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ABSTRACT

RESUMO

Análise de sobrevivência como ferramenta no estudo de doenças na pós-colheita de pêssegos

A análise de sobrevivência é aplicada quando o tempo até a ocorrência de um evento for o objeto de interesse.
Em doenças de plantas, dados dessa natureza são rotineiramente coletados, embora aplicações do método sejam
pouco comuns. O objetivo deste trabalho foi utilizar dois estudos de doenças em pós-colheita de pêssegos, consi-
derando-se safras conjuntamente e a existência de efeito aleatório, compartilhado por frutos de uma mesma árvore,
para descrever as principais técnicas em análise de sobrevivência. Aplicaram-se a técnica não paramétrica de Kaplan-
Meier e a estatística log-rank, além do modelo semiparamétrico de riscos proporcionais, de Cox, para estimar o
efeito de cultivares e do número de dias após a floração plena sobre a sobrevivência ao sintoma de podridão parda
e sobre o risco instantâneo de expressá-lo, em duas safras consecutivas. A análise conjunta com efeito basal, vari-
ando entre safras, e a verificação do efeito de árvore como fator de agrupamento com efeito aleatório, mostraram-
se adequadas para interpretar o fenômeno avaliado (doença) e podem ser ferramentas importantes para substituir ou
complementar as análises convencionais,  respeitando-se as naturezas da variável e do fenômeno.
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Survival analysis: a tool in the study of post-harvest diseases
in peaches

Survival analysis is applied when the time until the occurrence of an event is of interest. Such data are routinely
collected in plant diseases, although applications of the method are uncommon. The objective of this study was to
use two studies on post-harvest diseases of peaches, considering two harvests together and the existence of random
effect shared by fruits of a same tree, in order to describe the main techniques in survival analysis. The nonparametric
Kaplan-Meier method, the log-rank test and the semi-parametric Cox’s proportional hazards model were used to
estimate the effect of cultivars and the number of days after full bloom on the survival to the brown rot symptom and
the instantaneous risk of expressing it in two consecutive harvests. The joint analysis with baseline effect, varying
between harvests, and the confirmation of the tree effect as a grouping factor with random effect were appropriate
to interpret the phenomenon (disease) evaluated and can be important tools to replace or complement the conventional
analysis, respecting the nature of the variable and the phenomenon.
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INTRODUCTION

The analysis of the occurrence of an event and the
time for its occurrence in a population of individuals is
a common statistical problem. In this context, an event
is defined as a qualitative change of the individual
observed, which occurs at a particular point in time
(Schern & Ojiambo, 2004). In the medical field, often
the event of interest is the time until cure or death of the
individual, measured from a particular treatment or the
onset of the disease (McGilchrist & Aisbett, 1991; Goel
et al., 2010). In such situations, a statistical analysis
technique known as survival analysis was developed to
be applied when the time until the occurrence of an event
(the dependent variable) is the object of interest (Carva-
lho et al., 2011). Techniques of conventional statistical
analysis are not appropriate for this type of data, because
the time of observation is rarely normally distributed
and data can be censored, that is, the study may end before
all the individuals undergo the event of interest (right
censoring), the response being partly observed (Bewick
et al., 2004). Generally, data of this nature are subjected
to conventional statistical analysis, which limits the
inference capability. For survival data, many researchers
use standard statistical techniques, such as logistic
regression and ordinary least squares regression, to
quantify the importance of covariates on the occurrence
of an event (Scherm & Ojiambo, 2004). Logistic
regression classifies of individuals into two groups, those
who underwent and those who did not undergo the event
during the observation period, which causes loss of
information, because the differences in the occurrence
times are not considered. With the least square
regression analysis, the observations whose exact time
of the occurrence of the event is not known (censored
observations) are discarded, although they bear important
information for understanding the phenomenon (Scherm
& Ojiambo, 2004; Lima Junior et al., 2012). Discarding
censored observations reduces the power of the
statistical tests, because losses degrees  freedom and
introduces bias in survival functions (Colosimo & Giolo,
2006), besides overestimating the risk, because the
time until the occurrence of the event is unknown (Car-
valho et al., 2011). In contrast, the survival analysis
uses the likelihood method for parameter estimation
and effectively extract relevant information and
reliable estimates, even in situations with censorship
(Colosimo & Giolo, 2006). Although the term come
from studies in health, survival analysis is applied in
many areas of knowledge, such as demographics (Oli-
veira et al., 2006), economy (Oliveira & Rios-Neto,
2007), entomology (Krüger et al., 2008), agronomy
(Couto et al., 2009) and education (Lima Junior et
al., 2012).

