of EnlistTM volunteer corn. Treatments consisted of herbicides applied at 3-4-leaves stage of volunteer corn with haloxyfop-P-methyl, 

clethodim, pinoxaden, cloransulam-methyl and imazethapyr regarding to a control with and without volunteer corn. The development and 

yield components of EnlistTM soybean were evaluated and physiological seed testing performed on soybean’s seeds. Clethodim controlled 

EnlistTM volunteer corn, whereas haloxyfop-P-methyl, pinoxaden, and cloransulam-methyl showed insufficient control levels (30-35%) at 

30 days after spray. Imazethapyr exhibited 84% of control of EnlistTM volunteer corn and injured the EnlistTM soybean, affecting its seed 

viability. EnlistTM volunteer corn interferences negatively the soybean crop yield, yield components, and affects the plant development pattern. 

Key words: acetyl CoA carboxylase inhibiting herbicides, synthetic auxins, weed interference, seed analysis. 
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INTRODUCTION

Soybean [Glycine max (L.) Merrill] is the leading agricultural commodity for Brazilian farmers and trade balance, with 
major exported volumes that meet 29% of the world’s demand (Giraudo 2020). Good soybean management practices, 
including high-quality seeds and adequate weed control, are essential to increase the crop yield. For example, weed interference 
can reduce up to 94% of soybean yield, depending on the weed species and coexistence period (Zandoná et al. 2018). 
In contrast, seeds with higher quality can increase approximately 15% the grain yield (Ebone et al. 2020). Otherwise, crop-
weed interference can reduce seed quality due to physiological changes and its effects on photoassimilates production 
fill seeds (Carciochi et al. 2019). Roundup Ready® technology developed in the 1990s for soybean and available later for 
corn contributed to weed control, reducing costs, and increasing the grain yield (Benbrook 2016). After the commercial 
release, grain yield increased approximately 4-fold, whereas herbicides use reduced 75% between 1995 to 2013 (Benbrook 
2016). This scenario based on repeated glyphosate application favored the selection of weed-resistant populations, and new 
traits with herbicide-resistance can provide new management strategies, aiming the control of weed herbicide-resistant 
populations (Duke 2020).
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EnlistTM technology is a new tool available for farmers in several countries to control glyphosate-resistant broadleaf weeds, 
conferring tolerance to 2,4-dichlorophenoxyacetic acid (2,4-D choline), glyphosate, and ammonium-glufosinate herbicides 
(Wright et al. 2010; Skelton et al. 2017). The tolerance to 2,4-D choline was obtained by the insertion of the aryloxyalkanoate 
dioxygenase (AAD-12 V1) coding-gene. Thus, AAD-12 protein catalyzes the conversion of 2,4-D to 2,4-dichlorophenol 
(2,4-DCP) using sugar molecule to detoxify it into a non-phytotoxic compounds (Wright et al. 2010). On the other hand, 
the double mutant of 5-enolpyruvylshikimate 3-phosphate synthase (EPSPs) and phosphinothricin acetyltransferase 
(pat) confers tolerance to glyphosate and ammonium-glufosinate, respectively (Wright et al. 2010). Furthermore, Enlist™ 
technology can be found in corn from the insertion of the AAD-1 V3 gene that encodes the AAD-1 protein. This protein 
catalyzes the breakage of the chemical bond between oxygen and carbon, conferring tolerance to acetyl CoA carboxylase 
(ACCase) herbicides of the aryloxyphenoxypropionates (FOPs) chemical group. It allows the control of grasses in Enlist 
corn’s post-emergence (Gonzalez et al. 2018).

In several countries, especially in Brazil, agricultural production systems cultivate soybean after corn in the same season, 
a practice known as off-season (Petter et al. 2015). In this case, propagules (seeds and kernels) of EnlistTM corn can be lost 
during the harvest, originating individual or clumps of volunteer corn for the subsequent crop, reducing the soybean yield 
(Marca et al. 2015; Petter et al. 2015). The highly competitive ability of volunteer corn was reported in Roundup Ready® 
soybean with an economic threshold for individual plants of 0.45 plants·m-2 and approximated to zero for clumps (Piasecki 
and Rizzardi 2018). Alternative chemical control includes ACCase inhibiting herbicides performed during the initial 
development stages (V2-V4) to ensure adequate control (Pertile et al. 2018). 

