Rev Bras Anestesiol
2009; 59: 1: 21-27

ARTIGO CIENTÍFICO
SCIENTIFIC ARTICLE

Comparação da FiO₂ Fornecida por Sete Modelos de Sistema Balão-Máscara Auto-inflável*

Comparison of the FiO₂ Delivered by Seven Models of the Self-Inflating Bag-Mask System

Armando Carlos Franco de Godoy¹, Ronan José Vieira²

RESUMO

Godoy ACF, Vieira RJ — Comparação da ${\rm FiO}_2$ Fornecida por Sete Modelos de Sistema Balão-Máscara Auto-inflável.

JUSTIFICATIVA E OBJETIVOS: Devido ao fato dos reanimadores com sistema balão-máscara auto-infláveis fabricados e/ou comercializados no Brasil serem amplamente disponíveis e utilizados em serviços de saúde extra e intra-hospitalares, este estudo teve o objetivo de determinar as frações de O_2 ofertadas por sete reanimadores recebendo diferentes fluxo de O_2 .

MÉTODO: Sete reanimadores com sistema balão-máscara auto-infláveis foram testados na Unidade Respiratória do HC/UNICAMP. Um fluxômetro de O_2 de parede foi conectado ao reanimador que recebia fluxo de O_2 de 1, 5, 10 e 15 L.min¹, sendo estes conectados a um pulmão-teste. Os reanimadores que têm a capacidade de se conectar um reservatório de O_2 foram testados com e sem esse acessório. Foram efetuadas 20 medidas consecutivas e determinada a média.

RESULTADOS: Apenas um reanimador apresentou oferta de fração de O_2 pouco abaixo do limite mínimo preconizado (0,80), quando utilizado com o reservatório de O_2 . Sem esse dispositivo acoplado todos os reanimadores atingiram o limite mínimo de fração de O_2 preconizada (0,40). Os reanimadores que não apresentam a possibilidade de acoplar o reservatório de O_2 apresentaram maior oferta de O_2 em relação aos outros reanimadores

CONCLUSÕES: Todos os reanimadores que possuem a opção de acoplagem do reservatório de O_2 forneceram maior concentração de O_2 com esse acessório. Os reanimadores que não têm possibilidade de acoplar o reservatório de O_2 apresentaram maior ofer-

*Recebido da (**Received from**) Enfermaria de Emergência Clínica e Cirurgia do Trauma do Hospital de Clínicas da Universidade Estadual de Campinas (HC/ UNICAMP), SP

Apresentado (**Submitted**) em 18 de setembro de 2007 Aceito (**Accepted**) para publicação em 21 de outubro de 2008

Endereço para correspondência (Correspondence to): Dr. Armando Carlos Franco de Godoy Rua Hercules Florence, 100/23 13020-170 Campinas, SP E-mail: armandogodoy@ig.com.br

© Sociedade Brasileira de Anestesiologia, 2009

ta de O_2 em relação aos outros que podem ser acoplados ao reservatório quando usados sem esse acessório.

Unitermos: EQUIPAMENTOS: Ventilador.

SUMMARY

Godoy ACF, Vieira RJ — Comparison of the ${\rm FiO_2}$ Provided by Seven Models of Self-Inflating Bag-Mask Systems.

BACKGROUND AND OBJECTIVES: Since resuscitators with self-inflating bag-mask systems manufactured and/or commercialized in Brazil are widely available and used in health services, both out- and intra-hospitals, the objective of this study was to determine the O_2 fractions delivered by seven resuscitators receiving different O_2 flows.

METHODS: Seven resuscitators with self-inflating bag-mask systems were tested at the Respiratory Unit of the HC/UNICAMP. A wall O_2 flowmeter was connected to the resuscitator that received an O_2 flow of 1, 5, 10, and 15 L.min¹ and those were connected to a test lung. Resuscitators capable of being connected to an O_2 reservoir were tested with and without this accessory. Twenty consecutive measurements were performed and the mean determined.

RESULTS: Only one resuscitator delivered and O_2 fraction slightly below the accepted limit (0.80) when used with the O_2 reservoir. Without this device, all resuscitators achieved the minimal limit of O_2 fraction (0.40). Resuscitators not capable of being connected to an O_2 reservoir delivered a higher O_2 .

CONCLUSIONS: All resuscitators capable of being connected to an O_2 reservoir delivered a higher O_2 concentration when connected to this device. Resuscitators that do not have this capability delivered a higher O_2 concentration than the ones that could be connected to this device but are used without it.

