
ABSTRACT: Identifying Coffea arabica cultivars that are more efficient in the use of nitrogen is an important strategy and a necessity in 

the context of environmental and economic impacts attributed to excessive nitrogen fertilization. Although Coffea arabica breeding data 

have a multi-trait structure, they are often analyzed under a single trait structure. Thus, the objectives of this study were to use a Bayesian 

multitrait model, to estimate heritability in the broad sense, and to select arabica coffee cultivars with better genetic potential (desirable 

agronomic traits) in nitrogen-restricted cultivation. The experiment was carried out in a greenhouse with 20 arabica coffee cultivars grown 

in a nutrient solution with low-nitrogen content (1.5 mM). The experimental design used was in randomized blocks with three replications. 

Six agromorphological traits of the arabica coffee breeding program and five nutritional efficiency indices were used. The Markov Chain 

Monte Carlo algorithm was used to estimate genetic parameters and genetic values. The agromorphological traits were considered highly 

heritable, with a credibility interval (95% probability):〖 H2 = 0.9538 – 5.89E-01. The Bayesian multitrait model presents an adequate strategy 

for the genetic improvement of arabica coffee grown in low-nitrogen concentrations. Coffee arabica cultivars Icatu Precoce 3282, Icatu 

Vermelho IAC 4045, Acaiá Cerrado MG 1474, Tupi IAC 1669-33, Catucaí 785/15, Caturra Vermelho and Obatã IAC 1669/20 demonstrated 

greater potential for cultivation in low-nitrogen concentration. 
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INTRODUCTION

Brazil is the world’s largest producer and exporter of arabica coffee (Coffea arabica L.), responsible for the production 
of 47.7 million bags of processed coffee (Conab 2022). Coffee growing regions, in general, have naturally acidic soils with 
low fertility. Therefore, soil pH correction and the use of large amounts of chemical fertilizers are necessary to ensure the 
maximum productive potential of coffee trees. Among the important macronutrients for plant growth and development, 
nitrogen is the most required by coffee plants, as it performs fundamental biochemical functions, such as amino acid and 
protein synthesis, impacting photosynthesis, formation of flower buds, in addition to the effects on the chemical composition 
of the fruit (Clemente et al. 2015). Brazil is the fourth largest consumer of nitrogen fertilizers in the world, which makes it 
dependent on the import of these inputs (GloboFert 2022). Faced with the current fertilizer supply crisis, research focusing 
on mineral nutrition and the identification of more efficient genetic materials in the use of nutrients have been identified 
as an alternative to reducing the use of these inputs.
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The selection of cultivars adapted to soils with low fertility is a challenge for genetic improvement programs. The 
evaluation of several morphological and physiological characters is necessary, which makes the evaluation and selection 
process difficult since superior cultivars combine ideal attributes for several characteristics simultaneously. Thus, statistical 
methodologies must be used to evaluate information with a multitrait structure, which correctly represents the genetic and 
phenotypic variation in the data (Malosetti et al. 2008). 

Bayesian multitrait models are suitable for genetic evaluations in plants (Junqueira et al. 2016, Volpato et al. 2019, Silva 
Junior et al. 2022). In addition, these models allow the estimation of variance components and genetic values for each 
trait (Peixoto et al. 2021, Silva Junior et al. 2022), jointly modeling multiple traits. Mora and Serra (2014), Junqueira et al. 
(2016), Torres et al. (2018), Volpato et al. (2019) and Silva Junior et al. (2022) demonstrated the potential of the Bayesian 
approach for genetic evaluation in plant breeding, considering multi-environment and multi-trait models. However, there 
is still a lack of information from multi-trait models under a Bayesian approach for the cultivation of arabica coffee in 
environments with low fertility. 

The objectives of this study were to estimate genetic parameters of arabica coffee grown under low-nitrogen conditions 
using a Bayesian multi-trait model and to select arabica coffee cultivars with better genetic potential.

