
ABSTRACT: The growing consumer demand for sweet potato roots results in the need for genotypes with higher yields and better root 

quality. Thus, the objective of this study was to agronomically evaluate sweet potato genotypes via mixed models to select superior genotypes 

for human consumption and predict their selection gains. The study had a partially balanced triple lattice design with three replicates. 

As treatments, 92 sweet potato genotypes from the Universidade Federal de Lavras germplasm bank selected in the first selection cycle 

were evaluated along with eight controls, namely, Brazlândia Roxa, Princesa, Uruguaiana, BRS Amélia, Beauregard, UFVJM-57, UFVJM-58, 

and UFVJM-61. The treatments were ranked by the mixed linear model via restricted maximum likelihood (REML) and best linear unbiased 

prediction (BLUP). We highlighted the 15 best genotypes for each agronomic trait, then identified the best ones overall considering all 

quantitative and qualitative traits. High heritability was found for the trait commercial root yield (56.31%). For all traits, there were selection 

gains relative to the population mean. The use of mixed models was efficient for the selection of superior sweet potato genotypes. The 

genotypes 2018-19-464, 2018-72-1409, 2018-72-1428, 2018-19-443, 2018-36-807, 2018-72-1418, 2018-19-455, 2018-72-1376, 2018-54-1137, 

2018-54-1114, 2018-65-1249, and 2018-28-556 have good traits related to commercial root yield and root quality and may be recommended 

for human consumption.
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INTRODUCTION

Sweet potato (Ipomoea batatas (L.) Lam) is a crop of economic and social importance in Brazil that is widespread 
and mainly cultivated by small farmers, especially for subsistence (Azevedo et al. 2014). In recent years, the demand 
for sweet potato has increased significantly, as evidenced by the increase in its Brazilian production (FAO 2021). This 
increase in consumption is mainly related to the search for healthier diets. This has changed the profile of producers, who 
have increasingly improved their crops by introducing technologies such as fertilization, irrigation, and, especially, high-
performance cultivars to meet this demand.

Constant genetic improvement of sweet potato is essential for the development of cultivars with greater agronomic potential 
and root quality. The basis for the improvement provided by genetic breeding is the presence of genetic variability, which allows 
significant gains to be obtained by the selection of superior genotypes. Sweet potato is a hexaploid (2n = 6x = 90), allogamous, 
self-incompatible species with multiple allelisms (Ramalho et al. 2012, Isobe et al. 2019, Donato et al. 2020). These traits confer a 
broad genetic diversity on the species. Thus, each seed has the potential to originate a commercial genotype (Grüneberg et al. 2009).
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In genetic improvement of sweet potato, hybridization and subsequent selection cycles are responsible for generating 
genotypes with traits of interest (Baafi et al. 2016). Therefore, the agronomic evaluation of these genotypes is of paramount 
importance for selecting the best individuals with different use purposes, such as for human and animal consumption or 
ethanol production (Ritschel et al. 1999, Torquato-Tavares et al. 2016, Lestari et al. 2019). Among these purposes, use for 
human consumption has been the main objective of breeding research, and there are few studies on the other purposes.

For human consumption, in addition to yield-related traits, a sweet potato genotype should also have good qualitative traits, 
such as shape and insect resistance (Gonçalves Neto et al. 2012). The bioactive compounds contained in sweet potato, such as 
carotenoids and anthocyanins, have also attracted consumer interest (Tanaka et al. 2017). These bioactive compounds can be 
identified by their different colors, such as cream, yellow, orange, pink, and purple. Few studies have been done on the selection 
of sweet potato genotypes for quantitative and qualitative traits or on evaluating and characterizing different color groups.

A problem in the selection of materials for breeding programs is how to predict the genetic value of an accession (Borges et al. 
2010). This prediction is important to infer future means when cultivars are commercially planted (Borges et al. 2010). Genotype 
selection methods based on analysis of variance are marred by such limitations as inaccuracy in the presence of experimental 
imbalance (Resende 2016). Thus, methods using mixed models, with restricted maximum likelihood (REML) and best linear 
unbiased prediction (BLUP) estimates, are the best for genotype selection (Borges et al. 2010, Silva et al. 2022). Despite its efficiency 
in genotype selection, few studies have explored the technique in sweet potato. The simultaneous use of these methods has 
advantages such as allowing the comparison of individuals or varieties over time and space and simultaneously allowing correction 
for environmental effects, estimation of variance components, and prediction of genetic value (Resende 2016).

This study aimed to agronomically evaluate sweet potato genotypes via mixed models to select the best genotypes for 
human consumption and to predict their selection gains.

MATERIAL AND METHODS

The experiment was conducted at the Center for Development and Technology Transfer of the Universidade Federal 
de Lavras (UFLA), located at Palmital Farm, in the municipality of Ijaci, Minas Gerais, Brazil (altitude: 918 m; latitude: 
21°14’16”S; longitude: 45°08’00”W), from April 2 to October 4, 2019. During the experiment, the mean temperature was 
19.69°C, with a minimum mean of 14.51°C, and a maximum mean of 26.89°C. The cumulative rainfall was 195.1 mm, and 
the mean relative humidity was 67.16%.

