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In this paper we describe the classical methods used to solve the Euler

equations. Special attention is devoted to the iterative method based on

a contraction mapping derived from these equations in Maldonado and

Moreira (2003). We test the numerical robustness of this method when it is

used in models with sensitiveness to initial conditions. Finally we extend

the method to the case of stochastic Euler equations.

Neste artigo descrevemos os métodos clássicos utilizados para resolver as

equações de Euler. Dedicamos atenção especial ao método iterativo construído

a partir dessas equações, descrito emMaldonado and Moreira (2003). Isto é feito

com o intuito de testar a sua robustez emmodelos que apresentam sensibilidade

às condições iniciais e finalmente, estender o método para o caso de equações

de Euler estocásticas.

Keywords: Euler equation; numerical methods; economic dynamics.
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1. INTRODUCTION

One of the main difficulties of numerical methods solving intertemporal economic models is to
find accurate estimates for stationary solutions. For example, in dynamic programming problems,
the Bellman equation approach provides a contraction mapping with the value function as its fixed
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point. With a value function approximation given by that method, policy function approximations are
calculated in such a way that they can be used to describe the optimal path. The precision of the
estimation is guaranteed by the asymptotic behavior of the sequence of policy function approximations
(see Stokey and Lucas (1989) for details).

Numerical methods based on the Bellman iterations are provided by Taylor and Uhlig (1990) and
the estimation error for the approximate policy can be found in Santos and Vigo-Aguiar (1998) and
Maldonado and Svaiter (2001). However, Bellman’s method can only be applied when the economic
model admits a representative agent. Moreover, the speed of convergence of this method is slow.

When the model has no representative agent, the usual way to state the optimality and equilibrium
conditions is through the Euler equations. Of course, these equations can only be used if the solution is
interior and all the functions involved are differentiable. Numerical methods implemented from these
equations have been more efficient than those based on the Bellman equations at least in two aspects:
they can be used even when there is no representative agent and they are empirically faster when an
adequate approximation scheme is performed (see Judd (1992)).

In this paper we describe the classical methods to estimate the stationary solution of the Euler
equations associated to an intertemporal economic model. Among these methods we will describe
those in Baxter et al. (1990), Coleman (1990) and Coleman (1991), essentially based on the value function
approximation; the projection method of Judd (1992); and the parameterizing-expectations method of
Marcet (1988) and Marcet and Lorenzoni (1998). There is also a method described by Li (1998) to solve
a specific monetary model. We also revisite the method provided by Maldonado and Moreira (2003)
1 to find approximations to stationary solutions of the Euler equations. This method is defined from
a contraction mapping in a functional space which has the stationary solution as its fixed point. The
major contribution of this technique is its capability to approximate stationary solutions in the uniform
topology of continuously differentiable functions.

In this work we also test the numerical robustness of Maldonado and Moreira’s method by applying
it to Euler equations with the logistic map as its stationary solution. The test shows that even though
the stationary solution has sensitiveness to initial conditions, the contractive method also works effi-
ciently. Finally we extend the C1 contraction mapping method of Maldonado and Moreira to the case
of stochastic Euler equations. This is an important issue since most of the applied models in economic
dynamics deal with stochastic shocks in the fundamentals of the model. We illustrate the method by
applying it to the neoclassical stochastic growth model.

As highlighted by Maldonado and Moreira (2003) their contractive method is not equivalent to
Bellman’s one and that it does not need a discretization of the state variable domain (i.e., we can solve
it point pointwisely). Moreover, the sufficient condition for the convergence of that method is slightly
stronger than the determinacy of the steady state.

The paper is divided as follows. Section 2 presents the deterministic Euler equations and the clas-
sical methods to estimate the stationary solution. Section 3 extends the contraction method given
by Maldonado and Moreira (2003) to the case of stochastic Euler equations. In section 4 we provide
examples that illustrate the method, its robustness and its extension to the stochastic case. In sec-
tion 5 concluding remarks are given. In the Appendix we present the proof of the stochastic dynamic
programming case.