In the study of plant diseases, although data on
occurrence and time are routinely collected in
laboratories or field trials, survival analysis is still
unusual. Examples of applications of this technique to
plant diseases can be found in Dallot et al. (2004), in
which the authors identified risk factors in peach
infection by Plum pox virus in time and, as a result,
affecting the persistence of the disease. Ojiambo &
Scherm (2005) used the technique to study the time to
abscission of blueberry leaves, as a function of the
severity of leaf spot caused by Septoria albopunctata,
considering the age and location on the leaf in the canopy
together. Copes & Thomson (2008) used this analysis
to determine the lenght of the incubation period of rust
(Colletotrichum gloesporioides) in camellia twigs. The
latent period of Mycosphaerella pinodes in peas was
estimated using the survival analysis, considering the
isolate aggressiveness, leaf wetness duration,
concentration of inoculum, plant age and host
susceptibility as explanatory variables (Setti et al., 2010).

In the studies cited above, the survival analysis used
for plant disease data does not address common
situations, such as the possibility to accommodate
between-harvest variation in a joint analysis, or the
existence of natural groupings as fruit of the same tree,
which may influence the time to occurrence of the event
(Gorfine et al., 2006) and invalidate the independence
assumption of time between individuals (Colosimo &
Giolo, 2006). From the foregoing, the objective of this
study was to describe the main nonparametric and
semiparametric techniques in survival analysis using two
case studies on peach post-harvest diseases, considering
two harvests together and the existence of random effect
shared by fruits of a same tree.

MATERIALS AND METHODS

Two data subsets from experiments on brown rot
caused by Monilinia fructicola in post-harvest peaches
were used to quantify the effect of covariates related to
fruit over time for symptom expression. In the examples
used, there are right censored observations because the
evaluations ended before all the fruit in the study showed
the disease symptom.

Example 1: In the 2009/10 and 2010/11 seasons,
peaches from five cultivars at the pit hardening stage
were wrapped in paper bags to prevent contact with the
pathogen or fungicides. After harvested, peaches were
taken to the laboratory and those without any apparent
damage were placed in sterilized plastic containers,
inoculated with M. fructicola conidial suspension and
kept in controlled temperature and humidity. Visual
evaluations of brown rot in each fruit was performed
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every 12 hours for five days. In this experiment, the aim
of survival analysis was to quantify the effect of cultivar
(covariate) on the survival of fruit (remain asymptomatic)
and the risk of expressing disease symptoms. There were
fruits that did not express symptoms until the end of the
observation period and was considered a baseline risk
for symptom expression, which can vary between seasons
in the joint analysis.

Example 2: In peach trees of a same cultivar, ten
green fruits per tree (24 trees) were inoculated with M.
fructicola suspension at five different times: 17, 24, 49,
64, and 67 days after full bloom. Immediately after
inoculation, the peaches were wrapped in wax paper bags
and were kept until the harvest time. After harvest, the
peaches without symptoms or injuries were incubated at
constant temperature with continuous light for ten days
in two consecutive seasons (2008/09 and 2009/10). For
each fruit, it was evaluated the time from the harvest until
the onset of symptoms, in post-harvest. The survival
analysis was used to evaluate the effect of time of
inoculation (number of days after full bloom) on the
survival and risk of expressing brown rot symptoms in
postharvest. It was considered that the baseline risk may
vary between seasons and it was evaluated the existence
of a common effect shared by fruits of a same tree.

Analysis techniques

a) Survival and hazard function

Time distribution without symptoms of brown rot
(survival time) was estimated in the two experimental
situations. Among other things, this allows the calculation
of derived quantities, such as the median survival time,
which in this case means the time at which 50% of the
fruit remained without symptoms and compare survival
time distributions among treatments (Carvalho et al.,
2011), i.e., among cultivars and fruit inoculation times.