The experimental design used a partially balanced triple lattice design, with 100 treatments in each of the three replicates, 
allowing greater local control. The kinship between close plots was restricted in the randomization of rows and columns as 
recommended by Bueno Filho and Gilmour (2003). The treatments consisted of 92 sweet potato genotypes from the UFLA 
germplasm bank, which were obtained from polycrosses between 55 genotypes. Eight controls were evaluated, including 
five commercial cultivars – Brazlândia Roxa, Princesa, Uruguaiana, BRS Amélia, and Beauregard – and three genotypes 
from the Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM) – UFVJM-57, UFVJM-58, and UFVJM-61.

The soil was prepared by plowing and harrowing, and 0.35-m-high beds were then raised. Each experimental plot consisted 
of 10 plants, with a spacing of 1 m between rows and 0.30 m between plants. The useful area of the plots was composed of 
the eight central plants. Planting was performed on April 2, 2019, using segments of sweet potato stems collected from the 
germplasm bank of UFLA. Each stem segment was approximately 30-cm long, with six to eight buds, and three of these buds 
were buried in the soil for rooting. Fifteen days after planting, the plants were checked and replanted in the plots to ensure 
the presence of 10 plants per plot. Nutritional management was based on the recommendation for sweet potato (Ribeiro et al. 
1999). Crop treatments such as weeding, topdressing, and phytosanitary management were performed manually and according 
to the needs of the crop. Irrigation was performed by drip irrigation based on the crop requirements and water balance.

The crops were harvested 180 days after planting, starting on September 23 and ending on October 4. Immediately after 
harvest, in the useful area of each plot, the following agronomic variables were evaluated for the 100 genotypes: 

• �Commercial root yield: we weighed tuberous roots with a weight between 100 and 800 g, free of damage and with good 
commercial appearance in each plot. The results were converted to mg·ha-1 (Azevedo et al. 2014); 
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• �General shape: the roots were visually analyzed and then scored by two evaluators according to the method proposed 
by Azevedo et al. (2002) with adaptations: 

	 - score 1 = fusiform shape; 
	 - score 2 = near-fusiform shape; 
	 - score 3 = uneven shape; 
	 - score 4 = poor shape for commercialization, with cracks; 
	 - score 5 = unmarketable shape with many deformations. 
Thus, score 1 was most desirable; 
• �Commercial standard: the roots in the plot were visually analyzed, and then scores were assigned by two evaluators 

according to the method proposed by Silva et al. (2022) with adaptations: 
	 - score 1 = best commercial standard; 
	 - score 2 = good commercial standard; 
	 - score 3 = standard that moderately hindered commercialization; 
	 - score 4 = standard that greatly hindered commercialization; 
	 - score 5 = worst commercial standard 
Score 1 was more desirable;
• �Insect resistance: two evaluators measured the occurrence of galleries and/or holes in the roots using the following 

scoring scale:
	 - 1 = damage free; 
	 - 2 = little damage; 
	 - 3 = damage that moderately affected the commercial aspect; 
	 - 4 = damage that greatly affected the commercial aspect; 
	 - 5 = damage that totally affected the commercial aspect (Azevedo et al. 2002). 
Score 1 was most desirable;
• �Root clustering: after digging the bed, the roots were exposed without detaching them, and their clustering was 

evaluated by two evaluators as:
	 - 3 = closed; 
	 - 5 = open; 
	 - 7 = disperse; 
	 - 9 = very disperse (Huamán 1999)
Scores 3 and 5 were desirable; 
• �Veins: the roots were visually observed and assigned scores by two evaluators, with 0 = absence of veins and 1 = 

presence of veins (score 0 was desirable);
• Enzymatic browning: two roots from each plot were cut and after 1 minute they were analyzed by two evaluators:
	 - 1 = no browning; 
	 - 2 = slight browning; 
	 - 3 = moderate browning; 
	 - 4 = extensive browning; 
	 - 5 = complete browning (Gonçalves Neto et al. 2011). 
Score 1 was most desirable;
• �Root skin color: two evaluators visually defined the color according to the scores proposed by Huamán (1999) with 

adaptations:
	 - 1 = white; 
	 - 2 = cream; 
	 - 3 = yellow; 
	 - 4 = brownish orange; 
	 - 5 = pink; 
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	 - 6 = reddish purple; 
	 - 7 = dark purple. 
• �Root flesh color: two evaluators visually defined the predominant color and the secondary color (lower proportion), 

when present, according to the scores proposed by Huamán (1999) with adaptations: 
	 - 1 = white; 
	 - 2 = cream; 
	 - 3 = yellow; 
	 - 4 = orange; 
	 - 5 = purple.
For the traits evaluated by scoring scales, the correlation between the scores from the two evaluators and the confidence 

intervals were analyzed by the Pearson’s method.
The Box and Cox (1964) method was used to seek the transformation that would best describe the normal approximation. 