MATERIALS AND METHODS

Field experiments

The experiment was carried out in the state of Minas Gerais, Brazil, by the Agricultural Research Company of Minas 
Gerais/Southeast (EPAMIG/Southeast), in a greenhouse located at the experimental field Diogo Alves de Melo, in the 
Universidade Federal de Viçosa (20° 45’ S, 42° 52’ W, 648 m).

Twenty Coffea arabica cultivars (Table 1) were evaluated for different agromorphological traits in an aerated static 
nutrient solution containing low nitrogen (1 mmol.L-1). 

Table 1. List of cultivars and genealogy of Coffea arabica L. evaluated in under low nitrogen in a greenhouse condition. 

Cultivars Genealogy

1 Catuaí Amarelo IAC 62 Caturra Amarelo IAC 476-11 × Mundo Novo IAC 374-19

2 Paraíso MG H 419-1 Caturra Amarelo IAC 30 × Híbrido de Timor UFV 445-46

3 Icatu Vermelho IAC 4045 Coffea canephora × Bourbon Vermelho

4 Obatã IAC 1669/20 Villa Sarchi × Híbrido de Timor

5 Caturra Amarelo Mutação do Caturra Vermelho

6 IPR 102 Icatu × (Catuaí Amarelo IAC 66 × Catuaí Vermelho IAC 99)

7 Catuaí Vermelho IAC 15 Caturra Amarelo IAC 476-11 × Mundo Novo 

8 Rubi MG 1192 Catuaí × Mundo Novo

9 IPR 103 Icatu × (Catuaí Amarelo IAC 66 × Catuaí Vermelho IAC 99)

10 Araponga MG1 Caturra Amarelo IAC 86 × Híbrido de Timor UFV 446-08

11 Topázio MG 1190 Catuaí Amarelo × Novo Mundo

12 San Ramon Progênie C 1034-4 Introdução da Costa Rica

13 Icatu Precoce 3282 Icatu Vermelho × Bourbon Amarelo

14 Tupi IAC 1669-33 Villa Sarchi × Híbrido de Timor

15 Catucaí 785/15 Icatu Vermelho × Catuaí Vermelho

16 Acaiá Cerrado MG 1474 Seleção de Mundo Novo

17 Oeiras MG 6851 Híbrido CIFC HW 26/5 (Caturra Vermelho × Híbrido de Timor)

18 São Bernardo Mutação Típica do Café

19 Pau Brasil MG1 Catuaí Vermelho IAC 15 × Híbrido de Timor UFV 442/34

20 Caturra Vermelho Mutação de Bourbon Vermelho
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The experiment was carried out in a randomized block design with three replicates. The plots consisted of two plants 
grown in pots with nutrient solution. The cultivars were sown in a sand bed sterilized with hydrochloric acid (HCl)  
(0.1 mol.dm-3). At 120 days, two seedlings at the cotyledonary leaf stage were transplanted into pots containing 8 L of 
nutrient solution (Hoagland and Arnon 1950). The nutrient solution was completed weekly with deionized water, and the 
pH was adjusted between 5.5 and 6.5 using HCl (0.1 mol.dm-3) and sodium hydroxide (NaOH) (0.1 mol.dm-3). The electrical 
conductivity (EC) was monitored by the change of the nutrient solution when its depletion reached 30% of the initial EC.

At 168 days after transplanting, the following morpho-agronomic traits were evaluated: stem diameter (SD, mm), 
measured with a caliper at 5 cm from the stem base; plant height (PH, cm), measured from the base of the orthotropic branch 
to the plant apex; internode length (IL, cm), calculated as a ration between plant height and node number; number of leaf 
pairs (NLP), obtained by counting the whole plant; number of nodes (NNO), obtained by counting the nodes in the main 
branch (orthotropic); leaf area (LA, dm2), quantified after harvesting using the leaf area meter model AT Delta-TDevices.