Considering the negative effects of crop-weed interference, seed’s physiological quality can also be affected due to the 
physiological changes and lower photoassimilates translocation for the seeds, reducing the 1,000-seed weight and amount 
of reserves and proteins (Marcos-Filho 2015). Volunteer corn plants are undesirability in soybean, especially in scenarios 
with an increase of glyphosate-resistant and greater EnlistTM technology adoption. Thus, approaches are needed to evaluate 
herbicides effectivenes in EnlistTM volunteer corn control and measuring the interference effects on plant development and 
seed quality of EnlistTM soybean. 

This research aimed to evaluate herbicides to control EnlistTM volunteer corn and their effects on plant development, 
crop yield, and physiological seed quality of EnlistTM soybean.

MATERIAL AND METHODS

Field experiment (geographic coordinates: 31º80’01”S, 52º50’38”W, and 12 m above the sea) was carried out during the 
2016/17 and 2017/18 summer growing season (Figure 1 – envirommnetal conditions), using a randomized complete block 
experimental design with four repetitions. The field soil was classified as Endoaquult (USDA Soil Taxonomy) and has the 
following characteristics performed at 0-10 cm layer depth: pH = 5.6, organic matter = 1.5%, clay = 16%, CECpH7 = 6.7 cmolc·dm-3, 
Al3+ = 3.1 cmolc·dm-3, Ca+2 = 6.6 mmolc·dm-3; Mg+2 = 2.7 cmolc·dm-3, K+ = 0.23 mg·dm-3, and P = 9.9 g·dm-3. For the winter 
growing season, black oat was used as a cover crop that was burndown with glyphosate applied 30 days before the sowing 
at a rate of 1,080 g ae·ha-1.

EnlistTM soybean (DAS-44406-6 lineage) was sowed at 32 plants·m-2 in plots of 7.2 m2, 45-cm rows spaced. Seeds were 
treated with pyraclostrobin + thiophanate-methyl + fipronil (Standak® Top) at the rate of 2 mL of commercial product 
for each kg of seed, and inoculated with Bradyrhizobium japonicum bacterium to nitrogen fixation. Base fertilization was 
calculated in accordance with the recommendations for the soybean crop, using 350 kg·ha-1 of nitrogen, phosphorous, and 
potassium (NPK) formulation 02-20-20. F2 progeny of EnlistTM volunteer corn (DAS-40278-9 lineage) was randomly sown 
and standardized at 10 individual volunteer plants·m-2. EnlistTM seeds were obtained from Corteva Agriscience company 
with required authorization.

Post-emergent herbicides to control EnlistTM volunteer corn included haloxyfop-P-methyl (60 g ai·ha-1, Verdict® Max, 
Corteva, Brazil), clethodim (108 g ai. ha‑1, Select® 240 EC, UPL, Brazil), pinoxaden (30 g ai·ha-1, Axial®, Syngenta, Argentina), 
cloransulam-methyl (40 g ai·ha-1, Pacto®, Corteva, Brazil), and imazethapyr (100 g ai·ha-1, Vezir®, ADAMA Agricultural 
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Solutions, Brazil) compared to the control without and with EnlistTM volunteer corn. Specific adjuvant was added for each 
herbicide, in accordance with the manufacturer’s recommendations. Herbicides were applied at V3-V4 phenological stages 
of corn, using a CO2 backpack sprayer equipped with four TeeJet AXI 110.15 spray nozzles, spaced at 0.5 m calibrated to 
deliver 120 L·ha-1. The herbicide application was performed at air temperature of 21°C, 59% relative air humidity, and wind 
speed of 2.9 km·h-1. After herbicide application, rainfall was not reported for seven days. 