A likelihood-based confidence limit for each estimated lambda was also used as a normality test (considered normal if 
includes 1 after transformation). A likelihood ratio test was carried out to compare models with and without variance 
component to genotypes. This yielded the following values for each trait: 

• Commercial root yield: λ = 0.41;
• General shape: λ = 0.66;
• Commercial standard: λ = 0.77;
• Insect resistance: λ = -0.45;
• Root clustering: λ = 0.53;
• Veins: λ = -3;
• Enzymatic browning: λ = -0.79. 
The trait presence of veins (λ < -3) was disregarded in the analysis. To calculate the mean value obtained in the evaluation 

of each agronomic trait for the treatments, as well as to estimate the population mean, the inverse transformation of the 
Box and Cox’s formula (1964) was used (Eq. 1):

					             𝑦𝑦 = (1 + 𝜆𝜆𝜆𝜆!)
!
"  � (1)

in which: λ = the parametric transformation; yt = the vector of transformed observations.
Analysis of variance was performed only to determine the efficiency of local control (blocks, rows, and columns). For 

each agronomic trait, a mixed model was fitted to estimate the genotypic variance ( 𝜎𝜎"!" 
 

𝜎𝜎"#" 

) and the residual variance (

𝜎𝜎"!" 
 

𝜎𝜎"#" ). 
The REML/BLUP estimates (Patterson and Thompson 1971, Henderson 1984) are considered the most adequate for the 
incomplete block model and lattice design (Bueno Filho and Vencovsky 2000) (Eq. 2): 

					     yijk= m + bj + ck + gi + eijk � (2)

in which: yijk = the realization of the random variable in study, taken in the jth block (row), and kth column from the ith 
genotype; bj and ck = assumed to be fixed effects; gi = assumed to be a random effect. 

The genotypes under study were ranked for each trait, and a selection intensity of 15% (15 genotypes from the UFLA 
germplasm bank) was simulated. Vectors g and e of genetic and error effects = assumed to be multivariate normally distributed 
with zero means and respective covariances given by G = I100 and R = I300.

Based on the estimates of the variance components, the broad-sense heritability was calculated for the selection between 
clones by the Eq. 3:

				            	ℎ!(%) =
𝜎𝜎("!

𝜎𝜎(#!
= 	

𝜎𝜎("!

𝜎𝜎("! +
𝜎𝜎($!
𝑟𝑟 	
	× 	100  � (3)
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in which: h2 = the broad-sense heritability; 𝜎𝜎"!" 
 

𝜎𝜎"#" 

 = the estimated genotypic variance; 𝜎𝜎"!" 
 

𝜎𝜎"#" 

 = the estimated variance of the 
experimental error;

	ℎ!(%) =
𝜎𝜎("!

𝜎𝜎(#!
= 	

𝜎𝜎("!

𝜎𝜎("! +
𝜎𝜎($!
𝑟𝑟 	
	× 	100 

 = the estimated phenotypic variance between means of clones; r = the number of treatment replicates. 
Heritability values lower than 20% will be considered low heritability, between 20 and 50% will be of moderate heritability, 

and higher than 50% will be of high heritability (Santos et al. 2018).
Confidence limits for variance components were worked out using χ2 scaled distributions. Confidence limits for 

heritability estimates were approximated from Monte Carlo samples of the distributions for variance components. We used 
10,000 independent samples for each variance parameter in each trait.

The selection gain was calculated directly by the mean BLUP for the selected genotypes. The traits that showed low 
heritability and whose gain for the selection intensity did not differ from 0 were not included in the results.

The data were analyzed with the statistical software R (R Core Team 2018). The linear mixed-effects models were fit with 
function lmer from the lme4 library (Bates et al. 2015). Confidence limits for λ in Box-Cox transformation were evaluated 
with boxcox function of library MASS (Ripley et al. 2022).

RESULTS AND DISCUSSION

Analysis of variance and variance components

The analysis of variance showed that the F test was significant (P ≤ 0.05) for the block, column, and row sources of variation 
in at least one agronomic trait (Table 1). This indicated that there were significant variations in these sources of variation.

Table 1. Probability of significance in the F test of the analysis of variance for the effects of local control, namely, blocks, rows, and columns.

Trait

p-value

Source of variation

Block Column Row

Commercial root yield 0.072ns 0.171ns 0.000***

General shape 0.014* 0.310ns 0.000***

Commercial standard 0.551ns 0.133ns 0.639ns

Insect resistance 0.370ns 0.789ns 0.096ns

Root clustering 0.107ns 0.962ns 0.009**

Veins 0.000*** 0.000*** 0.000***

Enzymatic browning 0.319ns 0.662ns 0.015*

p-value: P value of the F test at 5% probability; ***significant at P ≤ 0.001; **significant at P ≤ 0.01; *significant at P ≤ 0.05; nsnot significant.