Key words: EQUIPMENT: Ventilator.

INTRODUÇÃO

Os reanimadores com sistema balão-máscara auto-infláveis (SBMAI) são aparelhos utilizados com a finalidade de ventilar pacientes com necessidade de suporte ventilatório em situações tais como transporte extra e intra-hospitalar e reanimação cardiopulmonar $^1.$ Os SBMAI podem ser divididos em duas partes: unidade compressível e conector ao paciente e em alguns modelos existe a opção de ser acoplar um reservatório de $\rm O_2$ (Figura 1). A unidade compressível é a parte a ser comprimida pelo operador com a finalidade de

^{1.} Professor Fisioterapeuta das Enfermarias de Emergência Clínica e Cirurgia do Trauma do HC/UNICAMP

^{2.} Médico Professor Doutor Coordenador da Enfermaria de Emergência Clínica do HC/UNICAMP; Coordenador da Disciplina de Emergência Clínica do Departamento de Ciências Médicas da Faculdade de Ciências Médicas da UNICAMP

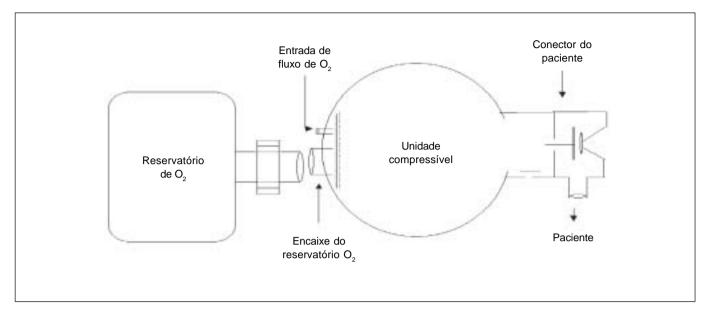


Figura 1 - Esquema dos Componentes Básicos do Sistema Balão-Máscara Auto-Inflável (SBMAI).

proporcionar volume de ar para o paciente e em sua porção posterior pode-se encontrar o encaixe para o reservatório de O_2 e a entrada do fluxo de O_2 . O conector ao paciente é o local onde se acopla a máscara de reanimação ou cânula traqueal.

Vários estudos têm demonstrado que pode existir diferentes desempenhos da fração ofertada de O_2 (Fi O_2) em diferentes modelos de SBMAI $^{1\text{-}3}$, pois esta pode ser influenciada pelo formato e tipo do material da unidade compressível 4 , valor do volume corrente ofertado pelo SBMAI 3 , utilização ou não do reservatório de O_2 1 e fluxo de O_2 ofertado à unidade compressível 2 , 5 , entre outros.

Esta pesquisa teve como objetivo determinar as FiO_2 ofertadas por sete diferentes marcas de SBMAI produzidos ou comercializados no Brasil quando estes recebiam fluxo de O_2 de 1, 5, 10 e 15 L.min⁻¹, manipulados com duas mãos em freqüência de 12 incursões por minuto, com e sem reservatório de O_2 acoplado.

MÉTODO

A coleta de dados foi realizada no Serviço de Unidade Respiratória do Hospital de Clínicas da Universidade Estadual de Campinas — UNICAMP — no período de janeiro a março de 2007.

Os materiais utilizados na pesquisa foram: um pulmão-teste da marca $Vent\ Aid\ TTL-49504\ Michigan\ Instruments$, um medidor de fração de O $_2$ marca Newport Medical Instruments OM -100, um fluxômetro de O $_2$ de parede da marca BD, um fluxômetro da marca Oxigel 953 e um tubo T com válvula direcional marca Bird. Os sete SBMAI utilizados podem ser divididos em duas formas, com possibilidade de se acoplar o reservatório de O $_2$: Oxigel® modelo B, CE Reanimadores®,

Protec® vinil, Missouri® e sem possibilidades de acoplar o reservatório de O_2 : Oxigel® modelo A, Axmed® e Narcosul®. Para a realização do teste de FiO_2 (Figura 2), o fluxômetro de O_2 de parede foi acoplado a outro fluxômetro que, por sua, vez foi acoplado à entrada de O_2 do SBMAI. O conector ao paciente do SBMAI foi acoplado ao medidor de fração de O_2 e este ao tubo T com válvula direcional com saída para o ambiente e um tubo T foi ligado ao pulmão-teste.