The control of EnlistTM volunteer corn plants and EnlistTM soybean sensitivity were evaluated at 10, 20, and 30 days after 
application (DAA), through visual assessments from 0 to 100% – 0% refers to the absence of phytotoxic effects and 100% 
to the complete death of the plants. EnlistTM soybean plant height (PH), height of first pod insertion (HFPI), number of 
internodes and braches per plant (INP and BNP) were measured at the full maturity. Soybean PH was measured with a rule 
from the soil surface to the tip of the last fully expanded leaf in 10 random plants per plot. EnlistTM soybean was harvested 
in an area of 3.5 m2 to calculate the grain yield, and 10 plants were used to quantify the yield components (pods number per 
plant, seeds per plant, 1,000-seed weight). Samples were threshed, cleaned, and weighed in a precision analytical balance, 
at a standard seeds moisture of 13%. The 1,000-seed weight was performed after samples cleaned, using eight subsamples 
containing 100 seeds each. A sample portion from each plot was stored in a cold chamber at 10°C for 30 days to perform 
the seed physiological analysis.

Seed testing to evaluate the physiological quality was performed at a seed laboratory, using a completely randomized 
design with four replicates of 50 EnlistTM soybean seeds each. Seed physiological analysis was measured by the germination 
test and first germination count, accelerated aging, tetrazolium seed testing, and field emergence, following the official 
methodology described in the Brazilian rules for seed testing (Brasil 2009). For germination testing (GT), seeds were 
distributed over two sheets of germitest paper previously moistened with distilled water at an amount equivalent to 2.5-fold 
the paperweight, and placed in a biochemical oxygen chamber demand (BOD) regulated at 25°C and 12 h in light. The first 
germination count (FGC) of normal seedlings was performed at five days after setting up the germination test. In contrast, 
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Source: Estação Meteorológica da Empresa Brasileira de Pesquisa Agropecuária (Embrapa) Terras Baixas, Capão do Leão (RS), Brazil.
Figure 1. Environmental conditions during November to March 2016/17 and 2017/18 for the experiment with EnlistTM volunteer corn in EnlistTM 
soybean measured in each 10-day period. In the second year, three irrigations were performed with 20 mm each in November, December, 
and February to enhance the soil moisture content. 
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the final germination was obtained at eight days after, with the values expressed in percentage. Accelerated aging (AA) 
was carried out in transparent boxes, using 200 seeds distributed in a single layer under lifted wire mesh. The boxes were 
filled with 40 mL of distilled water, closed and transferred to a BOD at 41°C for 72 h (Brasil 2009). Afterwards, the seed 
germination test was conducted equally of the FGC methodology.

Tetrazolium seed testing (TST) was performed using two subsamples of 50 seeds each by repetition. Seeds were put in 
a paper previously moistened with distilled water for 16 h and placed in a germination camera at 25°C. Then, seeds were 
transferred to glass cups with a 0.075% tetrazolium solution, maintained for 3 h in the dark inside an incubator at 40°C to 
form the embryo color. Seed viability and vigor were evaluated in a magnifying glass, with values expressed in percentage. 
Field emergence (FE) under natural conditions was carried out in raised beds, using two subsamples of 50 seeds each by 
repetition. Soybean seeds were sown manually to a depth of 2 cm in a wet soil. The normal seedlings count was evaluated 
21 days after sown, with values expressed in percentage (Nakagawa 1999).

Data were analyzed for normality by the Shapiro-Wilk test and subjected to variance analysis (p < 0.05). When significant, 
means were compared by Duncan’s test (p < 0.05) using the Statistical Analysis System software (SAS, version 9.0). Data were 
analyzed together due to absence of significant differences between growing seasons.

RESULTS AND DISCUSSION

Insuficient control of EnlistTM volunteer corn was found after application of haloxyfop-P-methyl, pinoxaden, and 
cloransulam-methyl herbicides, regardless of the evaluated period, with values lower than 35% (Table 1). Clethodim 
exhibited the highest control of EnlistTM volunteer corn with levels greater than 91% during the evaluated period, whereas 
imazethapyr controlled 84% of volunteer corn at 30 DAA (Table 1). Studies have been reported the application of ACCase 

Table 1. Control (%) of EnlistTM volunteer corn  and injury (%) on Enlist soybean after exposure to post-emergence herbicides evaluated at 
10, 20 and 30 DAA. 2021.