The trait with the highest broad-sense heritability was commercial root yield (h² = 80.19% [73.94%; 85.10%])  
(Table 2). This indicates that this trait showed a higher genetic variance than environmental variance, i.e., it was the trait 
under the greatest influence of genes.

The vein trait was disregarded from the other analyses because it did present neither significant genetic nor environmental 
variance (h² ≅ 0%, [0%; 0%]) (Table 2). The other traits related to root quality, including general shape (h² = 62.52%, 
[53.72%; 69.92%]), commercial standard (h² = 58.20%), insect resistance (h² = 36.26%, [28.57%; 44.54%]), root clustering  
(h² = 57.32%, [48.64%; 65.32%]), and enzymatic browning (h² = 56.16%, [47.41%; 64.38%]), showed higher residual 
variance than genetic variance. Therefore, environmental conditions have greater control over these traits than genetic 
effects. However, the veins trait showed low heritability, and the insect resistance showed moderate heritability, while the 
other traits showed high heritability. 
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Table 2. Genetic and residual variance, broad-sense heritability and their confidence limits for the agronomic traits evaluated in sweet potato 
(Ipomoea batatas L.) genotypes.

Trait

Genetic variance Residual variance Broad-sense heritability (%)

Estimate Lower 
limit

Upper 
limit Estimate Lower 

limit
Upper 

limit Estimate Lower 
limit

Upper 
limit

Commercial 
root yield 1.609 1.240 2.171 1.192 0.981 1.481 80.19 73.94 85.10

General 
shape 0.138 0.107 0.187 0.249 0.205 0.309 62.52 53.72 69.92

Commercial 
standard 0.182 0.140 0.245 0.391 0.322 0.486 58.20 49.51 66.13

Insect 
resistance 0.013 0.010 0.017 0.068 0.056 0.085 36.26 28.57 44.54

Root 
clustering 0.193 0.148 0.260 0.430 0.354 0.534 57.32 48.64 65.32

Enzymatic 
browning 0.003 0.003 0.005 0.008 0.007 0.010 56.16 47.41 64.38

The design used in the study was efficient for estimating the genetic parameters. Fixed effects for blocks were estimated 
as relevant and contributed to greater accuracy in the selection of sweet potato genotypes. Genetic variance parameters for 
most traits were also relevant. 

In sweet potato, the estimation of heritability in the broad sense is highly important, since the effects of dominance and 
epistasis can be fixed to the genotypes through vegetative propagation (Gonçalves Neto et al. 2012). Nóbrega et al. (2019) 
found a broad-sense heritability of commercial root yield equal to 91.87%, a value higher than that observed in this study. 
This could be related to the fact that genetic parameters depend on the studied population and environmental conditions. 
Therefore, it is important that genotypes should be tested in other locations.

The qualitative traits were influenced by environment-dependent factors, such as the presence of insects, soil types, 
nutrition, and moisture (Silva et al. 2015), which resulted in low to high heritability. Low heritability may be a limitation for 
the efficient selection of these genotypes. Thus, for the introduction of this trait in genotypes that do not have it, recurrent 
selection cycles should be performed to seek a greater heterotic effect and increase the number of possibly superior 
individuals available for selection.

Variance components were relevant for all traits with moderate and high heritability, as can be verified in the χ2 
approximation of the likelihood ratio test for models with and without respective variance components (Table 3). However, 
only a few traits of high heritability and economic relevance were considered for selection. For the traits commercial root 
yield, general shape, commercial standard, and root clustering, genotypic values were estimated.

Table 3. Likelihood-ratio test using χ2 approximation for comparing the model with variance components vs. the model without it. Agronomic 
traits evaluated in sweet potato (Ipomoea batatas L.) genotypes.

Trait χ2 p-value

Commercial root yield 82.739 9.363 · 10-20

General shape 27.189 1.844 · 10-7

Commercial standard 26.496 2.641 · 10-7

Insect resistance 6.586 1.028 · 10-2

Root clustering 21.710 3.171 · 10-6

Enzymatic browning 14.346 1.520 · 10-4
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Estimated genotypic values for each trait

Considering the selection intensity of 15% of the sweet potato genotypes from the UFLA germplasm bank, the highest 
commercial root yields varied between 11.01 and 18.68 mg·ha-1 (Table 4). These genotypes showed an increase in yield of 
70.79 to 190.51% relative to the overall population mean, corresponding to selection gains of between 4.58 and 12.25 mg·ha-1, 
which are considered good for the trait.