1This work extends and tests the results published as a preliminary result byMaldonado andMoreira (2003) in Economics Bulletin.
It is expected that in many cases, manuscripts published in that category will form the foundation for more complete works
subsequently to be submitted to other journals.
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2. EULER EQUATIONS AND CLASSICAL METHODS

2.1. The Euler equations and assumptions

In intertemporal economic models the equilibrium paths are usually defined by a set of equations
that embody optimality and market clearing conditions. These equations, in their simplest form, de-
pend on the current and lagged values and expectations of the state variables of the model. Roughly
speaking, letX ⊂ R

n be the state space,D ⊂ X ×X ×X represent the intertemporal feasibility set
and E : D → R

n be the function whose zeros define the optimality and market clearing conditions.
The model is defined by the triple (X,D,E).

An equilibrium path from x0 ∈ X is a sequence (xt)t≥0 ⊂ X such that

E(xt−1, xt, xt+1) = 0, ∀t ≥ 1. (1)

Equations (1) are called the Euler equations of the model. In many cases it is possible to construct an
equilibrium path from a single function. A stationary solution for (X,D,E) is a function g : X → X
such that for all x ∈ X :

E(x, g(x), g(2)(x)) = 0. (2)

We say that x̄ ∈ R
n is a steady state if g(x̄) = x̄.

Let |.| be one of the equivalent norms of R
n. This norm induces a norm in the space of real square

matrices of order n (Mn) denoted by ‖ . ‖. 2 Finally, let Br(x) = {y ∈ R
n; |y − x| < r}.

We will assume that E is a twice continuously differentiable and that E2 is negative definite n-
matrix on the interior ofD.3 We will make the following:

Assumption D. There exists an interior steady state x̄ such that:

(i) ‖(E2)−1E1‖ + ‖(E2)−1E3‖ < 1

(ii) ‖(E2)−1E3‖ < 1/2

where all the derivatives are evaluated at (x̄, x̄, x̄).

Remark 2.1. When n = 1, it is not difficult to show that (i) implies (ii).

Remark 2.2. The condition for local uniqueness of stationary solution is that the steady state must be a saddle
point of the linearization of E = 0. Namely, the characteristic polynomial of the linearization must have n
roots with modulus lower than one and n roots with modulus greater than one. A necessary and sufficient
condition for this is:

‖(E2)−1E1 + (E2)−1E3‖ < 1

which is weaker than assumption D.

As an example of this structure, let us consider the deterministic dynamic programming problem.
We have the following elements: the state variable set X ⊂ R

n, the correspondence of feasible pairs
Γ : X → X , the one-period return function F : Graph(Γ) → R and the discount factor β ∈ (0, 1). So,
the dynamic programming problem is to find a path (xt)t≥0 such that:

maximizes
∞∑

t=0

βtF (xt, xt+1)

subject to (xt, xt+1) ∈ Graph(Γ) for all t ≥ 0
x0 ∈ X.

2If X ∈ Mn, ‖ X ‖ = sup{Xx ; x ∈ R
n; |x| = 1}.

3Since E is a function of (x1, x2, x3) ∈ D, Ej is the vector of partial derivatives of E with respect to xj .
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In this case,X is the state space,D = {(x, y, z) ∈ X3; (x, y) ∈ Graph(Γ) and (y, z) ∈ Graph(Γ)}
and if (xt)t≥0 is an interior optimal path, then

E(xt−1, xt, xt+1) = F2(xt−1, xt) + βF1(xt, xt+1) = 0.

For this structure the stationary solution g corresponds to the optimal policy function of the prob-
lem. It is easy to verify that for this model the assumption D-(i) is equivalent to the dominant diagonal
condition at the steady state.

2.2. Some methods to solve the Euler equations

Now we will present some methods used in the literature for solving the Euler equations.