Herbicide treatment Rate 
(g ai·ha-1)

Control (%)

10 DAA 20 DAA 30 DAA

Control with volunteer corn -  0.0 e* 0.0 e 0.0 e

Control without volunteer corn - 100 a 100 a 100 a

Haloxyfop-P-methyl 60 8.0 e 12 d 14 d

Clethodim 108 91 b 98 a 100 a

Pinoxaden 30 24 d 19 d 16 d

Cloransulam-methyl 40 30 d 32 c 35 c

Imazetapyr 100 60 c 87 b 84 b

Coefficient of variation (%) 5.1 3.3 4.8

Herbicide treatment Rate 
(g ai·ha-1) Enlist soybean injury (%)

Control with volunteer corn -  0.0 c 0.0 c 0.0 c

Control without volunteer corn - 0.0 c 0.0 c 0.0 c

Haloxyfop-p-methyl 60 3.0 c 0.0 c 0.0 c

Clethodim 108 5.0 c 2.0 c 0.0 c

Pinoxaden 30 5.0 c 1.0 c 0.0 c

Cloransulam-methyl 40 10 b 8.0 b 6.0 b

Imazetapyr 100 19 a 16 a 13 a

Coefficient of variation (%) 19.9 11.5 8.1

*Same lowercase letters in the column did not differ by Duncan’s test (p < 0.05); DAA: days after application.
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inhibiting herbicides to control volunteer corn, mainly when performed at V2-V3 phenological stages to ensure better control 
levels (Chahal and Jhala 2015; Pertile et al. 2018). The reduced control of EnlistTM volunteer corn to haloxyfop-P-methyl 
was expected because its tolerance to that herbicide due to AAD-1 enzyme insertion confers tolerance to AOPPs herbicides, 
reducing the herbicidal damage (Wright et al. 2010; Chekan et al. 2019). Reduced control was also found to pinoxaden, an 
active ingredient from phenylpyrazolin chemical group (DEN), controlling only 65% of the EnlistTM volunteer corn at 28 
DAA (Striegel et al. 2020), suggesting that the AAD-1 enzyme can also reduce the sensibility of EnlistTM corn to DEN. In 
contrast, imazethapyr exhibited 84% control of glyphosate-volunteer corn at 30 DAA (Marca et al. 2015). 

Despite providing 84% of control, imazethapyr injured the EnlistTM soybean, with values up to 19%. On the other hand, 
haloxyfop-P-methyl, pinoxaden, and clethodim applied at labeled rate did not exhibit significant injury, with values lower than 5% 
(Table 1). The specific activity of ACCase-inhibiting herbicides on grasses occurs due to their selective inhibition of homomeric 
plastidic ACCase only found in monocots. In contrast, heteromeric plastidic or homomeric cytosolic forms found in soybean 
and other dicots are not inhibited by ACCase inhibitors (Kukorelli et al. 2013). On the other hand, cloransulam-methyl and 
imazethapyr inhibit the enzyme acetolactate synthase (ALS), dependent on metabolic degradation to provide rapid inactivation of 
herbicide molecule. Thus, lower injury levels of these herbicides in soybean involve differential activity of cytochrome P450 enzymes 
complex followed by glutathione conjugation, leading to differential tolerance between soybean and weeds (Nandula et al. 2019).

Additionally, volunteer corn plants, when present in soybean crops, can interfere and cause damage to the plant 
development. Thus, chemical management of EnlistTM volunteer corn has greater importance to reduce the competition 
and ensure better conditions for soybean development. While the resources are limited in agricultural fields, crop-weed 
competition can change the light capture and perception in response to shading, affecting physiological processes and their 
development (Mckenzie-Gopsill et al. 2016). The presence of EnlistTM volunteer corn increased the EnlistTM soybean PH, 
especially for the treatments with reduced control by post-emergence herbicides evaluated (Table 2). 

Table 2. Morphological parameters and yield components of EnlistTM soybean after the interference of EnlistTM volunteer corn. 2021.