Table 4. Ranking of the estimated genotypic values of the 15 best sweet potato (Ipomoea batatas L.) genotypes from the Universidade 
Federal de Lavras germplasm bank and the commercial cultivars for the traits commercial root yield, general shape, commercial standard, 
and root clustering, with the best genotype represented by rank 1, and correlation of the scores of the two evaluators and corresponding 
confidence interval by the Pearson’s method for qualitative traits.

Commercial root yield General shape

R
an

k

Genotype Skin 
color

Flesh 
color Estimate

Average SG

R
an

k

Genotype Skin 
color

Flesh 
color Estimate

Average SG 

Mg·ha-1 Score

1 2018-19-464 Pink Cream 2.87 18.68 12.25 1 Beauregard Pink Orange -0.77 2.21 -1.08

2 2018-72-1409 Purple Purple/
White 2.21 15.18 8.75 2 2018-19-443 Pink Cream -0.63 2.39 -0.90

3 2018-72-1428 Pink Cream 1.98 14.09 7.66 3 2018-19-464 Pink Cream -0.60 2.44 -0.85

4 2018-19-443 Pink Cream 1.82 13.32 6.88 4 2018-36-807 Cream Cream -0.58 2.46 -0.83

5 2018-72-1408 Pink White/
Purple 1.81 13.28 6.85 5 2018-54-1137 Pink White/

Purple -0.54 2.52 -0.77

6 2018-36-807 Cream Cream 1.74 12.98 6.54 6 2018-72-1376 Pink White/
Purple -0.49 2.58 -0.71

7 Beauregard Pink Orange 1.74 12.96 6.53 7 2018-31-671 Pink Cream -0.48 2.60 -0.69

8 2018-72-1418 Purple Purple/
White 1.72 12.87 6.43 8 2018-31-666 Pink Cream/

Purple -0.44 2.65 -0.64

9 2018-19-455 Cream White/
Purple 1.67 12.64 6.21 9 2018-54-1114 Pink Cream -0.38 2.74 -0.55

10 2018-74-1507 Cream Cream 1.57 12.22 5.79 10 2018-55-1156 Brownish 
orange

Cream/
Purple -0.36 2.77 -0.52

11 2018-67-1321 Pink Cream 1.47 11.75 5.32 11 2018-14-259 Pink Yellow -0.35 2.78 -0.51

12 2018-72-1376 Pink White/
Purple 1.44 11.64 5.20 12 2018-72-1418 Purple Purple/

White -0.32 2.82 -0.47

13 2018-54-1137 Pink White/
Purple 1.38 11.37 4.93 13 2018-72-1409 Purple Purple/

White -0.32 2.83 -0.46

14 2018-54-1114 Pink Cream 1.33 11.18 4.75 14 2018-72-1428 Pink Cream -0.31 2.84 -0.45

15 2018-65-1249 Pink White 1.30 11.05 4.62 15 2018-19-455 Cream White/
Purple -0.30 2.86 -0.43

16 2018-28-556 Cream Cream 1.29 11.01 4.58 16 2018-72-1381 Pink Cream/
Purple -0.28 2.87 -0.42

17 Brazlândia 
Roxa Pink Cream 1.24 10.81 4.37 21 BRS Amélia Pink Orange -0.20 3.00 -0.29

36 BRS Amélia Pink Orange 0.39 7.66 1.23 22 Uruguaiana Pink Yellow -0.19 3.00 -0.28

44 Uruguaiana Pink Yellow 0.26 7.23 0.80 23 Brazlândia 
Roxa Pink Cream -0.19 3.01 -0.28

71 Princesa Cream Cream -0.55 4.91 -1.52 53 Princesa Cream Cream -0.00 3.29 -0.00

Mean 2.79 6.43 1.81 3.29

Standard deviation 0.60 0.23

Correlation of scores 0.85

Confidence interval 0.82 - 0.88

continue...
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Table 4. Continuation...

Commercial standard Root clustering

R
an

k

Genotype Skin 
color

Flesh 
color Estimate

Average SG

R
an

k

Genotype Skin 
color

Flesh 
color Estimate

Average SG 

Score Score

1 Beauregard Pink Orange -0.70 2.39 -0.88 1 2018-65-1249 Pink White -0.67 4.25 -1.41

2 2018-54-1137 Pink White/
Purple -0.66 2.43 -0.84 2 2018-54-1137 Pink White/

Purple -0.60 4.38 -1.28

3 2018-19-464 Pink Cream -0.61 2.50 -0.77 3 Beauregard Pink Orange -0.59 4.41 -1.25

4 2018-72-1428 Pink Cream -0.58 2.53 -0.75 4 2018-15-276 Cream Cream -0.57 4.44 -1.23

5 2018-36-807 Cream Cream -0.55 2.58 -0.70 5 Brazlândia 
Roxa Pink Cream -0.53 4.53 -1.14

6 2018-28-556 Cream Cream -0.47 2.67 -0.61 6 2018-72-1448 Purple Purple/
White -0.51 4.58 -1.09