O pulmão-teste foi ventilado pelo SBMAI com uma e duas mãos em 12 incursões por minuto recebendo fluxos de 1, 5, 10 e 15 $\rm L.min^{-1}$ de $\rm O_2$. Os SBMAI que permitiam o aco-

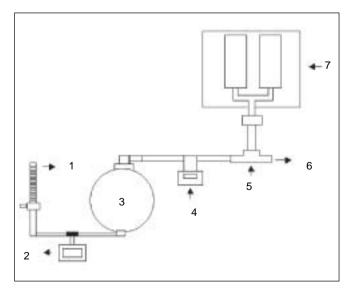


Figura 2 – Esquema do Teste de FiO_2 . 1) fluxômetro de O_2 de parede; 2) fluxômetro; 3) SBMAI; 4) medidor do FiO_2 ; 5) tubo T com válvula direcional; 6) saída de ar do tubo T; 7) pulmão-teste.

plamento do reservatório de O_2 foram testados com e sem esse dispositivo. Após dois minutos de ventilação em cada fluxo de O_2 leu-se a Fi O_2 ofertada pelos SBMAI no medidor de fração de O_2 acoplado ao sistema. Durante a pesquisa o pulmão-teste foi mantido em resistência de 20 cmH $_2$ O.L $^{-1}$.s $^{-1}$ e complacência de 0,05 L.cmH $_2$ O $^{-1}$, os SBMAI foram manipulados pela mesma pessoa e os fluxos de O_2 ofertados aos RAMI foram aferidos e controlados pelos aparelhos integrantes do teste.

Foram anotadas 20 medidas consecutivas das ${\rm FiO}_2$ para cada fluxo de ${\rm O}_2$ ofertado, em cada marca de SBMAI, e o pesquisador que anotou os dados não conhecia o objetivo e o procedimento metodológico da pesquisa. A análise estatística foi realizada utilizando média e desvio-padrão pelo programa BioEstat 3.0 for Windows.

RESULTADOS

A figura 3 mostra as ${\rm FiO_2}$ ofertadas pelas sete diferentes marcas de SBMAI produzidos ou comercializados no Brasil, quando estes receberam fluxo de ${\rm O_2}$ de 1, 5, 10 e 15 L.min⁻¹, foram manipulados com duas mãos em freqüência de 12 incursões por minuto, com e sem reservatório de ${\rm O_2}$ acoplado.

DISCUSSÃO

O Guidelines of the European Resuscitation Council 2000 on Advanced Adult Life Support, 2000 ⁶ e o Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care, 2000 ⁷ enfatizam que é essencial administrar oxigênio na maior concentração possível durante as manobras de reanimação cardíaca e ressaltam que grandes concentrações de oxigênio somente são tóxicas quando administradas por longo período. Alguns autores consideram que a variável mais importante a ser levada em conta no desempenho do SBMAI é a FiO₂ que ele pode ofertar ao paciente ^{2,8}. Como na maioria das vezes os pacientes internados que necessitam do uso do SBMAI já estão sob tratamento com oxigênio, o ideal seria que o reanimador ofertasse FiO₂ a mais próxima possível de 1,0 ^{2,9}.

A ISO, 1997 10 , e ASTM, 1999 11 , preconizam que o SBMAI deve ofertar no mínimo uma FiO $_2$ de 0,40 sem o reservatório de O $_2$ acoplado e de 0,80 quando se utiliza esse acessório e recebem, no máximo, fluxo de 15 L.min $^{\cdot 1}$ de O $_2$ $^{2.8}$.

Ao contrário de outros autores que estipularam um volume corrente fixo de 600 mL ¹²⁻¹⁵, não foi estipulado volume corrente fixo, pois na prática não há como mantê-lo fixo devido ao fato do seu valor depender do tamanho e da força de

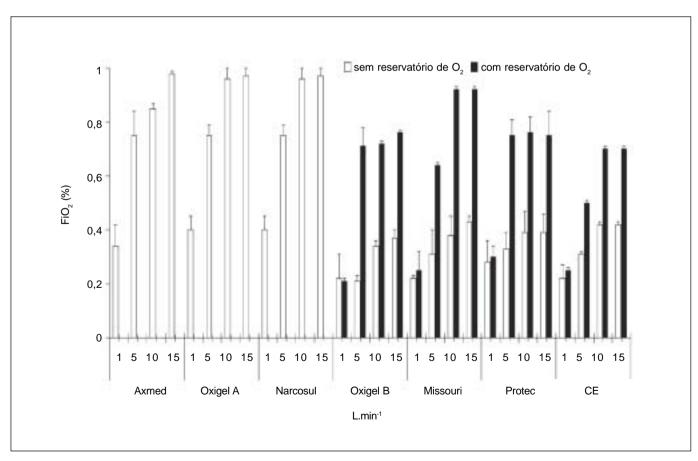


Figura 3 – Médias e Desvios-Padrão das FiO_2 Ofertadas pelos SBMAI com e sem Reservatório de O_2 Acoplado.