The mathematical functions of survival S(t) and
instantaneous risk λ(t) are essential in the survival
analysis (Bewick et al., 2004). The survival function S(t)
describes the probability of an individual to have lifetime
longer than t; in this case, the probability that, after a
time t, the fruit shows no symptoms. This is defined as
S(t) = Pr (T>t), where T is the time until the expression
of symptom for the fruit observed. Similarly, the
cumulative lifetime distribution F(t) is the probability
of the symptom to be expressed before the time t. With
large number samples, the survival function S(t) can be
thought as a fraction of fruits without symptoms as a
function of the time (Lima Junior et al., 2012). The
function λ(t) expresses the instantaneous risk of a fruit
to show symptoms at the time t, conditional on remaining
without symptoms until the time t:

The hazard function may be related to the survival
function by means of various functions, among them

, where f(t) is the probability density function

of the fruit to show symptom and S(t) is the probability

of a fruit to remain without symptoms for more than a
determined time.

In general, the survival analysis aims to build
estimators of functions used to determine the lifetime,
testing the dependence of these functions on covariates.
In this study, non-parametric and semiparametric
techniques of survival analysis were used.

b) The non-parametric technique

The main non-parametric technique in survival
analysis is the Kaplan-Meier estimator (Kaplan & Meier,
1958). In this method, the survival function is
recalculated after each fruit has expressed symptoms.
The basic idea is that the probability of a fruit to remain
without symptom for k or more periods, from the time
it entered the study, is the product of k survival rates for
each period (Akbar et al., 2009; Goel et al., 2010). It is
assumed that symptom expression is independent among
fruit and, consequently, the survival function is estimated
by the product of the probabilities to remain
asymptomatic until time t. The survival function S(t) is
estimated empirically by

where d
j
 is the number of fruits that showed symptom

in a given time t
j
 (j = 1, ..., k) and n

j
 is the number of

fruits at risk in the time t
j
, i.e., fruit that showed no

symptoms and were not removed from the study until
the instant immediately preceding t

j
.

The graph of S(t) against time (t) is called the survival
curve. The Kaplan-Meier estimates this curve from the
survival times, without having to assume a probability
distribution, even when there is right censored data in
the set of observations (Akbar et al., 2009). By
convention, the Kaplan-Meier plots are represented with
steps to indicate the time in which the terminal events
(symptoms) occur and signs (+) to indicate censored
observations (Carvalho et al., 2011).

The non-parametric approach of the survival analysis
using the Kaplan-Meier method allows statistical
significance tests to compare treatments (Akbar et al.,
2009; Goel et al., 2010), such as cultivars and fruit
inoculation times addressed in this study. In this context,
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the most used test in survival analysis is the log-rank
test, but should only be applied to compare groups
defined by categorical variables (Akbar et al., 2009) and
when the ratio of hazard functions of the compared
treatments is approximately constant, which is called
proportional hazards. The log-rank test evaluates the null
hypothesis that there is no difference between the
survival curves of each treatment, i.e., the probability of
a fruit to show symptoms at any point in time is the same
in all cultivars or at the time of inoculation. The
statistical test is calculated by:

where O and E are, respectively, the observed and
expected number of fruit with symptoms in each
treatment, in which the expected number is obtained by
assuming that the null hypothesis is true (Carvalho et
al., 2011). For the comparison of only two treatments,
the value of the log-rank test has a chi-square distribution
with one degree of freedom (Akbar et al., 2009).

The log-rank test can be extended to compare more than
two treatments, because in many situations, the relationship
between lifetime and several explanatory variables is
studied simultaneously, but it is necessary to categorize
continuous variables, as in Example 2. To circumvent
these difficulties and give the analysis more explanatory
power, parametric or semiparametric models are used.

c) The semi-parametric technique

Cox regression (Cox, 1972) is a proportional hazards
model. It is defined in McGilchrist & Aisbett (1991) as
the product of non-parametric and parametric components:

,

where λ (t) describes the risk of fruit express
symptoms over time t; λ

0
(t) is the baseline risk at time

t~ and g(xTβ) is the multiplicative effect of the
explanatory variables (cultivars, inoculation times)
combined in the xT function, which corresponds to the
transposed vector x. The non-parametric component λ

0
(t)

is not specified and is a non-negative function of time,
usually called baseline hazard function, because λ(t) =
λ

0
(t), in the absence of covariates (x = 0). The parametric

component is often expressed as:

,

where x is the vector of explanatory variables and â
is the vector of parameters to be estimated. The Cox
model is said of proportional hazards, because the ratios
between the risk rates for fruits of different cultivars or
inoculation times (explanatory variables) are assumed

to be constant in the follow-up time of the study (Carva-
lho et al., 2011).