7 2018-65-1249 Pink White -0.45 2.69 -0.58 7 2018-28-556 Cream Cream -0.49 4.60 -1.06

8 2018-72-1418 Purple Purple/
White -0.41 2.75 -0.53 8 2018-36-807 Cream Cream -0.48 4.63 -1.03

9 2018-19-443 Pink Cream -0.41 2.75 -0.52 9 2018-67-1323 Cream Cream -0.46 4.67 -1.00

10 2018-15-276 Cream Cream -0.40 2.75 -0.52 10 2018-72-1429 Pink Purple/
White -0.45 4.68 -0.98

11 2018-72-1376 Pink White/
Purple -0.40 2.76 -0.51 11 2018-14-260 Cream Cream -0.44 4.72 -0.95

12 2018-31-666 Pink Cream/
purple -0.40 2.77 -0.51 12 2018-72-1388 Pink White/

Purple -0.41 4.77 -0.89

13 2018-72-1388 Pink White/
Purple -0.39 2.78 -0.50 13 2018-19-464 Pink Cream -0.40 4.79 -0.87

14 2018-19-435 Pink White/
Purple -0.36 2.81 -0.47 14 2018-72-1432 Purple Purple/

White -0.39 4.81 -0.86

15 2018-14-260 Cream Cream -0.35 2.82 -0.45 15 2018-19-445 Cream Cream -0.39 4.81 -0.85

16 2018-74-1507 Cream Cream -0.35 2.83 -0.45 16 2018-28-543 Cream Yellow -0.38 4.83 -0.83

37 BRS Amélia Pink Orange -0.10 3.15 -0.13 17 2018-54-1082 Cream Cream -0.37 4.85 -0.81

55 Uruguaiana Pink Yellow 0.02 3.31 0.03 18 Uruguaiana Pink Yellow -0.34 4.92 -0.74

59 Princesa Cream Cream 0.04 3.33 0.05 25 Princesa Cream Cream -0.24 5.14 -0.52

60 Brazlândia 
Roxa Pink Cream 0.04 3.34 0.06 35 BRS Amélia Pink Orange -0.09 5.45 -0.21

Mean 1.94 3.28 2.84 5.66

Standard deviation 0.28 0.29

Correlation of scores 0.82 0.88

Confidence interval 0.77 - 0.85 0.85 - 0.90

Genotype: the name consists of the year the genotype was obtained followed by the family it belongs to and the plot where the genotype was in the experiment 
in which it was tested; Flesh color: when two colors are described, the first is the predominant color and the second is the secondary color; REML/BLUP: mixed 
model estimate; Score: estimated mean score for the genotype; SG: selection gain; Mean: population mean.

The average commercial root yield of commercial cultivars was 8.71 mg·ha-1 (Table 4). Of the 15 best genotypes 
under study, six of them were superior to the commercial cultivar Beauregard, which showed commercial root yield of  
12.96 mg·ha-1 and selection gain of 6.53 mg·ha-1. The other commercial cultivars were lower than the 15 best genotypes.

The mean commercial root yield of the 100 genotypes studied was 6.43 mg·ha-1, which represents reduction of 73.79% 
relative to the mean total root yield (24.53 mg·ha-1). This reduction occurred due to the strong interference of the soil 
structure on the development of commercial roots, as more clayey soils like those found in the present study favor root 
deformations (Valadares et al. 2022).
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Andrade Júnior et al. (2018) evaluated genotypes belonging to the germplasm bank of UFVJM. The authors reported 
that 64.50% of the roots were commercial, while in the present study the mean value was only 26.21%. Even though different 
genotypes were studied, these differences in the proportion of commercial roots might be related to other environmental 
factors, such as soil type and tillage practice, that affected the good development and commercial standard of the roots. 
Therefore, to confirm the performance of these genotypes, new studies should be conducted in other locations. Silva  
et al. (2012) noticed that the performance of sweet potato cultivars and clones in terms of root yield-related traits may vary 
according to the environment, as they are traits with quantitative heritability under strong environmental influence. Azevedo 
et al. (2014), in a study of sweet potato in two locations, observed that the commercial root yield of the same genotypes 
ranged from 5.09 to 12.96 mg·ha-1 in one location and from 7.04 to 44.82 mg·ha-1 in another, showing the importance of 
testing genotypes in different environments.

Another important aspect is the variability in the flesh and skin color of the study genotypes. Regarding the skin color, 
13.33% of the best genotypes for commercial root yield were purple, 26.67% cream, and 60% pink (Table 4). These genotypes 
showed different flesh colors: 13.33% purple with white secondary color; 33.33% white, of which 80% had purple as the 
secondary color; and 53.33% cream.

Another important factor in the selection of sweet potato genotypes for human consumption is the root color, as 
it allows the development of new sweet potato varieties for different needs (Nóbrega et al. 2019). These varieties have 
different nutritional compositions and bioactive compounds (Tanaka et al. 2017). In Minas Gerais, considering the 
scoring scales established in this study, the sweet potato with the highest demand had cream and pink skin colors with 
white or cream flesh.