The plants were sectioned into roots, stem, and leaves, dried in an oven with forced air circulation at 70 °C for 72 h and 
weighted to get: root dry matter (MSR), stem dry matter (MSC), and leaf dry matter (MSF). Shoot mass (MSPA) consisted 
of the sum of MSF and MSC, while the total dry mass (MST) was obtained by the sum of MSPA and MSR. The dried plant 
material was ground in a “Willey” mill to determine the nitrogen content according to the protocol of Empresa Brasileira 
de Pesquisa Agropecuária (Embrapa 2009). Nitrogen content was estimated as the product between nutrient content in 
different parts of the plants and the total dry mass.

Nutritional efficiency indexes were estimated as described by Siddiqi and Glass (1981) and Bailian et al. (1991): rooting 
efficiency (EE, g2/mg) = (root dry matter)2/total N content; absorption efficiency (EA, mg/g) = total N content/root dry 
matter; translocation efficiency (ET, mg/g) = shoot N content/total N content; utilization efficiency (EU, g2/mg) = (MST)2/
total N content; biomass production efficiency (EPB, g2/mg) = (MSPA)2/shoot N content.

Biometric analysis

The data was analyzed using the univariate and multi-trait models through Markov Chain Monte Carlo (MCMC) 
Bayesian approach. The multi-trait model was given by Eq. 1: 

						      y = Xβ + Zg + ε 	 	�  (1)

in which: y = the vector of phenotypic data.
The conditional distribution was given by Eq. 2: 

					     y| β, g, i, G, R ~ N (Xβ + Zg, R⊗I)		�   (2)

G = the matrix of genotypic covariance; R = the matrix of residual covariance; I = an identity matrix; β = vector of 
systematic effects (genotypes mean and replication effects), assumed as β ~ N (β, Σβ⊗I); g = the vector of genotype effects, 
assumed as g|G,  ~ N (0, G⊗I); e = the vector of residuals, assumed as e |R,  ~ N (0, R⊗I). 

The uppercase bold letters X and Z refer to the incidence matrices for the effects β and g, respectively. The R package 
MCMCglmm (Hadfield 2010) was used to fit the model.

 We assumed that G and R follow an inverted Wishart distribution WI (v, V), with hyperparameters v and V (Sorensen 
and Gianola 2002). Hyperparameters for all prior distributions have been selected to provide non-informative or flat prior 
distributions. For the systematic effect (β), a uniform distribution was assigned. In addition, the parameters β, g, G, and R 
were estimated following the set posterior distribution: P(β, g, G, R |y) α P(y | β, g, G, R ) × P(β, g, G, R).

In total, 1,800,000 samples were generated. A burn-in of 10,000 and thin of 10 iterations were assumed, resulting in 
a total of 1,790,000 samples. The convergence of the MCMC was verified by the criterion of Geweke (1992), using the R 
packages boa (Smith 2007) and convergence diagnosis and output analysis (CODA) (Plummer et al. 2006).

The model was compared using the deviation information criterion (DIC) proposed by Spiegelhalter et al. (2002) (Eq. 3):

http://mol.dm
http://mol.dm
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					            DIC = D(θ) + 2pD	�  (3)

in which: D(θ)  = a point estimate of the deviance obtained by replacing the parameters with their posterior means estimates 
in the likelihood function; pD = the effective number of model parameters. 

Models with a lower DIC should be preferred over models with a higher DIC.
Variance components, broad-sense heritability (H2), genotypic correlation coefficients between traits, and breeding 

values were calculated from the posterior distribution. Intervals of higher posterior density (HPD) were estimated for all 
traits using the R package boa (Smith 2007). A posteriori estimates of H2 for each trait and each iteration were calculated 
from the later samples of variance components, using Eq. 4:

					        𝐻𝐻!(#) = 	
𝜎𝜎%
!(#)

%𝜎𝜎%
!(#) +	𝜎𝜎&

!(#)'
  � (4)

in which: 
𝐻𝐻!(#) = 	

𝜎𝜎%
!(#)

%𝜎𝜎%
!(#) +	𝜎𝜎&

!(#)'
 

 = the genetic variance component of each iteration; 
𝐻𝐻!(#) = 	

𝜎𝜎%
!(#)

%𝜎𝜎%
!(#) +	𝜎𝜎&

!(#)'
 

 = the residual variance component of each iteration.