2.2.1. The policy function iteration method

This method consists in defining an application T from the set of feasible maps h : X → X
(h(x) ∈ Γ(x), ∀x ∈ X ) into itself such that the following holds:

E(x, Th(x), h(Th(x))) = 0. (3)

The stationary solution g is a fixed point of T and, under some technical conditions, the sequence
(Tn(h0))n converges to g pointwisely for a convenient choice of h0. It is important to note that, when
restricted to the dynamic programming problem, the algorithm given in (3) is the same as the Bellman
iteration method. Indeed, define the following sequence of functions:

vn(x) = max
{y;(x,y)∈A}

F (x, y) + βvn−1(y)

for all n ≥ 1, where v0(x) = F (x, h0(x)). From the first order condition and the Envelope Theorem:

F2(x, hn(x)) + βF1(hn(x), hn−1(hn(x))) = 0,

where hn(x) = argmax{y;(x,y)∈A} F (x, y) + βvn−1(y). Using the definition of T and this last equa-
tion, it is easy to see that hn = Tn(h0). Hence, Bellman’s method implies that hn converges to g. In
particular, this method is equivalent to Bellman’s one.

To solve numerically for the value function iterations we can use a discretization of the domain
and/or linear-quadratic approximations of the approximated value functions (see Christiano (1990) and
McGrattan (1990)).

The method defined in (3) is the same as the Bellman iteration method. Indeed, define the following
sequence of functions:

vn(x) = max
{y;(x,y)∈A}

F (x, y) + βvn−1(y)

for all n ≥ 1, where v0(x) = F (x, h0(x)). From the first order condition and the Envelope Theorem:

F2(x, hn(x)) + βF1(hn(x), hn−1(hn(x))) = 0,

where hn(x) = argmax{y;(x,y)∈A} F (x, y) + βvn−1(y). Using the definition of T and this last equa-
tion, it is easy to see that hn = Tn(h0). Hence, Bellman’s method implies that hn converges to g. In
particular, this method is equivalent to Bellman’s one.

To solve numerically for the value function iterations we can use a discretization of the domain
and/or linear-quadratic approximations of the approximated value functions (see Christiano (1990) and
McGrattan (1990)).

The method defined in (3) was used by Baxter et al. (1990) and Coleman (1990) to solve stochastic
growth models. Both papers use a discretization of the state space and linear interpolations to find
each element of the sequence of approximated solutions. Coleman (1991) proved the monotonicity of
the operator defined in (3) and the uniform convergence of (Tn(h0))n to g.
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2.2.2. Projection method

The second group of methods to solve equation (2) is based on projection methods. They consist
in approximating the stationary solution by finite dimensional families of functions. Namely, suppose
that the stationary solution g, defined in a compact domain [m,M ], is approximated by a polynomial:

g(x, a) =
n∑

i=0

aiψi(x),

where ψi(x) = Ti−1(2[(x−m)/(M −m)] − 1) and Ti’s are the Chebyshev polynomials4 defined on
[0, 1] recursively by Tn+1(x) = 2xTn(x) − Tn−1(x), T0(x) = 1 and T1(x) = x. Then, the vector
a = (a1, ..., an) is calculated in order to minimize the residuals:

R(x; a) = E(x, g(x; a), g(g(x; a); a)). (4)

There are at least three ways to minimize the errors in (4). The first one consists in selecting some
points (x1, . . . , xn) in the domain [m,M ] and solving the system of non-linear equations:

R(xi; a) = E(xi, g(xi; a), g(g(xi; a); a)) = 0.

The second one is to minimize the L2−norm of those residuals, i.e.,

Minimize {
∫ M

m

R2(x; a) dx; a ∈ R
n}.

Finally, the following system of non-linear equations might be solved

m∑
j=0

R(xj ; a)ψj(xj) = 0,

where (x1, ..., xm) is them zeroes of ψm+1. Examples of this method are given in Judd (1992).
Similar ideas were developed for stochastic models using “parameterized expectations” and finding

the parameters that minimize the residuals (see Marcet (1988) and Marcet and Lorenzoni (1998) for
details of the method and examples).

2.2.3. Li’s contractive operator defined from the Euler equation

In a specific monetary model, Li (1998) defined the following map:

Φ(h)(x) = E(x, h(x), h(h(x))) + h(x).

The stationary solution of the model satisfies Φ(g) = g. In that model suitable conditions on the
set of parameters guarantee that Φ is a contraction mapping, hence (Φn(h0))n converges to g in the
uniform norm.

2.2.4. Maldonado and Moreira’s C1 contractive method defined from the Euler equation

Maldonado and Moreira (2003) provided an iterative method based on the Euler equations. The
method consists in defining implicitly an operator from the space of feasible stationary functions to
itself. Then, they showed that the operator is a C1 contraction mapping with the stationary solution
as its fixed point. Next we summarize the method and the resulting algorithm from it.