Regarding the qualitative traits, the 15 best sweet potato genotypes from the UFLA germplasm bank for general shape 
had scores between 2.39 and 2.87, i.e., they had near-fusiform roots to roots tending to a nonuniform shape (Table 4). Only 
the three best genotypes had near-fusiform roots, because the highest score was 2.46. These three genotypes showed selection 
gains between -0.90 and -0.83 relative to the population mean (3.29). The correlation between the evaluators’ scores was 
0.85, with confidence interval of 0.82 to 0.88. 

The commercial cultivar Beauregard showed the highest average score for the general shape, being superior to all the 
genotypes from the UFLA germplasm bank, with the score of 2.21 and the selection gain of -1.08 in relation to the overall 
population mean (Table 4). The other commercial cultivars were lower to the 15 best genotypes with average score of 3.08; 
they had roots tending to a nonuniform shape, and selection gain of between -0.42 and -0.

For human consumption, the most important trait is commercial root yield (Gonçalves Neto et al. 2012). This is because 
of the market demand for better-quality roots. Thus, a higher commercial root yield is important to reduce waste if the goal is 
exclusively human consumption. In addition to the commercial root yield, fusiform-shaped roots are desired for the human 
consumption market (Azevedo et al. 2002), but no genotype with this predominant trait was found in the present study. 
Gonçalves Neto et al. (2011) studied 39 sweet potato genotypes and did not find any with optimal shape. This variation in 
shape may be associated with different growing conditions.

For the commercial standard trait, the 15 best genotypes from the UFLA germplasm bank had scores between 2.43 
and 2.83. Thus, the two best genotypes had roots with good commercial standard, while the other genotypes tended to 
have roots that would moderately hinder commercialization (Table 4). The population mean (3.28) also corresponded to a 
standard that would moderately hinder commercialization. These best genotypes showed a selection gain between -0.45 and 
-0.84, i.e., less than one unit on the scoring scale. The correlation between the evaluators’ scores was 0.82, with confidence 
interval of 0.77 to 0.85.

Considering the commercial cultivars, only Beauregard was superior to the 15 best genotypes, showed roots with good 
commercial standard, with the score of 2.39 and the selection gain of -0.88 in relation to the general average of the population 
(Table 4). However, the other commercial cultivars had the average score of 3.28 and selection gain between -0.13 and 0.06. 
Thus, these commercial cultivars have roots that would moderately hinder commercialization.

The commercialization standard influences root quality in terms of yield, shelf life, presence of pest damage, and 
commercial acceptance (Azevedo et al. 2014). According to Melo et al. (2020), knowledge of the adaptation of sweet potato 
genotypes to the environment and their production efficiency in various farming systems is essential for the identification 
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of genotypes with better performance. This reinforces the need for further evaluations of the genotypes selected in this 
study under other environmental conditions.

The 15 best genotypes from the UFLA germplasm bank for root clustering had scores between 4.25 and 4.85, tending 
to open clustering (Table 4). These scores were better than the population mean (5.66), indicating a selection gain between 
-1.41 and -0.85. This gain was beneficial because it indicated that, overall, the genotypes had open to disperse roots. The 
scores showed good agreement, since the correlation between the evaluators’ scores was high (0.88), with a confidence 
interval of 0.85 to 0.90.

Of the 15 best genotypes, two of these were superior to the commercial cultivar Beauregard, which presented the score 
of 4.41 and the selection gain of -1.25 in relation to the general average of the population (Table 4). Another outstanding 
commercial cultivar was Brazlândia Roxa, with the average score of 4.53 and gain of -1.14, being inferior only to the three 
genotypes and the commercial cultivar Beauregard. The other commercial cultivars were inferior to the 15 best genotypes 
with the average score of 5.17 and selection gain between -0.74 and -0.21. All commercial cultivars showed roots tending 
to open clustering.

It is considered best to select roots with a clustering between closed and open, since it facilitates mechanized harvesting, 
so these patterns were prioritized in this genetic improvement program. Conversely, when the root clustering is dispersed or 
very dispersed, the genotypes can be used for other purposes, such as animal feeding, by using the stems (Silva et al. 2022).

REML/BLUP estimates and joint evaluation of genotypes

For commercial root yield, since high yields are ideal, higher REML/BLUP estimates were desirable. Thus, genotypes 
with positive estimates, above 0, were important for selection (Table 4). Among the 15 best genotypes from the UFLA 
germplasm bank, the estimates for this trait ranged from 1.29 to 2.87 for 2018-28-556 and 2018-19-464, respectively. The 
standard deviation of the 100 genotypes for commercial root yield was 0.60.

For the qualitative traits, it is desired to select genotypes with the lowest REML/BLUP estimates, e.g., with better root 
quality. Thus, the genotypes with negative estimates, below 0, were ideal for selection (Table 4).