Selection based on selection index

The multi-trait index based on factor analysis and genotype-ideotype distance (FAI-BLUP) (Rocha et al. 2018) was used 
to identify superior coffee genotypes under low-nitrogen. The formula is as Eq. 5:

					       𝑃𝑃!" = 	

1
𝑑𝑑!"

∑ 1
𝑑𝑑!"

!#$;"#&
!#';"#'

  � (5)

in which: Pij = probability of the ith genotype (i = 1, 2, ..., n) to be similar to the jth ideotype (j = 1, 2, ..., m); dij = genotype-
ideotype distance from ith genotype to jth ideotype, based on standardized mean distance. 

Selection gains (SG) were estimated from the FIA-BLUP considering three different selection intensities: 35, 50, and 
60%, which refers to the selection of seven, ten, and 12 genotypes, respectively, as follows (Eq. 6):

					         𝑆𝑆𝑆𝑆(%) = '
𝑋𝑋! − 𝑋𝑋"	
𝑋𝑋"

+  � (6)

in which: Xs  = the mean of the selected genotypes; X0 = the overall population mean.

RESULTS AND DISCUSSION

Geweke’s criterion indicated convergence for all dispersion parameters generating 1,800,000 MCMC iterations, 
10,000 samples for burn-in, and a sampling interval of 10, totaling 1,790,000 effective samples used to estimate the 
variance components (Fig. 1). All chains [components of (co)variance] reached convergence by this criterion. Similar 
posterior averages were obtained for the variance components, suggesting normal-appearing density. The DIC suggests 
that the full model for multi-trait is the one that best fits the data, which reveals the significance of genotypic effects 
(DIC = 1123.39 for the full model and 1,414.31 for the restricted one). This is justified by the lowest DIC value of the 
full model. Spiegelhalter et al. (2002) suggest that the use of the complete model can lead to a greater prediction in the 
estimation of parameters.

Subsequent mean estimates for the variance components suggested χ2 density and normal distributions (Fig. 1). 
Thus, it is possible to observe that all the characteristics presented a χ2 distribution (of which the Wishart distribution 
is a generalization).
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PH: plant height; SD: stem diameter; NNO: number of nodes; IL: internode length; NLP: number of leaf pairs; LA: leaf area; EE: rooting efficiency; EA: absorption 
efficiency; ET: translocation efficiency; EU: efficiency of use; EPB: biomass production efficiency.
Figure 1. Convergence for the genotypic variance of the 11 traits analyzed in the multi-trait model. The posterior density and genetic variance 
estimates are on both the right and the left. 

The H2 estimates were different for the mean and posterior density range (HPD) (Table 2). The highest H2 values were 
observed for the PH and IL traits (greater than 80%). On the other hand, the lowest estimates were for the EA and LA traits. 
The low heritability observed estimate depends on the number of genotypes evaluated. The Bayesian approach used can be 
recommended for situations involving small sample sizes space (Torres et al. 2018, Silva Junior et al. 2022). The PH, NLP, 
NNO, IL, and EE traits were considered highly heritable, with a credibility interval (95% probability) ranging from 0.6800 
to 0.9538; 0.5890 to 0.9326; 0.5920 to 0.9313; 0.6490 to 0.9494; and 0.6010 to 0.9224, respectively (Table 2). H2 estimates 
greater than 70% for these same traits were also found in coffee in a potassium-restricted crop, using analysis of variance 
(ANOVA) (Moura et al. 2016). 

Table 2. Later inferences for mean and posterior density range (HPD 95%) of broad-sense heritability (H2) considering the multi-trait model.