apreensão das mãos do operador, presença ou não de válvulas que limitam pressão no conector ao paciente e do tipo de material, *design* e tamanho da unidade compressível ^{2,5,16}. Assim, nessa pesquisa cada aparelho ofertou livremente o volume corrente que seu *design* permitia.

Na pesquisa adaptou-se ao sistema do teste um tubo T com válvula direcional (Figura 2: 5, 6) com a finalidade de eliminar o ar ejetado do pulmão-teste para o ambiente, não permitindo o possível retorno do O_2 para o interior da unidade compressível, caso o SBMAI apresentasse falha de vedação na válvula do paciente. A ocorrência dessa falha de vedação poderia acarretar falso aumento da Fi O_2 ofertada pelo SBMAI. Apesar de parecer pertinente a função desse mecanismo de vazão do ar ejetado, não se encontrou na literatura trabalhos que utilizaram esse artifício. Diversos autores utilizaram um orifício localizado entre o SBMAI e o pulmão-teste $^{2,12-15}$. Assim, quando a unidade compressível era comprimida, concomitantemente esse furo era tapado com o dedo do pesquisador e quando a unidade compressível do SBMAI era descomprimida esse furo era destapado.

Durante a realização do teste de ${\rm FiO_2}$ a frequência respiratória foi mantida em 12 incursões por minuto com uma ou duas mãos, por ser este o modo mais empregado com mais frequência durante as ventilações com SBMAI 17 .

A ${\rm FiO_2}$ ofertada pelos SBMAI foi influenciada pelo fluxo de ${\rm O_2}$ e a direção deste à unidade compressível, além da utilização ou não do reservatório de ${\rm O_2}$

Todos os SBMAI têm a opção de acoplagem do reservatório de O_2 , Oxigel® modelo B, Missouri®, CE Reanimadores® e Protec® vinil forneceram maior ${\rm FiO_2}$ quando esse acessório estava conectado a unidade compressível, e o CE Reanimadores® ofertou ${\rm FiO_2}$ um pouco abaixo do limite mínimo de 0,80 preconizado pela ISO, 1997 10 , e ASTM, 1999 11 , isto é, 0,75 (0,6).

Todos os SBMAI que possuem acoplagem para o reservatório de O_2 , quando testados sem esse acessório, atingiram FiO_2 de 0,40 ou mais, quando recebiam fluxo de O_2 a partir de 10 L.min⁻¹. Quando não se utilizou o reservatório de O_2 as FiO_2 ofertadas pelos SBMAI foram menores, pois o oxigênio ofertado ao reanimador é dissipado no ar ambiente próximo à unidade compressível (Figura 1), sendo parcialmente aspirado pelo reanimador. Os reanimadores que não têm a possibilidade de acoplar o reservatório de O_2 possuem maior oferta de O_2 em relação aos outros reanimadores em todos os fluxos de O_2 .

Comparison of The FiO₂ Delivered by Seven Models of the Self-Inflating Bag-Mask System

Armando Carlos Franco de Godoy, M.D.; Ronan José Vieira, M.D.

INTRODUCTION

Resuscitators with self-inflating bag-mask systems are used to ventilate patients who need ventilatory support in situations such as extra- and intra-hospital transportation and cardio-pulmonary reanimation 1 . Those devices can be divided in two parts: compressible unit and patient connector, but some models have the option to be connected to an O_2 reservoir (Figure 1). The compressible unit is the segment of the device that is supposed to be compressed by the operator to deliver a volume of air to the patient and, in the back, one

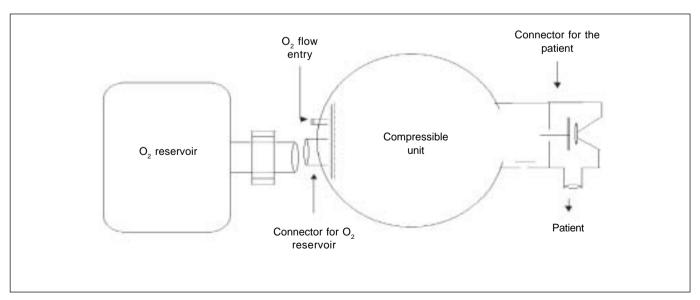


Figure 1 - Schematic Drawing of the Basic Components of Manual Resuscitators.