4In numerical analysis, the Chebyshev polynomials are used to approximate Cr functions.
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Let α ∈ (‖(E2)−1E1‖ + ‖(E2)−1E3‖, 1).5 Given r > 0, γ > 0 and x̄ ∈ R
n, define

Hr = {h ∈ C2(Br(x̄)) : h(x̄) = x̄, ‖Dh(x)‖ ≤ α and ‖D2h(x)‖ ≤ γ, ∀x ∈ Br(x̄)}
where C2(Br(x̄)) is the space of twice continuously differentiable functions from Br(x̄) into itself.

Define the norm
‖h‖1 = sup

x∈Br(x̄)

‖Dh(x)‖ , for all h ∈ C2(Br(x̄).

Let H̄r be the closure of Hr with respect to this norm. Therefore, (H̄r, ‖ · ‖1) is a complete metric
space. Observe that, by the definition of the metric (uniform convergence in the first derivative), it is
easy to see that H̄r is a subset of C1(Br(x̄)).

Lemma 2.1. Under D, there exist r > 0, γ > 0 and ϕ : Hr → Hr such that

E(x, ϕh(x), h2(x)) = 0

for all x ∈ Br(x̄) and h ∈ Hr .

Theorem 2.2. Assume D. Then, there exist r > 0 and γ such that ϕ : Hr → Hr defined in Lemma 2.1 is a
η-contraction, for some η ∈ (0, 1).

Theorem 2.2 claims that the map ϕ : H̄r → H̄r is a η−contraction and consequently has a fixed
point inHr . It is easy to see that such a fixed point is a stationary solution of (X,D,E).

An extension of Theorem 2.2 can be obtained if assumption D is satisfied in a neighborhood of the
steady state (see details and proofs in Maldonado and Moreira (2003)).

At this point it is important to highlight that although Li’s method and Maldonado and Moreira’s
method are based on contraction mappings, they are structurally different. Li’s contraction mapping
is defined explicitly by Φ(h)(x) = E(x, h(x), h(2)(x)) + h(x) whereas Maldonado and Moreira’s one
is defined implicitly by E(x, ϕ(h)(x), h(2)(x)) = 0. Maldonado and Moreira (2003) showed two ad-
vantages of their method over the former: the convergence in the C1 norm and the set of parameters
where convergence holds contains the Li’s set of parameters.

Using the contraction mapping ϕ we can define the following algorithm to approximate the sta-
tionary solution of the Euler equation.

Let h0 : X → X be a constant function (for instance, h0 ≡ x̄, the steady state). Given x ∈ X , solve

E(x, y, h0(h0(x))) = 0

and denote its solution by h1(x). To compute h2(x) we have to solve

E(x, y, h1(h1(x))) = 0.

So, first we need to find y = h1(h1(x)) such that:

E(h1(x), y, h0(h0(h1(x)))) = 0.

Then, plugging h1(h1(x)) in the previous equation we find h2(x). In general, we have to proceed as
follows:

first step given hn, using the Euler equation, find the following sequence

h1hn, h
2
1hn, h2hn, h1h2hn, h

2
1h2hn, h

2
2hn, h3hn, ..., h

2
n

where x was dropped in the notation.

5‖(E2)−1E1‖ + ‖(E2)−1E3‖ is calculated at x̄.
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second step to find hn+1(x) solve
E(x, y, hn(hn(x))) = 0.

Observe that it is not necessary to make any partition of the state space in order to calculate the
value of the functions evaluated at x in the sequence above. This is a remarkable property of the method
since interpolation generates a source of increasing errors in any algorithm.

Remark 2.3. Since this method is based on a contractive mapping, the error is uniformly decreasing in each
step (with respect to the C1 topology).

3. THEC1 CONTRACTIONMAPPINGMETHOD FOR THE STOCHASTIC EULER EQUATIONS

In this section we provide an extension of the C1 contraction method described in section 2 to
the stochastic case. To facilitate the exposition we will restrict ourselves to the stochastic dynamic
programming problem.

