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Abstract

A mathematical model for the purpose of analysing the dynamic of the
populations of infected hosts anf infected mosquitoes when the populations of
mosquitoes are periodic in time is here presented. By the computation of a
parameter λ (the spectral radius of a certain monodromy matrix) one can state
that either the infection peters out naturally) (λ ≤ 1) or if λ > 1 the infection
becomes endemic. The model generalizes previous models for malaria by
considering the case of periodic coefficients; it is also a variation of that for
gonorrhea. The main motivation for the consideration of this present model was
the recent studies on mosquitoes at an experimental rice irrigation system, in
the South-Eastern region of Brazil.

Malaria, epidemiology. Culicidae. Population dinamics. Ecology, vectors.

Resumo

Desenvolveu-se um modelo matemático para analisar a dinâmica das popu-
lações de indivíduos e mosquitos infectados quando as populações de mosqui-
tos são periódicas no tempo. Pela determinação de um parâmetro λ (o raio
espectral de uma matriz de monodromia) pode-se estabelecer que a infecção
termina naturalmente (λ ≤ 1) ou se λ > 1 que a infecção torna-se endêmica. O
modelo generaliza, para o caso de coeficientes periódicos, modelos anteriores
para malária; como também é uma variação de modelo para a gonorréia. A
principal motivação para a consideração do modelo proposto foram os recen-
tes estudos sobre mosquitos numa estação experimental de arroz irrigado, na
região Sudeste do Brasil.

Malária, epidemiologia. Culicidae. Dinâmica populacional. Ecologia de
vetores.
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INTRODUCTION

A model was constructed for the purpose of
analysing the dynamic of the populations of infected
hosts and infected mosquitoes, when the populations
of mosquitoes are periodic in time. A deterministic
estimator λ was established to predict whether the
infection will peter out naturally (when λ ≤ 1) or, if
λ > 1, the infection will become endemic (see
Appendix). In the model, incubation and immunity
are neglected.

The special case of one patch of hosts and two
patches of mosquitoes are considered and the main
results concerning the dynamics are given (see
Theorems A and B). The estimator λ is the spectral
radius of the monodromy matrix C, corresponding
to the periodic matrix A(t) of the linear system
associated with the complete system (1). It is a non
trivial matter to compute the matrix C as also to
discover its spectral radius λ.

The case of one patch of hosts and one (resp. two)
patch(es) of mosquitoes is studied and it is assumed
that the populations of mosquitoes behave according
to periodic step functions. The monodromy matrix
C is the product of exponentials of computable
matrices; moreover, using suitable changes of
coordinates, it was possible to obtain explicitly all
the exponentials that appear in the expression of C,
so that its spectral radius can be easily determined.

The general case (system (*)) that can be used
for any number of patches of hosts and mosquitoes
is presented in the Appendix.

The main motivation for the construction of the
model here presented as well as the applications
made was the recent studies by Forattini et al.4 on
mosquitoes at an experimental rice irrigation
system5, 6, 7, 8, 9.

The constant and periodic coefficients that appear
in the equations of the mathematical model should
be determined experimentally. If they are available,
reasonable predictions about possible mosquito-
borne diseases that can appear at irrigation systems
can be made.

ONE PATCH OF HOSTS AND TWO
PATCHES OF MOSQUITOES

A deterministic model is here presented with a
view to describing the dynamic of the population of
hosts and mosquitoes infected by malaria when there
is a homogeneous group of hosts with a constant
population H and two groups of mosquitoes of

Rev. Saúde Pública, 30 (3), 1996 219Periodic dynamic system
Oliva, W. M. & Sallum, E. M.

dS (H −  S)
= − εS + (b'

1
f
1
I

1
 + b'

2
f
2
I

2
)

dt S
dI

1
b

1
f
1
S

= − δ
1
I

1
 + (V

1 
− I

1
)

dt VI
dI

2
b

2
f
2
S

= − δ
2
I

2
 + (V

2 
− I

2
)

dt V
2

dS (H −  S)
= − εS + (b'

1
f
1
I

1
 + b'

2
f
2
I

2
)

dt H
dI

1
b'

1
f
1
S

= − δ
1
I

1
 + (V

1 
− I

1
)

dt H
dI

2
b'

