Avaliação da cavidade nasal e nasofaringe através da rinometria acústica antes e após adenoidectomia

Acoustic rhinometry evaluation of nasal cavity and nasopharynx before and after adenoidectomy

Carlos E. N. Nigro¹, Elder Goto¹, Josiane F. A. Nigro1, Joao F. M. Junior2, Olavo Mion², Richard L. Voegels³

Palavras-chave: adenoidectomia, rinometria acústica. Key words: adenoidectomy, acoustic rhinometry.

Resumo / Summary

Introdução: A hipertrofia adenoideana é vista com frequência na prática otorrinolaringológica e é importante avaliar a patência nasal antes do início do tratamento. Neste trabalho, os autores buscam avaliar as mudanças na geometria nasal e nasofaringe antes e após adenoidectomia através de um método objetivo de mensuração da patência nasal, a rinometria acústica. Forma de Estudo: Clínico prospectivo. Objetivo: Os autores avaliam a área de secção transversal mínima (ASTM) e o volume das cavidades nasais e nasofaringe através da rinometria acústica (RA) antes e após a cirurgia de adenoidectomia. Material e Método: Vinte e três crianças que tinham indicação cirúrgica para adenoidectomia com ou sem tonsilectomia foram submetidas ao exame de RA antes e 15 dias após a cirurgia. Resultados: A ASTM das fossas nasais variou, antes do uso de vasoconstritor (VC), de 0,73 cm² antes da cirurgia para 0,79 cm² após a cirurgia; após o uso de VC variou de 0,87 cm² para 0,93 cm². O volume das fossas nasais variou, antes do uso de VC, de 6,18 cm³ antes da cirurgia para 6,47 cm³ após a cirurgia; após o uso de VC variou de 8,31 cm³ para 8,65 cm³. Na nasofaringe a ASTM variou, antes do uso de VC, de 2,43 cm² antes da cirurgia para 2,69 cm² após a cirurgia; após o uso de VC variou de 2,76 cm² para 3,79 cm². Na nasofaringe o volume variou, antes do uso de VC, de 5,57 cm³ antes da cirurgia para 6,14 cm³ após a cirurgia; após o uso de VC variou de 6,51 cm³ para 8,78 cm³. Conclusão: O aumento de ASTM e volume da nasofaringe, indicando melhora da permeabilidade nasal, concorda com a melhora dos sintomas obstrutivos referidos pelo paciente e familiares após a cirurgia de adenoidectomia.

ntroduction: The authors evaluate the minimum crosssectional area (MCA) and nasal volume (NV) of the nasal cavity and nasopharynx before and after adenoidectomy. Study Design: Clinical prospective. Aim: Evaluate changes of nasal cavity and nasopharynx before and after adenoidectomy using objective technique for assessment the nasal patency, acoustic rhinometry. Material and Method: Twenty-three children (52 nasal cavities) with surgical indication for adenoidectomy were evaluated with acoustic rhinometry before and 15 days after surgery. Results: The MCA of nasal cavity changed, before decongestion, from $0,\!73~\text{cm}^2$ preoperatively into $0,\!79~\text{cm}^2$ postoperatively and after decongestion, from 0,87 cm² preoperatively into 0,93 cm² postoperatively. The volume of nasal cavity changed, before decongestion, from 6,18 cm³ preoperatively into 6,47 cm³ postoperatively and after decongestion, from 8,31 cm³ preoperatively into 8,65 cm³ postoperatively. The MCA of nasopharynx changed, before decongestion, from 2,43 cm² preoperatively into 2,69 cm² postoperatively and after decongestion, from 2,76 cm² preoperatively into 3,79 cm² postoperatively. The volume of nasopharynx changed, before decongestion, from 5,57 cm³ preoperatively into 6,14 cm³ postoperatively and after decongestion, from 6,51 cm³ preoperatively into 8,78 cm³ postoperatively. **Conclusion:** The increase of MCA and volume of the nasopharynx agree with the improvement of the symptoms that patients or parents reported after adenoidectomy.

¹ Doutorandos da Disciplina de Otorrinolaringologia do HCFMUSP. ² Professor Doutor Assistente da Disciplina de Otorrinolaringologia do HCFMUSP. ³ Professor Doutor Associado da Disciplina de Otorrinolaringologia do HCFMUSP. Trabalho realizado na Divisão de Clínica Otorrinolaringológica do Hospital das Clínicas da FMUSP Endereço para Correspondência: Dr. Carlos Eduardo N. Nigro – Rua Prof. Luiz Augusto da Silva, 67 Centro Taubaté SP Brasil 12020-360 E-mail: otorrinoclinica@uol.com.br

Artigo recebido em 21 de janeiro de 2003. Artigo aceito em 13 de maio de 2003.