Let (X,X ) be the set of the state variable values and (Z,Z) the set of shock values. Let both sets
be measurable spaces. Assume that the shocks are given by a transition function Q : Z × Z → [0, 1].
The feasible set is defined by Ω ⊂ X ×X × Z and the one-period return function is F : Ω → R

n. As
in the deterministic case, β ∈ (0, 1) represents the discount factor. Therefore, the stochastic dynamic
programming problem is defined by (X,Z,Q,Ω, F, β).

Under standard assumptions, 6 we can obtain the existence of an optimal policy function g : X ×
Z → X . In addition, under differentiability and interiority of solution hypotheses the optimal policy
function must satisfy the stochastic Euler equation:

F2(k, g(k, z), z) + β

∫
Z

F1(g(k, z), g(g(k, z), z′), z′)Q(z, dz′) = 0

for all k ∈ X and z ∈ Z .
We assume the following assumption:

Assumption S.

(i) There exists ε > 0 such that d(Graph(g), ∂Ω) ≥ ε.

(ii) There existsX0 ⊂ π1(Ω) such that:

a)

sup
(k,z)∈(X,Z)

‖(F22(k, g(k, z), z) + βEz[F11(g(k, z), g(g(k, z), z′), z′)]
)−1‖

× (‖F21(k, g(k, z), z)‖ + β‖Ez[F12(g(k, z), g(g(k, z), z′), z′)]‖
)
< 1

b)

sup
(k,z)∈(X,Z)

2β‖(F22(k, g(k, z), z) + δEz[F11(g(k, z), g(g(k, z), z′), z′)]
)−1

× (
Ez[F12(g(k, z), g(g(k, z), z′), z′)]‖

)
< 1

6See, for instance, Theorem 9.8 of Stokey and Lucas (1989).
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The first assumption says that the optimal path is strongly interior. assumption S (ii.a) is the
stochastic version of the diagonal dominant condition. Finally, Assumption S (ii.b) is a technical one
which is the extension of the assumption D (ii).

Let

D = {h : X0 × Z → X0;h(·, z) ∈ C1 , for each z ∈ Z‖Dkh(k, z)‖ ≤ 1, ∀k ∈ X0,∀z ∈ Z} .
The following lemma defines the map ϕ in analogous way of the deterministic case.

Lemma 3.1. Under assumption S (i), there exist ε′ > 0 and ϕ : B(g, ε′) → B(g, ε′) such that

F2(k, ϕh(k, z), z) + β

∫
Z

F1(ϕh(k, z), h(h(k, z), z′), z′)Q(z, dz′) = 0

for all h ∈ B(g, ε′), k ∈ X0 and z ∈ Z .

Theorem 3.2. Under assumption S, ϕ defined in Lemma3.1 is a contraction.

It is worth noting that S is a condition on the optimal policy function of the problem (which is
unknown). Therefore, it has to be verified a posteriori, namely, we have to apply the iterative method to
find the sequence hn = ϕ(hn−1) and for n large enough to verify if S is satisfied on hn.

4. SOME EXAMPLES

In this section we illustrate the C1 contraction mapping method given by Maldonado and Moreira
(2003) to approximate the stationary solution of the Euler equation. The first one shows how it is
applied in linear models. The second example shows the numerical robustness of the method even
though the stationary solution has sensitiveness to the initial condition. The last example illustrates
how the method runs in stochastic models.

4.1. The linear model

The first example is the simple linear model mostly used as a first approximation of non-linear mod-
els. It also works when objective functions are quadratic. Consider the homogeneous linear equations:
Mxt−1 +Nxt + Pxt+1 = 0, whereM,N,P ∈ R

n×n. If N is nonsingular, then the equation above
can be written as:

Axt−1 + xt +Bxt+1 = 0.