2
f
2
S

= − δ
2
I

2
 + (V

2 
− I

2
)

dt H

different types i = 1, 2, with population V
i 
= V

i
(t)

periodic in the time t with periodic T > 0.
Let us considere the following system of ordinary

differential equations:

where:

H : population of hosts;
V

i 
= V

i
(t) = V

i
(t + T) : population of mosquitoes at

instant t, periodic of periodic T > 0;
S = S(t) : population of infected hosts at instant t;
I

i 
= I

i
(t) : population of infected mosquitoes of

type i at instant t;
δ 

i
 : death rate of mosquitoes of type i;

ξ : cure rate of sick hosts;
b’

i
  : bites by one mosquito of type i on hosts per

unit of time;
b

i
 = b

i
(t) : bites by mosquitoes of type i taken on

one person, per unit of time, which is a periodic
function with period T > 0;

f ’
i
I

i
 : population of infected mosquitoes of type i

which are infective;
f
i
S : population of infected hosts which are

infective.

Since b
i
(t)H = b’

i
V

i
(t), the system above can be

written as:

(1)

where H, ξ, b’
i
, δ

i 
, f

i 
 are positive constants and V

i
  = V

i
(t)

are continuous periodic functions of period T > 0.
That system (1) corresponds to a generalization

of the Ross model (Lotka12) and of that of Dye-
Hasibeder2, 3 for malaria. Moreover it is also a
variation of the Aronson-Mellander1 model that
describes the dynamics of gonorrhea.

The main results A and B, stated below, for system
(1), are special cases of general results proved in the
Appendix.
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This describes the dynamic of malaria when we
have one group of mosquitoes with a periodic
population V = V(t) interacting with a homogeneous
group of individuals of a fixed population H. It will
be shown that for V = V(t) periodic with period T =
12 (months) with V(t) = V

i
 positive and constant, i <

t < (i + 1), i = 1, ..., 12, the eigenvalues of the
fundamental solution of the associated linear system
can be computed directly showing their dependence
on the data of system (2) that is, on the parameters ξ,
δ, H, b’, f and on V =

 
V(t).

Let us write (2) in the following form

For each i = 1, ..., 12 one considers ø
i
(t) = e ,

the fundamental solution of

(2)’

If we make U = − δS −  b’fI, (2)’ becomes

(3)
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i
 = MA

i
M− 1, with M =
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(4) ø
i
 (1) = e = Me M− 1.
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d 
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So from (2)’ we have

(6) S − (trace A
i
)S + (det A

i
)S = 0

and so, from (6)

(7) S(t) = αe + βe

where the are the real eigenvalues of A(i) = A
i
,

j = 1, 2, i = 1, ..., 12. From (3),

S = (trace A
i
)S −  U
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1
(t), I

2
(t)) be a non zero solution of (1) such

that  0 ≤ S(t
0
) ≤ H, 0 ≤ I

i
(t

0
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i
 (t
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), i = 1, 2, and some

t
0
 ≥ 0. Then 0 < S(t) < H, 0 < I

i
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i
(t), i = 1, 2, for all

t > t
0
.

We may write (1) in a matricial form

ẏ = A(t)y + N(t, y), y = (S, I
1
, I

2
), where

Let ø(t) be the matricial solution of  ẏ = A(t)y
such that ø(0) = I

d
. The monodromy matrix C = ø(T)

is positive (Aronson, Mellander1, Lemma 2) and, by
Perron’s theorem (Gantmacher10), it has a simple
positive eigenvalue λ such that

λ = max{Reλ
i
 : det(C − λ

i
I

d
) = 0}.

Theorem B
There are two possibilities for the non zero solutions
(S(t), I(t)) = (S(t), I

1
(t), I

2
(t)) of  (1) such that for some

t
0
 ≥ 0, 0 ≤ S(t

0
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i
 (t

0
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(t

0
), i = 1, 2:

a) If λ ≤ 1 then (S(t), I(t)) tends to the zero solution
as t  → ∞ ;

b) If λ > 1, then there exists a unique T -periodic solution
(S*, I*) such that for any t > t

0
 we have 0 < S*(t) < H

and 0 < I*
i
 (t) < V

i
(t), i  = 1, 2. In this case (S(t) −

S*(t), I(t) - I* (t)) tends to zero as t → ∞ .

In other words, Theorem B says that the infection
peters out naturally when λ ≤ 1; or, if λ > 1, the
infection becomes endemic if the initial number of
infected cases in at least one group is positive.