Herbicide treatment Rate 
(g ai·ha-1)

Morphological parameters

PH (m) HFPI (cm) INP BNP

Control with volunteer corn -  1.43 a* 29.8 a 17.2 b 2.6 c

Control without volunteer corn - 1.25 c 28.4 a 21.1 a 4.0 a

Haloxyfop-P-methyl 60 1.42 a 24.6 b 17.1 b 2.0 c

Clethodim 108 1.33 b 23.9 b 22.4 a 4.2 a

Pinoxaden 30 1.46 a 26.0 b 17.5 b 2.4 c

Cloransulam-methyl 40 1.37 b 22.8 c 18.9 b 2.2 c

Imazetapyr 100 1.35 b 22.1 c 22.3 a 3.6 b

Coefficient of variation (%) 5.8 5.3 7.2 15.6

Herbicide treatment Rate 
(g ai·ha-1)

Soybean yield components

PNP SP SW (g) GY (kg·ha-1)

Control with volunteer corn -  27.9 c* 71 c 179.3 a 868.5 c

Control without volunteer corn - 86.3 a 196 a 166.4 c 3536.1 a

Haloxyfop-P-methyl 60 29.3 c 63 c 176.1 a 954.1 c

Clethodim 108 89.8 a 204 a 162.8 c 3268.4 a

Pinoxaden 30 30.2 c 66 c 179.2 a 839.8 c

Cloransulam-methyl 40 31.8 c 70 c 178.9 a 1172.6 c

Imazetapyr 100 61.4 b 138 b 171.5 b 2277.4 b

Coefficient of variation (%) 26.7 28.1 3.6 21.1

*Same lowercase letters in the column did not differ by Duncan’s test (p < 0.05); PH: plant height; HFPI: height of first pod insertion; INP: internodes number per 
plant; BNP: branches number per plant; PNP: pod number per plant; SP: seeds per plant; SW: 1,000-seed weight; GY: grain yield. 



6

A. S. Mazon et al.

Bragantia, Campinas, 81, e0122, 2022

EnlistTM soybean treated with haloxyfop-P-methyl and pinoxaden showed PH of 15% greater than control without EnlistTM 
volunteer corn. Additionally, PH of EnlistTM soybean was 10% higher after exposure to cloransulam-methyl, imazethapyr, and 
clethodim herbicides than control (weed-free), demonstrating the need for adequate management to avoid the adverse effects 
of corn-soybean competition. The coexistence of glyphosate-tolerant volunteer corn in competition with soybean increased 
16% the PH, especially on varieties with short growth cycle and control performed later (Caratti et al. 2018). Morphological 
and physiological changes due to the neighbor’s competition can occur between species in response to the light perception 
and its effects on antioxidant machinery, affecting the architecture of the canopy and photosynthetic efficacy (Benemann et al. 
2020). At prior to harvest, HFPI of EnlistTM soybean was not affected significantly by corn-competition, with values greater 
than 28.4 cm (Table 2). In contrast, all herbicides applied on EnlistTM soybean reduced the HFPI, especially the imazethapyr, 
with values 28% lower than the control without EnlistTM volunteer corn and herbicide application (Table 2). HFPI is an 
important parameter used to regulate the harvester platform’s cutting height to avoid grain losses, requiring a minimum 
pod height to cut-off greater than 15 cm in moderately declined fields (Andrade et al. 2016). Furthermore, herbicides can 
reduce the first pod’s height, especially when it triggers high injury levels. For example, fomesafen and cloransulam-methyl 
were applied on Roundup Ready® soybean at a labeled rate reduced 22% the HFPI (Novakoski et al. 2020). 

Other morphological changes can occur due to competition and injury caused by herbicides, affecting the development. 
EnlistTM soybean without competition caused by volunteer EnlistTM showed greater INP and BNP values. Plots treated with 
clethodim exhibited INP and BNP values statistically equal to control without volunteer corn (Table 2). However, lower 
control obtained by haloxyfop-P-methyl, pinoxaden, and cloransulam-methyl herbicides increased the corn-soybean 
interference effects and reduced the INP and BNP strongly, with values 18 and 55% lower than EnlistTM soybean without 
EnlistTM volunteer corn (Table 2). The corn-soybean competition due to inadequate control affects reproductive structures’ 
development, with values up to 80% lower depending on the soybean cultivar used (Caratti et al. 2018). These results show 
the importance of ensuring highest levels of control of EnlistTM volunteer corn, reducing the interference, and protecting 
the grain yield potential. 