INTRODUÇÃO

As "vegetações adenoideanas" foram primeiramente descritas por Meyer, em 1870, que em seu trabalho descreve o método de palpação digital como principal recurso diagnóstico e descreve as limitações da rinoscopia posterior¹. Recentes trabalhos evidenciam a eficácia da nasofibroscopia para a detecção da hipertrofia adenoideana que, embora seja um método invasivo, oferece muitas vantagens quando comparada à radiografia simples de perfil². Os sintomas referidos pelos pais são fonte importante de informação para indicação ou não da adenoidectomia³.

Alegações vêm sendo feitas a respeito do potencial da rinometria acústica (RA) para a detecção e evolução de pacientes com hipertrofia adenoideana⁴ embora muitos trabalhos evidenciam a baixa acurácia da RA em refletir a realidade anatômica da nasofaringe devido às próprias limitações da técnica^{5,6}.

A ocorrência de obstrução das vias aéreas superiores em pacientes com hipertrofia de tonsila faríngea acompanhada ou não de hipertrofia de tonsilas palatinas é vista com freqüência na prática clínica otorrinolaringológica por vezes associada à hipertrofia de conchas inferiores.

O objetivo deste trabalho foi analisar as mudanças ocorridas na geometria das cavidades nasais e nasofaringe de crianças submetidas a adenoidectomia associada ou não a tonsilectomia palatinas. Realizamos RA antes e após a cirurgia para verificarmos as mudanças de volume e área de secção transversal mínima (ASTM) nas fossas nasais e também o que ocorre com o volume e área de secção transversal na nasofaringe onde está situada a tonsila faríngea.

CASUÍSTICA E MÉTODO

Este estudo foi aprovado pelo comitê de ética em pesquisa do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo e os responsáveis pelas crianças assinaram termo de consentimento pós-informação para a realização dos exames de RA.

Trinta e três crianças (66 cavidades nasais), 16 meninos e 17 meninas que tinham indicação cirúrgica para adenoidectomia com ou sem tonsilectomia palatina foram submetidas ao exame de RA antes e 15 dias após a cirurgia para avaliar as alterações ocorridas na geometria da cavidade nasal e nasofaringe.

Todos os pacientes tinham sintomas de obstrução das vias aéreas superiores: respiração bucal na maior parte do dia (96%), roncos diariamente (69%), ocorrência de apnéias (15%), otite média de repetição (11%) e hipertrofia adenoideana confirmada pela nasofibroscopia ou exame radiológico.

Foram excluídos os pacientes com cirurgia nasal ou de faringe prévia, pacientes com sintomas e/ou sinais de rinite alérgica ou de doença sinusal no momento da realização

da RA, pacientes com desvios septais severos a rinoscopia anterior e pacientes com atresia de coana.

Vinte e três pacientes retornaram 2 semanas após a cirurgia para a realização de nova RA, 9 meninos e 14 meninas com idade variando de 3 a 10 anos com média de 6,1 anos. A RA foi realizada 3 vezes em cada narina antes e 15 min após a aplicação de 3 jatos de cloridrato de oximetazolina, vasoconstritor (VC) tópico nasal, e realizada de acordo com a padronização preconizada por Hilberg et al.⁷, sendo que traçados com artefatos óbvios foram descartados. O rinômetro acústico utilizado foi o Eccovision Accoustic Rhinometry (Laboratório Hood).

Medimos a ASTM e o volume nasal nos primeiros 5 cm a partir da narina por ser a região de maior fidedignidade do exame⁸ e também medimos a ASTM e o volume da nasofaringe representada no rinograma nasal ao longo do eixo X na distância de 6,5 a 8,5 cm da narina⁹.

Somamos a ASTM e o volume de ambas fossas nasais a fim de minimizar falhas de medida devido a alterações estruturais ou devido ao ciclo nasal.

Verificamos, em cada paciente, a ASTM e o volume da cavidade nasal e nasofaringe antes do VC pré-cirurgia e pós-cirurgia e após VC pré-cirurgia e pós-cirurgia. Para a comparação destes valores foi utilizado o teste t de Student para amostras pareadas.

RESULTADOS

Todos os pacientes ou responsáveis referiram melhora subjetiva dos sintomas de obstrução das vias aéreas superiores como respiração bucal, roncos e/ou apnéias.