As usual, it is a non trivial matter to obtain the
matrix C = ø(T) and an expression for λ.

THE PERIODIC POPULATIONS OF
MOSQUITOES AS STEP FUNCTIONS

One patch of hosts and one patch of
mosquitoes

Let us consider the following system:
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For each i  = 1, 2, ..., 12, one considers ø
i
 (t) = etA(i)

which is the fundamental solution of

(9)
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2
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1
e and then
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Finally we are able to obtain the eigenvalues of
ø(T) that are those of the following matrix:

One Patch of Hosts and Two Patches of
Mosquitoes

In this section we consider system (1) with δ
1
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δ
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 (t) as a periodic step function, which

is positive and constant during the month i, i  = 1, 2,
..., 12, and periodic with period equal to T = 12
(months). We write
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For x = (x
1
, ..., x

n
) and y = (y

1
, ..., y

n
) we denote x

≤ y (x  < y) if, for all i, x
i 
 ≤ y

i
 ( x

i 
 < y

i
 ). With the same

arguments used in Aronson, Mellander1 one can state:

I) If y(t) and z(t) are non-zero solutions of (*) such that
for some t

0
 ≥ 0 we have 0 ≤ y(t

0
) ≤ z(t

0
) ≤ c(t

0
) with

y(t
0
) ≠ z(t

0
), then 0 < y(t) < z(t) < c(t) for all t > t

0
.

For fixed t
0
 ≥ 0 one considers the map f

   
(y

0
) = y(t

0

+ T, t
0
, y

0
) for 0 ≤ y

0
 ≤ c(t

0
). When t

0
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sequence of positive numbers c(0) = c
0
 > c

1
 > c

2
 > ... >

c
n
 > ... > 0, where c

n
 = f

0 
(c

n- 1
) and Q = lim c

n
 ≥ 0.

When Q = 0 we have lim y(t, t
0
, y

0
) = 0 for 0 ≤ y

0
 ≤ c(t

0
).

If Q ≠ 0 we have y(t) = y(t, 0, Q) positive, periodic with
period T > 0 and, by I), Q > 0.

Let Φ(t) the matrix solution of ẏ = A(t)y, Φ(0) =
I

d
; since A(t) = (a

ij
(t)) is irreducible with a

ij
(t) ≥ 0 for

i ≠ j, then the matrix C = Φ(T) is positive and so, by
Perron's theorem, it has a simple positive eigenvalue
λ = max{Reλ

i
; det(C − λ

i
I

d
) = 0}.

As in theorem 1 of Aronson, Mellander1 one has
analogously:

II) If λ < 1, there exists K > 0 such that | y(t)| ≤
Kλ |y(t

0
)| for all t ≥ t

0 
≥ 0 and any solution

y(t) = y(t, t
0
, y

0
) of (*) such that 0 ≤ y

0
 ≤ c(t

0
).

Consider now the case λ > 1. Let E(t
0
) = {y ∈ IRn

: 0 ≤ y ≤ c(t
0
)}, ω > 0 eigenvector of Ct corresponding

to λ, v(t
0
)t = ωtΦ(t

0
)− 1 and Eθ(t0

) = {y ∈ E(t
0
) : v(t

0
)t y

≥ θ}. We claim that for θ > 0 sufficiently small we
have f

   
(Eθ(t0

)) � Eθ(t0
) where 0 ≤ t

0
 ≤ T. In fact

v(t
0
)tf

   
(y) =  λv(t

0
)ty + ϕ(t

0
, y) where

ϕ(t
0
, y) = λwt∫ Φ− 1 (s) N(s, y(s, t

0
, y))ds ; and

v(t
0
)tf

   
(y) − v(t

0
)ty = (λ − 1)v(t

0
)ty + ϕ(t

0
, y) ≥ (λ −

1)vty + ϕ(t
0
, y), where 0 < v ≤ v(t

0
) for all t

0 
∈ [0, T].

Since

is continuous on the compact set

{(t
0
, y) | t

0
 ∈ [0, T], y ∈ E(t

0
)},

then there exist δ  > 0 and N > 0 such that v(t
0
)tf

  
(y)

≥ v(t
0
)ty + N | y | for t

0 
∈ [0, T] and | y | ≤ δ.