The best genotypes for yield also had a good general shape, except for 2018-72-1408, 2018-74-1507, 2018-67-1321, 2018-
65-1249, and 2018-28-556 (Table 4). The lowest estimate was found for the commercial cultivar Beauregard. The standard 
deviation for general shape was 0.23.

The estimates the 15 best genotypes from the UFLA germplasm bank for commercial standard ranged between -0.70 
and -0.35 for Beauregard and 2018-74-1507, respectively (Table 4). The standard deviation for this trait was 0.28.

The genotypes 2018-65-1249 (-0.67) and 2018-54-1137 (-0.60) had lower estimates for root clustering. These genotypes 
were superior to the commercial cultivar Beauregard (-0.59). The standard deviation among the 100 genotypes was 0.29.

In addition to separately describing the root yield and root quality traits, the joint evaluation of these sets of traits is 
important for meeting market needs. Desirable genotypes for human consumption must have a good commercial root 
yield linked to good root quality.

The genotypes 2018-19-464, 2018-36-807, Beauregard, and 2018-54-1137 were the only genotypes to present 
good performance on all traits, being commercial root yield, general shape, commercial standard, and root clustering  
(Table 4). These genotypes showed commercial root yields of 18.68, 12.98, 12.96, and 11.37 mg·ha-1, respectively. 
Furthermore, Beauregard (score 2.21), 2018-19-464 (score 2.44), and 2018-36-807 (score 2.46) presented a near-
fusiform general shape, while 2018-54-1137 (score 2.52) had roots tending to a nonuniform shape. Good commercial 
standards were observed for the Beauregard (score 2.39) and 2018-54-1137 genotypes (score 2.43), while 2018-19-464 
(score 2.50) and 2018-36-807 (score 2.58) had roots with a standard that would moderately hinder commercialization. 
These four genotypes had roots with open clustering, with scores of 4.79 (2018-19-464), 4.63 (2018-36-807), 4.41 
(Beauregard), and 4.38 (2018-54-1137).

The 2018-72-1428, 2018-19-443, 2018-72-1418, and 2018-72-1376 stood out for commercial root yield, general 
shape, and commercialization standard (Table 4). Their commercial root yield ranged from 11.64 (2018-72-1376) to 
14.09 mg·ha-1 (2018-72-1428). The genotype 2018-19-443 (score 2.39) showed near-fusiform shape, while 2018-72-1376 
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(score 2.58), 2018-72-1418 (score 2.82), and 2018-72-1428 (score 2.84) had nonuniform roots. These four genotypes 
showed commercial standards that would moderately hinder commercialization, with scores between 2.53 (2018-72-
1428) and 2.76 (2018-72-1376).

In addition, the genotypes 2018-65-1249 and 2018-28-556 are among the 15 best genotypes for commercial root yield 
(11.05 and 11.01 mg·ha-1, respectively), commercial standard (scores 2.69 and 2.67, respectively, that would moderately 
hinder commercialization), and root clustering (scores 4.25 and 4.60, respectively, grouping of open roots) (Table 4).

The genotypes 2018-54-1114, 2018-19-455, and 2018-72-1409 stood out for commercial root yield and general shape 
(Table 4). These yields were 11.18, 12.64, and 15.18 mg•ha-1, respectively. In addition, these genotypes had a nonuniform 
shape (scores between 2.74 and 2.86).

Last, genotypes 2018-67-1321, 2018-74-1507, and 2018-72-1408 had commercial root yield of 11.75, 12.22, and  
13.28 mg·ha-1, respectively (Table 4). It did not stand out in terms of root quality traits.

It is important to highlight that only two control treatments, Beauregard and Brazlândia Roxa, stood out among the 
best genotypes in at least one trait, although the commercial cultivars Princesa, Uruguaiana and BRS Amélia, and the three 
genotypes from UFVJM did not perform well.

CONCLUSION

For all studied traits, there were selection gains in relation to the population mean. The use of mixed models was efficient 
for the selection of superior sweet potato genotypes. The genotypes 2018-19-464, 2018-72-1409, 2018-72-1428, 2018-19-
443, 2018-36-807, 2018-72-1418, 2018-19-455, 2018-72-1376, 2018-54-1137, 2018-54-1114, 2018-65-1249, and 2018-28-
556 had good traits related to commercial root yield and root quality and can be recommended for human consumption. 
These first five genotypes were superior to the performance of the best commercial cultivar for the commercial root yield 
trait. For the traits general shape and commercial standard, although the best average score was of the commercial cultivar 
Beauregard, the genotypes 2018-19-443, 2018-19-464, and 2018-36-807 showed a similar general shape, as well as the 
genotypes 2018-54-1137 and 2018-19-464 in commercial standard. The 2018-65-1249 and 2018-54-1137 genotypes were 
superior to the best commercial cultivar for the root clustering trait.
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