Nas fossas nasais a ASTM, antes do uso de VC, variou de 0.73 ± 0.17 cm² (0.46-1.18) antes da cirurgia para 0.79 ± 0.20 cm² (0.47-1.22) depois da cirurgia; p < 0.01. Após o uso de VC variou de 0.87 ± 0.24 cm² (0.49-1.41) antes da cirurgia para 0.93 ± 0.24 cm² (0.60-1.47) depois da cirurgia; p < 0.01. O volume das fossas nasais antes do uso de VC, variou de 6.18 ± 1.42 cm³ (3.84-9.35) antes da cirurgia para 6.47 ± 1.60 cm³ (4.12-10.10) depois da cirurgia; p < 0.05. Após o uso de VC variou de 8.31 ± 2.10 cm³ (4.23-12.70) antes da cirurgia para 8.65 ± 2.08 cm³ (4.42-12.02) depois da cirurgia; p < 0.05.

Na nasofaringe a ASTM, antes do uso de VC, variou de 2,43 \pm 1,06 cm² (1,10 - 4,81) antes da cirurgia para 2,69 \pm 1,19 cm² (1,09 - 5,35) depois da cirurgia; p < 0,05. Após o uso de VC variou de 2,76 \pm 1,15 cm² (1,08 - 4,88) antes da cirurgia para 3,79 \pm 1,69 cm² (1,55 - 7,12) depois da cirurgia; p < 0,001. O volume da nasofaringe antes do uso de VC, variou de 5,57 \pm 2,33 cm³ (2,45 - 10,99) antes da cirurgia para 6,14 \pm 2,48 cm³ (2,43 - 11,62) depois da cirurgia; p < 0,01. Após o uso de VC variou de 6,51 \pm 2,61 cm³ (2,70 - 11,48) antes da cirurgia para 8,78 \pm 3,40 cm³ (3,61 - 14,48) depois da cirurgia; p < 0,001.

A Figura 1 exemplifica as mudanças de área e volume das fossas nasais e nasofaringe após o uso de VC nasal.

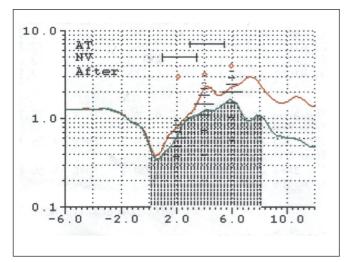


Figura 1. Rinograma nasal após vasoconstritor antes (inferior) e depois (superior) da cirurgia de adenoidectomia

DISCUSSÃO

O objetivo deste estudo foi investigar as mudanças na geometria da fossa nasal e da nasofaringe através da RA antes e após a adenoidectomia. Na nasofaringe encontramos aumento bastante significante da ASTM e do volume após o uso de vasoconstritor.

Kim et al.¹¹º com o intuito de determinar o efeito da adenoidectomia na geometria da cavidade nasal e nasofaringe realizam RA antes da cirurgia e 15 dias após, antes e após o uso de vasoconstritor tópico. O rinograma antes do uso do vasoconstritor antes e após a cirurgia mostra aumento da ASTM na região da cabeça da concha inferior e do volume da fossa nasal; após a descongestão da mucosa houve aumento da ASTM apenas na nasofaringe, resultados semelhantes aos por nós encontrados.

Cho et al.⁴, avaliando a nasofaringe através da RA em crianças antes e após serem submetidas a adenoidectomia e comparando com os achados em crianças do grupo controle, concluem que a ASTM e o volume da nasofaringe são significantemente menores no grupo de pacientes com adenóide hipertrófica e que existe aumento significativo da ASTM e do volume da nasofaringe após a cirurgia.

Mostafa¹¹ verifica significante aumento de ASTM e volume na nasofaringe após adenoidectomia e conclui que a RA pode ser usada como *screening* e havendo alta suspeita de hipertrofia de adenóide a endoscopia nasal pode ser planejada.

Riechelmann et al.º comparam a nasofaringe de crianças com hipertrofia adenoideana pré-cirurgia e após a cirurgia de adenoidectomia e comparam com grupo controle de crianças sem hipertrofia adenoideana e

verificam que a ASTM da nasofaringe antes e após cirurgia e mesmo quando comparada a ASTM das crianças do grupo controle não apresenta diferenças estatisticamente significantes.

Fisher et al.¹² referem que a RA não tem acurácia para evidenciar pequenas alterações de volume na nasofaringe e conclui que a RA tem pouco valor preditivo se usada isoladamente para avaliar a presença de adenóide hipertrófica; terá maior poder preditivo se avaliarmos conjuntamente com o quadro clínico.