Using the Brower fixed point theorem (Hönig11) one
concludes that f

   
 has a fixed point in Eθ(t0

).

Then

eB(i) 0
eA(i) = ,

* e− δ

and also

eB(12)eB(11) ...eB(1) 0
M−  1Φ(T)M = .

* e−  12δ

The eigenvalues of Φ(T) are e− Tδ  together with
the eigenvalues of eB(12)eB(11)...eB(1). So we only need
to compute eB(i) for i = 1, ..., 12. For that one has to
solve the system

or, equivalently, to solve the second order equation

(13) S − TrB(i)S + detB(i)S = 0.

Since the characteristic roots of (13) are the
eigenvalues of B(i), that is,

δ + ξ 1
λi

j
 = λ

j
(i) = − ±    (δ − ξ)2 + 4ϕ(i),

2 2

j = 1, 2, and i = 1, ..., 12, then, as we did in section 3.1,
eB(i) is given by the second member of equality (8).

APPENDIX
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be positive continuous periodic functions of period
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periodic functions of period T > 0 such that  A(t) is
an irreducible matrix (Gantmacher10), for all t.
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are bounded functions (see Aronson, Mellander1, Th. 2).
Given a compact set K � E(t

0
), one considers a

point  x
0
, 0 < x

0 
<

 
c(t

0
), such that x

0 
< y(t

0 
+ T, t

0
, y

0
) <

c(t
0
) for all y

0 
∈ K. Since there are constants M(x

0
) >

0 and N > 0 such that for all y
0 
∈ K we have

|y(t, t
0
, y

0
) − y(t, t

0
, Q)| ≤ M(x

0
)e− a(t −    ), t ≥ t

0 
+ T

and

|y(t, t
0
, y

0
) − y(t, t

0
, Q)| ≤ N, t

0
 ≤ t ≤ t

0 
+ T,

then one has the following result.

III) For λ > 1, system (*) admits a unique non zero
periodic solution y(t, t

0
, Q), which has period T,

and a constant a > 0 such that for each
compact set K � E(t

0
) there corresponds a

constant M
K
 > 0 and we have

| y(t, t
0
, y

0
) − y(t, t

0
, Q) | ≤ M

k
e− a(t −    ) for all t ≥ t

0 
≥

 
0.

Moreover, as in theorem 3 of Aronson, Mellander1

we state:

IV) For λ = 1 there is a constant L > 0 such that for
any solution y(t, t

0
, y

0
) = y(t) of (*) with  0 ≤ y

0 
≤

c(t
0
), t
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≥

 
0, we have

| y(t) | ≤ provided t ≥ t
0
.

For any two solutions y(t) = y(t, t
0
, y

0
) and z(t) =

y(t, t
0
, z

0
) of (*) such that 0 < y

0
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< c(t

0
), one has

D+u(t) ≤ − (u − 1) min(ψ
z
, ψ

y
) < 0 for t ≥ t

0 
≥ 0

where u(t) = max {max { , }} and ψ(y) =
k

(see Aronson and Mellander1; Lemma 5, [1]).
So, one can conclude that for θ > 0 sufficiently

small, f
  
 : Eθ(t0

) → Eθ(t0
) has only one fixed point Q,

and then  f
  
 : E(t

0
) → E(t

0
) has only one fixed point Q

> 0, besides the origin, that corresponds to a periodic
orbit of period T > 0 for system (*).

For y(t) = y(t, t
0
, y

0
) with 0 ≤ y

0 
≤

 
c(t

0
) and z(t) =

y(t, t
0
, Q) we have

u(t) − 1 ≤ eu(   ) (u(t
0
) − 1)e− p(t)e− a(t −    )

where a = ψ
z
(t)dt and p is continuous and T-

periodic, T > 0. So, for each  x
0
 > 0 sufficiently close to

the origin, there exists a constant M(x
0
) > 0 such that

 |y(t, t
0
, y

0
) − y(t, t

0
, Q) | ≤ M(x

0
)e− a(t −  )

for all y
0
, x

0 
≤ y

0 
≤

 
c(t

0
) and all t ≥ t

0
 ≥ 0 because the c

k
(t)

y
k

z
k

z
k

y
k

j = 1
nmin ∑ β

jm
(t)y

j
(t)

1 ≤ m ≤ n

t
0

t
0

t
0

T

∫
1

T
0
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