The Cox regression model is characterized by β
coefficients, which measure the effects of covariates on
the hazard function. These quantities must be estimated
from the sample observations, in order to determine the
model. The regression procedure used to adjust the Cox
model consists of maximizing the partial likelihood
function for the parameter vector L(β):

,

where δi is a random variable indicating the
occurrence of the event (δ = 1) or censorship (δ = 0).

To consider the possible existence of association
among times to express symptoms in fruits of a same
tree, we evaluated a model with unobservable random
effect and shared by the individuals, which is called frailty
model. Using the classical Cox model, the inclusion of
random effects was done from an unknown random
variable (Z), which reflects the individual heterogeneity
or in this case, the fragility of each tree (McGilchrist &
Aisbett, 1991; Sargent, 1998), acting multiplicatively on
the baseline hazard. Therefore, for a fruit with covariates
represented by the vector x and random effect Z = z, the
proportional hazards model became

.

It is assumed that the frailty values are an independent
sample of the random variable Z with known probability
distribution, mean equal 1 and unknown variance
(Kosorok et al., 2004; Gorfine et al., 2006). To estimate
the variance of the random effect, it is necessary to select
a statistical distribution for the random variable Z. The
gamma distribution was selected and the frailty variance
was estimated, using the likelihood profile (EM) and the
Akaike information criterion (AIC). Alternatively, frailty
was assumed with log-normal distribution, where the
standard method of variance estimation is the
approximate restricted maximum likelihood (REML) and
also the AIC criterion.

The basic assumption for the Cox model is the
proportional hazards (Carvalho et al., 2011), which in
this work, was evaluated by the Schoenfeld residual plot
and the significance of the simple linear correlation
coefficient between the Schoenfeld standardized
residuals and time for each of the covariates.

Data analyses were performed using the package
‘survival’, version 2.36-12 (Therneau, 2012). R
Statistical System. The commands used in the analyses
are available at [http://www.leg.ufpr.br/papercompanions].
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RESULTS AND DISCUSSION

The survival curves estimated by the Kaplan-Meier
estimator in the two examples are shown in Figure 1,
separated by seasons and together. In both examples and
harvests, the probability of the fruits to remain without
brown rot symptoms is reduced with time in all
treatments, but the behavior is different for the cultivars
among the years. The differentiation of the cultivar effect
is not clear in the first harvest (Figure 1A), with less
than 50% probability of the fruits to remain without
symptoms after 60 hours from the inoculation. In the
second harvest (Figure 1B), there is formation of two

groups, one above 80% probability to remain without
symptoms until the end of the study (120 hours). In the
Example 2, the probability of fruit remain healthy is
above 85% in the first harvest (Figure 2D) and 75% in
the second harvest (Figure 2E).

The median time to symptom expression (Table 1)
could not be estimated for some cultivars (Example 1)
in the 2010/11 harvest and, together, between harvests
and in any treatment, in Example 2, because less than
50% of fruit showed symptoms. The low number of fruit
with symptoms of cultivars A, B and C explain the group
of cultivars with lower risk (Figure 1B). In both examples,

Figure 1. Estimates of the Kaplan-Meier curves for the survival functions S(t), describing the times for Monilinia fructicola symptom
expression in inoculated peaches. Figures A, B and C: cultivars evaluated in the harvests 2009/2010, 2010/2011 and jointly between
seasons, respectively; Figures D, E and F: inoculation time as a function of the full bloom evaluated in the harvests 2007/2008, 2008/2009
and tjointly between seasons, respectively.
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the value of the log-rank statistic for comparing the
Kaplan-Meier curves resulted in significant differences
(p<0.05) in both seasons and jointly, indicating
differences in the survival function among cultivars or
inoculation times. Although the non-parametric Kaplan-
Meier technique and the log-rank test do almost no
restrictions on the lifetime distribution, the methods are
limited because they do not allow to test the effect of
different covariates simultaneously (Colosimo & Giolo,
2006; Carvalho et al., 2011). As an example of this
limitation, Setti et al. (2010) determined the amount of
latent M. pinodes in peas, with the factor levels plant
age, cultivars, isolate, inoculum concentration and
duration of leaf wetness compared separately using the

log-rank test. In the same study, the authors used Cox
regression to accommodate all the explanatory variables
in the same model.