Evaluating the grain yield components, EnlistTM soybean without EnlistTM volunteer corn or treated with clethodim 
showed higher PNP and SP, with values up to 68% greater than control with EnlistTM volunteer corn and other herbicides 
evaluated (Table 2). However, the SW of EnlistTM soybean without volunteer corn was 6% lower than control with volunteer 
EnlistTM corn or treated with haloxyfop-P-methyl (Table 2). Several results have reported substantial pods reduction in 
soybean under stressors agents like weed competition (Caratti et al. 2018; Piasecki and Rizzardi, 2018). An unfortunate 
outcome of control can favor the weed development, affecting the crop plant growth and reducing the available resources 
to photoassimilates production (Baucom 2019). The higher corn height reduces the light interception by soybean and 
changes the red:far-red ration detected by plant phytochromes, affecting the resource partitioning (Ballaré 2014). Crop-weed 
competition can increase oxidative stress and up-regulate the expression of photosynthetic apparatus genes (Benemann 
et al. 2020). Additionally, morphological changes under competition in soybean include lower internodes and branches 
number, reducing the reproductive buds, pods, and seeds produced per plant (Harre and Young 2020).

EnlistTM soybean with EnlistTM volunteer corn showed an average grain yield of 73% lower than the control without 
volunteer plants and 70% lower than the EnlistTM soybean treated with clethodim (Table 2). Furthermore, plots managed 
with imazethapyr controlled only 84% of the EnlistTM volunteer corn, reducing 36% of the soybean grain yield compared to 
the control, demonstrating that lower control levels can reduce the grain yield due to greater ability competitive (Table 2). 
Pertile et al. (2018) reported the higher competitive potential of Roundup Ready® volunteer corn on soybean, reducing 
the grain yield at low densities. Thus, EnlistTM soybean grain yield reflected the level of EnlistTM volunteer corn control, in 
which the clethodim herbicide provided adequate control in comparison of haloxyfop-P-ethyl, pinoxaden, imazethapyr, 
and cloransulam-methyl. Due to competition, the restricted growing conditions also limit the plant’s ability to support seed 
demand, reducing the total photoassimilates and threshold values of the plant to set seeds produced. In contrast, the seed-
seed partitioning can cause penalties for the seed weight, because it would have resource-limited during the grain filling 
(Carciochi et al. 2019). In agricultural systems, adverse effects of weed interference are broadly known, causing strong 
reduction of the grain yield, especially when the weed management is inadequate during the initial crop development.
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Seed physiological quality of EnlistTM soybean was affected negatively due to the interference caused by volunteer 
plants, with G and FCC values 5% lower compared to the control without volunteer corn (Table 3). Similarly, plots 
treated with pinoxaden and cloransulam-methyl exhibited G values greater than 97%, whereas EnlistTM soybean 
was subjected to clethodim, pinoxaden, and haloxyfop-P-methyl herbicides and showed FCC values greater than 
83% (Table 3). Lower soybean nutrient accumulation can be affected by weed competition, causing the lowest grain 
yield and seed weight (Harre and Young 2020). On the other hand, seeds with a larger size and weight can show 
greater seed germination and vigor than smaller seeds (Derre et al. 2017). Thus, seeds with higher reserves amount 
available to embryo development are essential to ensure the seedling establishment, good stand uniformity, and 
greater grain yield (Ebone et al. 2020). Although the FCC indicates the seed vigor, other deterioration processes 
can reduce the germination and vigor, generally identified through more consistent physiological seed testing 
(Kandasamy et al. 2020).

Based on AA and FE testing, EnlistTM soybean treated with haloxyfop-P-methyl, pinoxaden, and clethodim herbicides 
showed significant germination percentage, with values greater than 94%, and statistically similar to control without EnlistTM 
volunteer corn (Table 3). However, imazethapyr and cloransulam-methyl applied on EnlistTM soybean reduced the AA, 
whereas imazethapyr herbicide affected negatively the FE, reducing approximately 5% compared to the control (Table 3). 
Larger seed sizes have better embryo formation and significant reserve amounts, ensuring the successful emergence of 
seedlings (Derre et al. 2017). During the soybean seed germination, several metabolic proteins play a role-key to mobilize 
the reserves, especially in the carbohydrate metabolism and redox processes (Han et al. 2013), essential steps to begin the 
germination. In this way, seed vigor is a critical factor determining the initial seedling development, and ensures the initial 
plant-stand stablishments (Ebone et al. 2020), a key-point to enhance the grain yield.