Trait H²
HPD 95%

Lower Bound Upper Bound
PH 0.83 0.6800 0.9538

NLP 0.77 0.5890 0.9326
NNO 0.77 0.5920 0.9313

SD 0.14 0.00350 0.3286
LA 0.02 6.23E-09 0.0023
IL 0.81 0.6490 0.9494
EE 0.77 0.6010 0.9224
EA 0.04 7.47E-06 0.1626
ET 0.72 0.5290 0.8982

EPB 0.48 0.2400 0.7396
EU 0.49 0.0366 0.12525

PH: plant height; SD: stem diameter; NNO: number of nodes; IL: internode length; NLP: number of leaf pairs; LA: leaf area; EE: rooting efficiency; EA: absorption 
efficiency; ET: translocation efficiency; EU: efficiency of use; EPB: biomass production efficiency.
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The multi-trait Bayesian model has been successfully used in several crops, such as flood-irrigated rice, where H2 estimates 
were higher than 80% (Silva Junior et al. 2022), and in maize lines, where the heritability for nitrogen use efficiency was 
50%, considered highly heritable (Torres et al. 2018). These authors reported that the Bayesian multi-trait model makes 
estimates more accurate than in individual models due to taking into account the correlation between the traits. Mora et 
al. (2019) evaluated E. globulus clones and found moderate to high heritability values for tree heights ranging from 12 to 
41% (mode value of the posterior distribution of heritability). 

In addition to the statistical model, the heritability of a trait is crucial to improving the prediction (Lorenz et al. 2011, Gill et 
al. 2021). Low heritability estimates result in lower accuracy in predicting individual trait (Heffner et al. 2009). The application 
of multi-trait models, in turn, can improve the prediction of poorly heritable characters using information from correlated 
characters that have high heritability (Jia and Jannink 2012, Jiang et al. 2015, Lado et al. 2018, Gill et al. 2021; Bhatta et al. 2020). 

Jia and Jannink (2012) also indicated that a multi-trait model is more effective when the genetic correlation between 
traits is moderate. Guo et al. (2020) reported that characters with lower heritability performed better than those with high 
heritability through the multi-trait model, as it contemplates the interaction between traits × genotypes, and provides a better 
estimate of the correlation between characters. Schulthess et al. (2018) and Montesinos-López et al. (2018) showed that the 
performance of multi-trait analysis depends considerably on the number of missing characters in only some individuals or 
all individuals. Precise estimates of genetic parameters bring new perspectives on the application of Bayesian methods to 
solve modeling problems in the genetic improvement of arabica coffee for cultivation under low-nitrogen concentration. 
This is justified by the parameters that lie within the posterior density range (HPD 95%).

The estimates of genetic variance and repetition for each iteration were discrepant for the mean, median, and mode in each 
character (Table 3). The lowest values were observed for traits of efficiency indexes, NNO and NLP. On the other hand, PH and LA 
presented the highest estimates. Similar results were reported by Moura et al. (2016) for arabica coffee under potassium limiting 
conditions, using ANOVA. The multi-trait model used in the present work showed great performance in estimating genetic and 
residual variances since the estimates are within the posterior density range (HPD 95%). This model presents credibility intervals 
that are more accurate when compared to the confidence intervals obtained in frequentist inference (Gazola et al. 2016). 

Table 3. Genetic and residual variance of 11 traits of arabica coffee cultivars in low-nitrogen cultivation, using multi-trait models.