In the present work, the effects of cultivars and
inoculation times can be quantified by interpreting the
estimates of the Cox model parameters, which were
transformed in the hazards rates (Table 2). The hazard
function λ(t) provides the inverse of the information given
by the survival function λ(t), so that the larger the λ(t) for
a given time, the smaller the ë(t) (Oliveira & Rios-Neto ,
2007).

To adjust the Cox model, in both examples, the data
of the two harvests were grouped considering the harvest
as a stratification factor, which is to say that the baseline

Figure 2. Schoenfeld standardized residuals estimated for the semi-parametric Cox model as a function of times for each covariate in
the study. Plots A, B, C and D for evaluation of the effect of cultivars. Plots E, F, G and H for evaluation of the effect of inoculation time.
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hazard (ë
0
) is not the same in both years, as one may

suspect by observing the Kaplan-Meier curves (Figures
1A, 1B, 1D and 1E). In this case, the change from the
baseline hazard between seasons may be related to
different field conditions. The assumption of

proportional hazards can be evaluated in the survival
Kaplan-Meier curves (Figure 1), in which the distance
between them must be approximately constant all the
time. The correlation coefficient between wastes and the
time for each of the treatments and the overall model

Table 1. Number of fruits observed (n), number of fruit with Monilinia fructicola symptoms (e), median time for symptom expression
(t) as a function of cultivar (Example 1) or inoculation time (Example 2)

Season 1 Season 2 Joint

n e t n e t n e t

Example 1
Cultivar
A 36 35 36 55 5 - 91 40 -
B 20 20 24 23 2 - 43 22 84
C 20 20 42 32 5 - 52 25 -
D 23 21 36 25 19 48 48 40 42
E 40 40 24 42 28 42 82 68 24
log-rank 34.1 (p = 7.05 x 10-7) 78.2 (p = 4.44 x 10-16) 60.4 (p = 2.34 x 10-12)

Example 2

bloom
17 122 3 - 65 1 - 184 4 -
24 194 6 - 74 4 - 268 10 -
49 199 10 - 232 20 - 431 30 -
64 219 14 - 240 43 - 459 57 -
67 129 18 - 225 64 - 354 82 -
log-rank 20.9 (p = 3.36 x 10-4) 53.1 (p = 8.05 x 10-11) 72.7 (p = 6 x 10-15)

Season 1: 2009/2010 and 2007/2008 for examples 1 and 2, respectively; Season 2: 2010/2011 and 2008/2009 for Examples 1 and 2, respectively; t: median
time to symptom expression, measured in hours in example 1 and in days in example 2; - It was not possible to estimate the median time; log-rank: log-
rank association test.

Days after

Covariate

Table 2. Relative risk estimates for Monilinia fructicola symptom expression estimated by the semi-parametric Cox model, followed
by intervals with 95% confidence intervals and simple linear correlation coefficient between the Schoenfeld standardized residuals and
the time for the cultivar (Example 1) and fruit inoculation time (Example 2)

Parameter Estimates                          Fit Quality

Covariate Relative Risk                            CI (95%) rH
0

p-value

LL UL

Example 1
Cultivar
A - - - - -
B 0.82n.s. 0.496 1.362 0.0741 0.300
C 1.19n.s. 0.703 2.000 -0.0508 0.476
D 1.34n.s. 0.851 2.100 0.0010 0.988
E 3.82* 2.559 5.706 -0.0716 0.327
Global - - - - 0.368

Example 2
bloom
17 - - - - -
24 1.86n.s. 0.582 5.930 -0.1060 0.151
49 2.77n.s. 0.972 7.880 -0.0512 0.490
64 5.20* 1.883 14.370 -0.0401 0.589
67 9.60* 3.501 26.310 -0.0530 0.476
Global - - - - 0.514

- Not applicable.

LL and UL correspond to the lower and upper limits, respectively, of the confidence interval for the relative risk.

Days after
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(Table 2) are all close to zero and non-significant,
indicating that there is no evidence to reject the
assumption of proportional hazards. For the assumption
to be valid, the standardized Schoenfeld residuals plot
(against time) for each treatment level (Figure 2) should
be a horizontal line, because with zero inclination there
is no evidence against the proportional hazards
(Colosimo & Giolo, 2006). From the foregoing, there
is no treatment that shows a marked tendency, over time,
corroborating the assumption of proportionality of
hazards required by the Cox model.