If ||A|| + ||B|| < 1 and ||B|| < 1/2, then D is satisfied and, so it is the saddle stability point of
x̄ = 0. The iterative method runs as follows: given a differentiable function hn with ||Dhn|| < 1 we
define hn+1 by

Ax+ hn+1(x) +Bh(2)
n (x) = 0 ⇒ hn+1(x) = −(Bh(2)

n (x) +Ax),

so that the dynamics will evolve through linear functions. Finally, the algorithm is: given any matrix
M0 ∈ R

n×n, with ||M0|| < 1, the sequence:

Mn+1 = −(BM2
n +A)

will converge toM ∈ R
n×n,with ||M || < 1, and the stationary solution will be g(x) = Mx.7

7It is important to remark that the iterative method only approximates solutions with norm lower than one. For instance, if
A = 0 and B = −0.25, then the Euler equation has two solutions g1(x) = 0 and g2(x) = 4x. Obviously the method will
select g1.
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4.2. An example with chaotic stationary solution

In this example we consider a deterministic dynamic programming problem such the optimal policy
function is g(x) = 4x(1 − x) in the interval [0, 1]. This example is important in order to test the ro-
bustness of our iterative method. Since g exhibits sensitiveness to initial conditions (positive Liapounov
exponent), then the calculated iterations could be far from the real iteration.

According to Boldrin and Montrucchio (1986) we can explicitly define a deterministic model that has
g as its stationary solution. In this case we must choose a discount factor small enough. Specifically,
taking

E(x, y, z) = x− x2 + δz − (0.25 + 4δ + 2δz)y + 12δy2 − 8δy3

as the Euler Equation, it is easy to check that g is the stationary solution of this equation for all δ > 0
sufficiently small.

The figure below shows the evolution of the sequence of policy functions, where the optimal one
is the continuous line and the iterations h1 to h10 (which is the closest to g) are the dotted lines; the
distance between h10 and g is 7.863 × 10−4. The discount factor we chose was δ = 0.1.
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0
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Figure 1 – Chaotic Stationary Solution: g(x) = 4x(1 − x).

In this example the assumption D is not satisfied, since the policy function has an interior unstable
steady state. Nevertheless, our method still works and the convergence occurs in all the domain. It
suggests that the method might work even if D is not satisfied. This may be a subject for future
research.

4.3. The stochastic growth model

In this last example we apply the iterative method generated from Theorem 3.2 to the neoclassical
stochastic growth model. To do that, recall that the stochastic Euler equation for the stochastic dynamic
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programming problem is:

F2(x, g(x, z), z) + βE[F1(g(x, z), g(g(x, z), z̃), z̃)] = 0.

The specifications for the growth model are: technological shocks are i.i.d, the technology is given
by the production function f and the utility function is u. So, F (x, y, z) = u(zf(x) − y).

The algorithm is defined by the map ϕ : C1(X × Z) → C1(X × Z) in the following way. If
h ∈ C1(X × Z), then ϕh = ϕ(h) is implicitly defined from:

−u′(zf(x) − ϕh(x, z)) + βE[z̃f ′(ϕh(x, z))u′(z̃f(ϕh(x, z)) − h(h(x, z), z̃))] = 0.

Given h0 ∈ C1(X × Z), define the sequence hn+1 = ϕhn
which may converge to optimal policy

function of the problem. To state explicitly the map ϕ, let us consider the following specification:
f(x) = x and u(c) = c− (b/2)c2. Thus, the (contraction) mapping ϕ is:

ϕ(h)(x, z) =
bzx− 1 + βE[z̃ + bz̃h(h(x, z), z̃)]

b(1 + βE[z̃2])
.

Knowing the parameter values β ∈ (0, 1), b > 0 and the distribution of the shock z̃ we can perform
the iterates of ϕ from h0 ∈ C(X × Z). By Theorem 3.2 those iterations will converge to the optimal
policy function of the problem.

5. CONCLUSIONS

The use of accurate numerical methods in economic dynamic models has an increasing demand
among applied researchers. The particular characteristic of those models (when the optimal path is
found by iterating the stationary solution function) requires a strong control of the errors in each
iteration.

This paper provides a survey on the classical numerical methods to estimate the stationary solution
of the Euler equations. Among them, Bellman’s iteration method, projection methods and contraction
methods provide the most popular numerical algorithms to solve those equations. We also test the
robustness of the method defined by Maldonado and Moreira (2003) by applying it to solve the dynamic
programming problem which has the logistic map as the optimal policy function. This test shows that
even though the optimal policy has sensitiveness to initial conditions the method has a good perfor-
mance to approximate the solution. Finally, we extend that method to the stochastic Euler equations
showing that under hypothesis that can be verified a posteriori we can obtain the convergence to the
stationary solution of those equations.