Na nasofaringe verificamos aumento da ASTM e do volume nasal após a retirada do tecido adenoideano. Este aumento foi maior se compararmos estas medidas após o uso de descongestionante tópico nasal provavelmente devido a maior facilidade de propagação das ondas sonoras até a nasofaringe e pela melhor captação das ondas sonoras refletidas por causa da redução de volume do tecido erétil das fossas nasais.

Os exames realizados antes da cirurgia podem ter sub-dimensionado a geometria nasal devido a maior possibilidade de estase de secreção nas fossas nasais nas crianças com respiração oral mesmo após pedirmos para que assoassem o nariz.

Embora a RA tenha menor precisão para medir as dimensões da nasofaringe devido à existência de obstruções severas anteriores causando subestimação de regiões posteriores, aos movimentos voluntários e involuntários do palato mole, ao escape sonoro para a fossa nasal oposta e às próprias limitações físicas da técnica^{5,12,14,15}, ela foi capaz de evidenciar o ganho de ASTM e volume pérveo na nasofaringe após a cirurgia.

CONCLUSÕES

O aumento de ASTM e volume da nasofaringe, indicando melhora da permeabilidade nasal, concorda com a melhora dos sintomas obstrutivos referidos pelo paciente e familiares após a cirurgia de adenoidectomia.

REFERÊNCIAS BIBLIOGRÁFICAS

- Meyer W. On adenoid vegetations in the naso-pharyngeal cavity: their pathology diagnosis and treatment. Méd Chir Trans 1870;53:191-215 apud Fisher E. W.et al. Acoustic Rhinometry in the Pre-operative Assessment of Adenoidectomy Candidates Acta Otolaryngol (Stockh) 1995;115:815-22.
- 2. Monteiro ECM, Pilon RR, Dall Oglio GP. Estudo da hipertrofia adenoideana:endoscopia x radiografia de nasofaringe. Rev Bras Otorrinolaringologia 2000;66(1):9-12.
- Hibbert J, Tweedie MCK. The value of signs and symptoms in the diagnosis of enlarged adenoids. Clin Otolaryngol 1977;2:297-304 apud Fisher EW et al. Acoustic Rhinometry in the Pre-operative Assessment of Adenoidectomy Candidates. Acta Otolaryngol (Stockh) 1995;115:815-22.
- Cho J, Lee D, Lee N, Won Y, Ion H, Suh B. Size assessment of adenoid and nasopharyngeal airway by acoustic rhinometry in children. J Laryngol Otol 1999;113:899-905.

- Tomkinson A, Phil M, Eccles R. The identification of the potential limitation of acoustic rhinometry using computer-generated threedimensional reconstructions of simple models. Am J Rhinol 1996:10:77-82.
- Buenting JE, Dalston RM, Smith TL, Drake AF. Artifacts associated with acoustic rhinometric assessment of infants and young children: a model study. J Appl Physiol 1994;77(6): 2558-63.
- 7. Hilberg O, Pedersen OF. Acoustic rhinometry:recommendations for technical specifications and standard operating procedures. Rhinol Supp 2000;16:3-17.
- 8. Hilberg O, Pedersen OF. Acoustic rhinometry:influence of paranasal sinuses. J Appl Physiol 1996;80:1589-94.
- Riechelmann H, Connel JM, Rheinheimer MC, Wolfensberger M, Mann WJ. The role of acoustic rhinometry in the diagnosis of adenoidal hypertrophy in pre-school children. Eur J Pediatr 1999;158:38-41.

- Kim Y, Kang J, Yoon K. Acoustic rhinometric evaluation of nasal cavity and nasopharynx after adenoidectomy and tonsillectomy. Int J Pediatr Otorhinolaryngol 1998;44:215-20.
- Mostafa BE. Detection of adenoidal hypertrophy using acoustic rhinomanometry. Eur Arch Otorhinolaryngol 1997;254 (suppl. 1):S27-S9.
- Fisher EW, Palmer CR, Daly NJ, Lund VJ. Acoustic rhinometry in the pre-operative assessment of adenoidectomy candidates. Acta Otolaryngol (Stockh)1995;115:815-22.
- 13. Silkoff PE et al. Reproducibility of Acoustic Rhinometry and Rhinomanometry in Normal Subjects. Am J Rhinol 1999;13:131-5.
- 14. Hilberg O, Jackson AC, Swift DL, Pedersen OF. Acoustic rhinometry:evaluation of nasal cavity geometry by acoustic refletion. J Appl Physiol 1989;66:295-303.
- 15. Lenders H, Pirsig W. Diagnostic value of acoustic rhinometry: patients with allergic and vasomotor rhinitis compared with normal controls. Rhinology 1990;28(1):5-16.