In the Example 2, the observed peaches have the tree
as a natural grouping, which can lead to non-independent
times to symptom expression. The introduction of a
random effect for each tree (frailty) makes the estimates
of the covariate effects more consistent and increases
confidence in the estimates (Carvalho et al., 2011). None
of the methods of frailty estimation and distribution had
significant variance of the random effect of tree (Figure
3), suggesting that observations of different fruits from
the same tree can be considered independent for the time
of brown rot symptom expression. Otherwise, the
estimation method with better results for making
inferences would be chosen. The null hypothesis that the
effects of inoculation time are equal to zero was rejected
by the Wald test, in the four models, besides providing
similar estimates for the parameters. In the plots of
frailty confidence intervals for each tree (Figure 3),
ordered by the variance point estimate, there is no change
in the order of frailties among the models and all the
confidence intervals contain the value 1, indicating that
there is no tree with a differential effect on the disease.
It is noteworthy that trees with frailty above 1 tend to
express symptoms in fruits, with faster rate than under
the classical Cox model and those with frailties smaller
than 1 would have longer time until the symptoms.
Therefore, it was considered that the frailty models are
equivalent to the classical Cox model, which was used
to estimate the effect of inoculation time on the
incidence of brown rot.

Regarding the relative risk (Table 2), if the value 1 is
in the confidence interval (CI), it indicates no evidence
that the risks of expressing symptoms differ between
the treatments and of that considered standard, in this
case the cultivar A in example 1, for having larger number
of fruit, and in example 2, the inoculation time at 17
days after full bloom, for being the lowest value in the
range. Thus, the relative risks of expressing symptoms
in the cultivar B, or at 24 days after full bloom, do not
differ significantly from the standards. However, fruits
of the cultivar E and the inoculation time at 67 days after
full bloom have 3.82 and 9.60 times more likely of
express to symptoms than the standards, respectively. It

is noteworthy the good accuracy of the estimates
associated with risk reasons in Example 1, because of
the narrow confidence intervals, which does not occur
in Example 2.

Many studies in the literature use only one evaluation
date to compare treatments for post-harvest disease
control in fruit. Generally, the data are subjected to
analysis of variance after transformation of the original
variable to meet the assumptions of the analysis. Moreira
& May-De Mio (2006) evaluated the effect of
antagonistic fungi and chemicals on the control of brown
rot in post-harvest peaches, considering only the mean
incidence three days after incubation. The effects of UV-
C irradiation and the interval between treatment and
inoculation on the incidence of brown rot in peaches
were evaluated separately, at three and four days of
storage, in a factorial design and examining the data by
analysis of variance and mean comparison test, in
Bassetto et al. (2007). Sestari et al. (2008) evaluated
the effect of physical and chemical treatments on the
percentage of rot peaches in nine daily assessments, using
analysis of variance for comparison of treatments in each
evaluation. Villarino et al. (2010) evaluated the incidence
of brown rot in post-harvest at seven days of incubation
in peaches from three orchards and three consecutive
harvests, in samples collected from ten trees (ten fruits
per tree). The authors reported only the incidence on
day seven, without comparing orchards, harvests or
consider a possible tree effect. Similarly, Pinho et al.
(2010) evaluated the incidence of Colletotrichum musae
in nine banana genotypes inoculated with six inoculum
concentrations in two evaluation dates, in a factorial
design allowed by variance.

In this paper we presented the most commonly used
techniques of survival analysis, as well as the application
in two real problems, which allowed the illustration of a
first approach to time-occurrence data. The presented
techniques have extensions or different approaches to
more complex problems. The occurrence of an event
prior to observation in the individual (left censoring) or
the occurrence within an interval (interval-censored)
require different approaches of those presented here
(Scherm & Ojiambo, 2004; Carvalho et al., 2011).
Furthermore, when the proportional hazards assumption
in the Cox model is not met, could be used models with
time-dependent covariates, which are called accelerated
life models (Raman & Venkatesan, 2012). In the case of
continuous covariates, such as the inoculation time in
the Example 2, the relationship between the covariate
and the associated risk can be estimated, respecting the
functional form for covariates (Gray, 1994) with non-
parametric functions, such as local linear regression
(lowess) and spline functions (Carvalho et al., 2011).
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CONCLUSIONS

In studies to assess the incidence of diseases in post-
harvest peaches, the joint analysis of experiments with
basal effect varying between harvests, the evaluation of
a grouping factor (trees) as a random effect and the fit
of the semi-parametric Cox model are tools of the
survival analysis that allow making inferences correctly,
while respecting the nature of the variable.
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