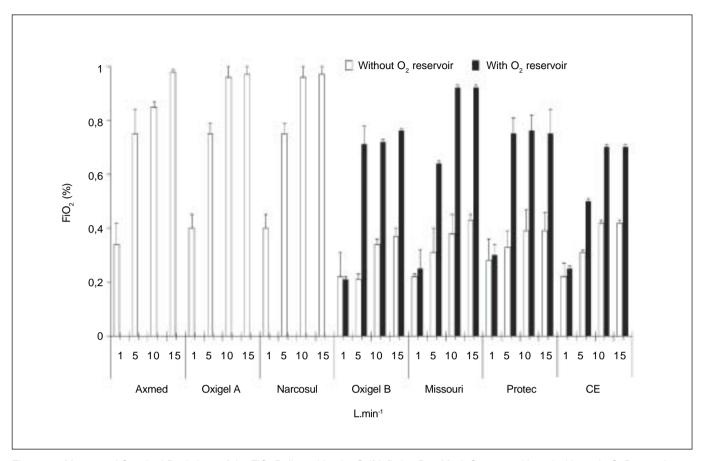


Figure 3 – Means and Standard Deviations of the FiO_2 Delivered by the Self-Inflating Bag-Mask Systems with and without de O_2 Reservoir.

sure-limiting valves at the connector to the patient, and the type of material, design, and size of the compressible unit ^{2,5,16}. Thus, each device delivered the tidal volume that its design allowed.

In the present study, the test system was adapted with a T-tube with directional valve (Figure 2: 5, 6) to eliminate the air ejected from the test lung to the environment preventing, therefore, return of the $\rm O_2$ to the compressible unit in case of failure of the seal of the patient's valve. Failure of the seal could lead to a false increase in the $\rm FiO_2$ delivered by the equipment. Although the function of this mechanism for ejection of the air is pertinent, we did not find studies using it in the literature. Several authors used a hole between the self-inflating bag-mask system and the test lung $^{2,12-15}$; therefore, whenever the compressible unit was squeezed, this hole was simultaneously closed by the finger of the operator, and when the compressible unit return to its normal size the hole was uncovered.

During the ${\rm FiO}_2$ test, the respiratory rate was maintained at 12 incursions per minute with one or both hands, since this is how ventilation with those devices is done more often¹⁷. The ${\rm FiO}_2$ delivered was influenced by the flow of ${\rm O}_2$ and its dislocation to the compressible unit and the use, or lack, of the ${\rm O}_2$ reservoir.

All self-inflating bag-mask systems that could be connected to an $\rm O_2$ reservoir, Oxigel model B®, Missouri®, CE Renimadores®, and Protec® vinyl, delivered a higher $\rm FiO_2$ when this accessory was connected to the compressible unit, but CE Reanimadores® delivered a $\rm FiO_2$ slightly below the minimal limit of 0,80 recommended by ISO, 1997 10 and ASTM, 1999 11 , i.e., 0.74 (0.6).

All self-inflating bag-mask systems that could be connected to an O_2 reservoir delivered a FiO_2 of 0.40 or more with an O_2 flow of at least 10 L.min⁻¹ when used without his accessory. When the O_2 reservoir was not used, the FiO_2 delivered was lower because the oxygen that reaches the resuscitator is dissolved in the room air near the compressible unit (Figure 1) and it is partially aspirated by the resuscitator. Devices in which an O_2 reservoir could not be attached to, delivered higher amounts of O_2 than the other resuscitators in all O_2 flows.

REFERÊNCIAS – *REFERENCES*

- Barnes TA, McGarry WP Evaluation of ten disposable manual resuscitators. Respir Care, 1990;35:960-968.
- Mazzolini DG, Marshall NA Evaluation of 16 adult disposable manual resuscitators. Respir Care, 2004;49:1509-1514.