Trait
σg

2 σr
2

Mean Median Mode Lower 
Bound

Upper 
Bound Mean Median Mode Lower 

Bound
Upper 
Bound

PH 95.02 82.42 65.50 28.14 191.51 17.21 16.37 15.03 28.15 191.51

NLP 0.75 0.64 0.65 0.19 1.57 0.17 0.18 0.16 0.19 1.57

NNO 0.74 0.63 0.49 0.19 1.53 0.17 0.18 0.16 0.19 1.53

SD 10.80 7.87 5.52 0.10 27.73 63.40 61.76 58.03 0.10 27.73

LA 87,463.57 108.58 79.55 0.0202 888,000 3,913,594 3,834,606 3,685,159 0.0202 888,000

IL 0.46 0.76 0.58 0.26 1.76 0.18 0.17 0.15 0.26 1.76

EE 0.018 0.016 0.013 0.006 0.004 0.005 0.004 0.004 0.006 0.004

EA 27.22 9.06 1.13 0.0046 93.96 520.86 507.48 481.43 0.0046 93.96

ET 0.016 0.014 0.012 0.005 0.030 0.006 0.006 0.005 0.005 0.030

EPB 0.011 0.010 0.007 0.003 0.020 0.012 0.010 0.010 0.003 0.020

EU 0.006 0.007 0.004 0.002 0.014 0.020 0.019 0.018 0.002 0.014
PH: plant height; SD: stem diameter; NNO: number of nodes; IL: internode length; NLP: number of leaf pairs; LA: leaf area; EE: rooting efficiency; EA: absorption 
efficiency; ET: translocation efficiency; EU: efficiency of use; EPB: biomass production efficiency; σg

2s: the variance genetic; σr
2: the replication for each iteration.

The selection gains obtained by the FAI-BLUP index considering three different selection intensities: 35, 50, and 60%, 
which refers to the selection of seven, 10, and 12 genotypes, for 11 traits of arabica coffee cultivars in an efficient low-nitrogen 
environment, is represented in Table 4. The FAI-BLUP index indicated discrepant selection gains between different selection 
intensities for the same character (Table 4). Selection gains increased with increasing selection intensity. The highest GS 
was estimated for PH and IL regardless of selection intensity. On the other hand, the N absorption efficiency showed gains 
for all selection intensities. 
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Table 4. Percentage of selection gains, factor number, and commonalities obtained by the FIA-BLUP index considering three different 
selection intensities: 35, 50, and 60%, which refers to the selection of seven, 10, and 12 genotypes, for eleven traits of arabica coffee cultivars 
in an efficient low-nitrogen environment.

Trait Factor Commonalities 7 10 12

PH 1 0.96 14.64 7.39 4.89

SD 1 0.96 2.75 1.98 1.54

IL 1 0.95 13.45 7.57 5.38

EA 1 0.98 0.00 0.00 0.00

NLP 2 0.68 0.90 -0.45 -0.73

NNO 2 0.98 0.67 -0.49 -0.71

LA 2 0.71 -0.02 0.06 0.09

EE 2 0.98 -0.04 -0.28 -1.24

ET 2 0.85 1.86 1.03 0.72

EPB 3 0.98 8.27 5.17 3.64

EU 3 0.97 7.25 4.40 2.88

PH: plant height; SD: stem diameter; NNO: number of nodes; IL: internode length; NLP: number of leaf pairs; LA: leaf area; EE: rooting efficiency; EA: absorption 

efficiency; ET: translocation efficiency; EU: efficiency of use; EPB: biomass production efficiency.

Figure 2 represents the classification of the 20 arabica coffee cultivars, considering the evaluated traits, according to the 

FAI-BLUP index and its associated spatial probability. Under a selection intensity of 35%, the cultivars with the highest 

genetic potential at low-nitrogen concentration were Icatu Precoce 3282 (13), Icatu Vermelho IAC 4045 (3), Acaiá Cerrado 

MG 1474 (16), Tupi IAC 1669-33 (14), Catucaí 785/15 (15), Caturra Vermelho (20), and Obatã IAC 1669/20 (4). Rocha et 

al. (2018) used the FAI-BLUP index to select elephant grass genotypes and claim that this index classifies genotypes based 

on multi-trait free of multicollinearity.
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CONCLUSION

The Bayesian multi-trait model is an adequate strategy for the genetic improvement of arabica coffee grown under low-
nitrogen concentration.

Arabica coffee cultivars Icatu Precoce 3282, Icatu Vermelho IAC 4045, Acaiá Cerrado MG 1474, Tupi IAC 1669-33, 
Catucaí 785/15, Caturra Vermelho, and Obatã IAC 1669/20 have greater genetic potential for cultivation in low-nitrogen 
concentration.
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