As mentioned in Maldonado and Moreira (2003), the C1 contraction method has two main advan-
tages over the others in the literature: The convergence is in the C1 topology (allowing in some cases
for accurate comparative dynamics exercises) and it is not necessary any grid or interpolation in each
iteration. For the stochastic case the same properties are satisfied.

For this method to work, the required hypothesis in the deterministic case is an open condition
related with the first derivatives of the structural equations evaluated at the steady state. This hypoth-
esis is slightly stronger than the determinacy of the steady state condition. For the stochastic case the
hypothesis is a natural extension of that and can be verified ex-post.
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APPENDIX

Proof of Lemma 3.1. Let v(., z) ∈ C1(X) such that ‖v(.z)‖ = 1. For all α ∈ [−ε, ε], g+αv ∈ D. Define
the following function:

Φ(α, k, y) = F2(k, y, z) + βEz′ [F1(y, (g + αv)((g + αv)(k, z), z′), z′)] .

Since Φ(0, k, g(k, z)) = 0 and Φy(0, , k, g(k, z)) is negative definite, then there exists ψ : [−ε, ε] → X
such that Φ(α, k, ψα(k, z)) = 0, for all α, and ψ0(k, z) = g(k, z). Finally, if h ∈ B(g, ε), define
ϕh = ψ‖g−h‖.

To see that ϕh(., z) ∈ C1, fix h and define G(k, y) = Φ(‖g − h‖, k, y). From G(k, ϕh(k, z)) = 0
and Gy(k, ϕh(k, z)) is negative definite we can conclude that ϕh(., z) is C1.
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Let us calculate the derivative of ϕh:

Dkϕh(k, z) = −[F22(k, ϕh(k, z), z) + βEz′ [F11(ϕh(k, z), h(h(k, z), z′), z′)]]−1

× [F21(k, ϕh(k, z), z) + βEz′ [F12(ϕh(k, z), h(h(k, z), z′), z′)Dkh(h(k, z), z′)Dkh(k, z)]]

which implies ‖Dkϕ‖ < 1, by assumption S (i). Thus, ϕ ∈ D. �

Proof of Theorem 3.2. The Gateaux derivative of ϕ at h in the direction v is given by:

δvϕh(k, z) = − {F22(k, ϕh(k, z), z) + βE[F11(ϕ(k, z), h(h(k, z), z′), z′), z′)]}−1

× βEz′ [F12(ϕh(k, z), h(h(k, z), z′)[Dkh(h(k, z), z′)v(k, z) + v(h(k, z), z′)]].

We claim that ϕ is a Lipchitz map. Indeed, for each h1, h2 ∈ B(g, ε′) and (k, z), define f : [0, 1] →
R by

f(t) = ϕ(h1+t(h2−h1))(k, z) .

From the Mean Value Theorem, |f(1) − f(0)| ≤ ‖δ(h2−h1)ϕ(h1+t̃(h2−h1))
(k, z)‖, for some t̃ ∈ [0, 1].

From the expression of δvϕ (and taking the supremum), we have

‖ϕh1 − ϕh2‖ ≤ L‖h1 − h2‖

where

L = 2β sup{‖{F22(k, ϕh(k, z), z) + βE[F11(ϕh(k, z), h(h(k, z), z′), z′), z′)]}−1

× βE[F12(ϕh(k, z), h(h(k, z), z′), z′)]‖, h ∈ B(g, ε′), (k, z) ∈ X0 × Z} .

Observe that, by S (ii.b), L is lower than 1 when h = g. By continuity of ϕ, ϕh converges to ϕg = g
when h→ g. Moreover, the following estimative is true:

|h(h(k, z), z′) − g(g(k, z), z′)| ≤ |h(h(k, z), z′) − h(g(k, z), z′) + h(g(k, z), z′) − g(g(k, z), z′)|
≤ (‖Dkh‖ + 1)‖h− g‖ .

Therefore, there exists ε′′ < ε′ such that for all h ∈ B(g, ε′′), L is lower than 1 on B(g, ε′′). This
concludes the proof. �
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