- Carter BG, Fairbank B, Tibballs J et al. Oxygen delivery using self-inflating resuscitation bags. Pediatr Crit Care Med, 2005;6: 125-128.
- Boidin MP, Mooi B, Erdmann W Controlled administration of oxygen with self inflating resuscitation bags. Acta Anaesthesiol Belg, 1980;31:157-165.
- Nam SH, Kim KJ, Nam YT et al. The changes in delivered oxygen fractions using laerdal resuscitator bag with different types of reservoir. Yonsei Med J, 2001;42:242-246.
- 06. Guidelines of the European Resuscitation Council 2000 on Advanced Adult Life Support — A statement of the Advanced Life Support Working Group as approved by the Executive Committee of the European Resuscitation Council. Anaesthesist, 2002;51:293-298.
- 07. American Heart Association Guidelines 2000 for Cardio-pulmonary Resuscitation and Emergency Cardiovascular Care. Part 7: The era of reperfusion: section 1: Acute coronary syndromes (acute myocardial infarction). Circulation, 2000; 102 (Suppl 8):1172-1203.
- Tibballs J, Carter B, Whittington N A disadvantage of selfinflating resuscitation bags. Anaesth Intensive Care, 2000; 28:587.
- Maxwell LJ, Ellis ER The effect on expiratory flow rate of maintaining bag compression during manual hyperinflation. Aust J Physiother. 2004;50:47-49.
- International Organization for Standardization. International Standard ISO 8382: 1988(E). Resuscitators intended for use with humans. New York, American National Standards Institute, 1988. Disponível em: http://www.iso.org. Acessado em 21 de setembro de 2004.
- American Society for Testing and Materials Standard specification for performance and safety requirements for resuscitators intended for use with humans F-920–85. Philadelphia, Am Soc Testing & Materials, 1993.
- 12. Barnes TA, Potash R Evaluation of five adults disposable operator-powered resuscitators. Respir Care, 1989;34:254-261.
- Barnes TA, Stockwell DL Evaluation of ten manual resuscitators across an operational temperature range of -18 degrees C to 50 degrees C. Respir Care, 1991;36:161-172.
- Barnes TA, Catino ME, Burns EC et al. Comparison of an oxygen-powered flow-limited resuscitator to manual ventilation with an adult 1,000-mL self-inflating bag. Respir Care, 2005;50: 1445-1450
- 15. Zecha-Stallinger A, Wenzel V, Wagner-Berger HG et al. A strategy to optimize the performance of the mouth-to-bag re-

- suscitator using small tidal volumes: effects on lung and gastric ventilation in a bench model of an unprotected airway. Resuscitation, 2004:61:69-74.
- 16. Bennett S, Finer NN, Rich W et al. A comparison of three neonatal resuscitation devices. Resuscitation, 2005;67:113-118.
- Turki M, Young MP, Wagers SS et al Peak pressures during manual ventilation. Respir Care, 2005;50:340-344.

RESUMEN

Godoy ACF, Vieira RJ — Comparación de la ${\rm FiO_2}$ Suministrada por Siete Modelos de Sistema Balón-Máscara Autoinflable.

JUSTIFICATIVA Y OBJETIVOS: Debido al hecho de que los reanimadores con sistema balón -máscara autoinflables fabricados y/o comercializados en Brasil están ampliamente al alcance y que son utilizados en servicios de salud extra e intrahospitalarios, este estudio tuvo el objetivo de determinar las fracciones de O_2 ofertadas por siete reanimadores recibiendo diferentes flujos de O_2 .

MÉTODO: Siete reanimadores con sistema balón-máscara autoinflables fueron probados en la Unidad Respiratoria del HC/UNICAMP. Un fluxómetro de O_2 de pared fue conectado al reanimador que recibía flujo de O_2 de 1, 5, 10 y 15 L.min¹, siendo que ellos se conectaron a un pulmón test. Los reanimadores que poseen la capacidad de conectarse a un reservorio de O_2 se probaron con y sin ese accesorio. Se efectuaron 20 medidas consecutivas y se determinó el promedio.

RESULTADOS: Apenas un reanimador presentó oferta de fracción de O_2 poco por debajo del límite mínimo preconizado (0,80), cuando se usó con el reservorio de O_2 . Sin ese dispositivo acoplado, todos los reanimadores alcanzaron el límite mínimo de fracción de O_2 preconizada (0,40). Los reanimadores que no presentaron la posibilidad de acoplar el reservorio de O_2 presentaron una mayor oferta de O_2 con relación a los otros reanimadores

CONCLUSIONES: Todos los reanimadores que poseen la opción de acoplamiento del reservorio de O_2 , suministraron una mayor concentración de O_2 con ese accesorio. Los reanimadores que no tienen la posibilidad de acoplar el reservorio de O_2 presentaron una mayor oferta de O_2 con relación a los otros que sí pueden ser acoplados al reservorio cuando se usan sin ese accesorio.