Evaluating the physiological parameters by TZ testing, vigor and viability of EnlistTM soybean were elevated to 
all herbicide treatments, except to imazethapyr, with values greater than 94% (Table 3). The lowest values of vigor 

Table 3. Physiological seeds quality of Enlist soybean evaluated by germination (G), first germination count (FGC), accelerated aging (AA), 
field emergence (FE), and tetrazolium testing after herbicide treatment to control of EnlistTM volunteer corn. 2021.

Herbicide treatment Rate
(g ai·ha-1) G (%) FCC (%) AA (%) FE (%)

Control with volunteer corn -  92 b* 79 b 92 b 95 b

Control without volunteer corn - 97 a 84 a 95 a 99 a

Haloxyfop-P-methyl 60 93 b 86 a 95 a 99 a

Clethodim 108 92 b 83 a 94 a 97 a

Pinoxaden 30 98 a 86 a 94 a 99 a

Cloransulam-methyl 40 97 a 76 b 90 b 98 a

Imazetapyr 100 95 ab 73 b 90 b 94 b

Coefficient of variation (%) 1.8 7.1 2.7 2.0

Herbicide treatment Rate
(g ai·ha-1)

Tetrazolium testing (%)

Vigour Viability 

Control with volunteer corn -  94 b* 96 a

Control without volunteer corn - 97 a 98 a

Haloxyfop-P-methyl 60 98 a 99 a

Clethodim 108 98 a 98 a

Pinoxaden 30 98 a 99 a

Cloransulam-methyl 40 97 a 98 a

Imazetapyr 100 86 c 91 b

Coefficient of variation (%) 3.1 2.8

*Same lowercase letters in the column did not differ by Duncan’s test (p < 0.05).
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and viability found in EnlistTM soybean after exposure of imazethapyr possibly occurred by higher injury level of 
herbicide used to control the EnlistTM volunteer corn. Similar results were reported in soybean cultivar BRS 382CV 
(imidazolinone-tolerant – Cultivance® technology), Coodetec cultivar CD249 STS (sulfonylurea-tolerant soybean – 
STS technology) and Nidera cultivar NA5909RR (glyphosate-tolerant technology) managed in lowland areas, in which 
greater amount of imazapic+imazapyr herbicide residues from carry over caused significant plant injury and reduced 
the seeds physiological quality (Agostinetto et al. 2018), demonstrating negative effects of imidazolinone herbicides 
applied in soybean depending on injury level caused. Although imazethapyr is selective for soybean, the cleavage of ring 
aromatic from imidazolinones herbicides depends on cultivar differential metabolic ability to rapidly metabolize and 
inactive the toxic compounds. It involves the enzymatic complex of cytochrome P450 monooxygenases and glutathiones 
that require adenosine triphospate (ATP) (Tecle et al. 1993). Otherwise, some factors like crop management, stress 
occurrence, and meteorological conditions during the seed development and maturation can influence seed quality, 
reducing the vigor (Rao et al. 2017). 

According to the present study results, the control of EnlistTM volunteer corn must be appropriately performed to reduce 
the interference and protect the grain yield of EnlistTM soybean, assuring the production of seeds with better physiological 
quality. The recommended practices to control EnlistTM volunteer corn include the application of clethodim or other ACCase 
herbicides from cyclohexanedione (DIMs) chemical group, performed at initial development (up to V4 phenological stage) 
to provide high control levels and reduce the losses of grain during the harvest, and rotation of the transgenic technologies 
available inside of the same area.

CONCLUSION 

Clethodim is efficient to control EnlistTM volunteer corn and selective for EnlistTM soybean. Haloxyfop-P-methyl, 
pinoxaden, and cloransulam-methyl do not control EnlistTM volunteer corn, affecting negatively the EnlistTM soybean plant 
development and grain yield, but do not affect the physiological seed quality. Imazethapyr causes significant injury in 
EnlistTM soybean, reducing the seed viability by tetrazolium testing. 
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