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ABSTRACT

An important aspect of tropical medicine is analysis of geographic aspects of risk of disease transmission, which for lack of detailed
public health data must often be reduced to an understanding of the distributions of critical species such as vectors and reservoirs.
We examine the applicability of a new technique, ecological niche modeling, to the challenge of understanding distributions of such
species based on municipalities in the State of São Paulo in which a group of 5 Lutzomyia sandfly species have been recorded. The
technique, when tested based on independent occurrence data, yielded highly significant predictions of species’ distributions;
minimum sample sizes for effective predictions were around 40 municipalities.
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RESUMO

Um aspecto importante da medicina tropical é a análise de aspectos geográficos relacionados com o risco de transmissão de
doenças. Devido à ausência de dados detalhados de saúde pública, estas análises são freqüentemente reduzidas à compreensão da
distribuição de espécies críticas como vetores e reservatórios. Neste trabalho, é examinada a aplicabilidade de uma nova técnica,
a modelagem de nicho ecológico, no estudo da distribuição destas espécies nos municípios do Estado de São Paulo, onde um grupo
de 5 mosquitos do gênero Lutzomyia foi encontrado. A técnica foi testada em conjuntos de dados independentes, resultando em
previsões altamente significativas; a amostragem mínima para se obter previsões eficazes foi de cerca de 40 municípios.

Palavras-chaves: Modelagem de nicho ecológico. Genetic algorithm for rule-set prediction. Lutzomyia. Leishmaniose.
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Great efforts are expended to understand the distributions of
animal species relevant to disease systems, particularly vectors
and reservoirs for particular diseases. For cutaneous leishmaniasis,
although reservoirs remain poorly known24, much energy has been
dedicated to documentation of distributions of vector species,
sandflies in the genus Lutzomyia4 6 9, which are related to risk of
disease transmission5. These efforts accumulate lists of sites or
municipalities from which vector species are known to provide an
idea of geographic distributions of important species.

These maps of known occurrences of species, however, present
a biased picture of species’ geographic distributions, mixing the

ecological needs and biogeography of a species with the geography
of sampling of the species10 16. In this sense, the known distribution
of a species provides a view of its distribution that is at best
incomplete, if not actually misleading. A critical step towards
improving this picture is one of inference into unsampled and
undersampled areas; this inference can be achieved via models of
the ecological niche of species of interest22.

In this contribution, we explore the potential of ecological
niche modeling techniques for interpolating into unsampled areas
for understanding vector species’ geographic distributions. We use
multiple subsamples of available distributional points to approach
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the question of how much sampling is needed to assemble a good
distributional understanding for a vector species29. In broader terms,
we present the application of a method that can be generally useful
in characterizing geographic distributions of vector and reservoir
species based on incomplete or imprecise existing data.

MATERIAL AND METHODS

Input occurrence data.  Ecological niche models were based on 366
unique occurrence records for the 5 most dominant Lutzomyia species
in São Paulo state, Brazil, with overall sample sizes ranging 40-112 points
per species. Distributional data for these species (Lutzomyia fischeri,
L. intermedia, L. migonei, L. pessoai, and L. whitmani) were drawn
from previous, intensive sampling in municipalities across the state6. All
occurrence points - perforce given how the data were collected and also
to mimic many of similar datasets available in other similar situations -
were georeferenced to the centroids of the municipalities. To provide
independent data sets for model building (input data) and model testing
(extrinsic test data), and to assess sample size needs for modeling these
species in this region, we randomly selected municipalities to create
input training data sets representing 10%, 30%, 50%, 70%, and 90% of
available points - remaining points were used for testing model quality.

Ecological niche modeling. Ecological niches were modeled
using the Genetic algorithm for rule-set prediction (GARP)25 26 27,
a machine-learning software package now available for public
download (http://www.beta.lifemapper.org/desktopgarp/). In
general, the procedure focuses on modeling ecological niches (the
conjunction of ecological conditions within which a species is able
to maintain populations without immigration)8. Specifically, GARP
relates ecological characteristics of known occurrence points to
those of points randomly sampled from the rest of the study region,
seeking to develop a series of decision rules that best summarize
those factors associated with the species’ presence25 26 27.

Within GARP, input data are further divided randomly and evenly
into training and intrinsic testing data sets. GARP works in an iterative
process of rule selection, evaluation, testing, and incorporation or
rejection: a method is chosen from a set of possibilities (e.g., logistic
regression, bioclimatic rules), applied to the training data, and a rule
is developed or evolved25 26 27. Predictive accuracy is then evaluated
based on 1250 points resampled from the test data and 1250 points
sampled randomly from the study region as a whole. Rules may evolve
by a number of means that mimic DNA evolution: point mutations,
deletions, crossing over, etc. The change in predictive accuracy from
one iteration to the next is used to evaluate whether a particular rule
should be incorporated into the model, and the algorithm runs either
1000 iterations or until convergence.

All modeling in this study was carried out on a desktop
implementation of GARP that offers much-improved flexibility in
choice of predictive environmental/ecological GIS data coverages.
In this case, we used 15 data layers summarizing aspects of
topography [elevation, slope, aspect, flow accumulation, flow
direction, and topographic index (tendency to pool water) from the
U.S. Geological Survey’s (http://edcdaac.usgs.gov/gtopo30/hydro/
) Hydro-1K data set]; aspects of climate including daily temperature

range, mean annual precipitation, maximum, minimum, and mean
annual temperatures, vapor pressure, and wet days (annual means
over the period 1960-1990 from the Intergovernmental Panel on
Climate Change (http://www.ipcc.ch/); and aspects of land use
and land cover including an overall land cover classification and a
tree cover map (based on AVHRR satellite imagery for 1992-1993,
University of Maryland Global Land Cover Facility (http://
glcf.umiacs.umd.edu/index.shtml) for an area consisting of all of
São Paulo state, Brazil. GARP’s predictive abilities have been tested
and proven under diverse circumstances1 2 7 12 13 14 15 17 18 19 21 22 23 28 29.

We developed multiple replicate models of each species’ ecological
niche. Unlike previous applications, which either used single models
to predict species’ distributions12 13 or summed multiple models to
incorporate model-to-model variation23, we used a new procedure3 for
choosing best subsets of models. The procedure is based on the
observations that 1) models vary in quality, 2) variation among models
involves an inverse relationship between error of omission (leaving
out true distributional area) and commission (including areas not
actually inhabited), and 3) best models (as judged by experts blind to
error statistics) are clustered in a region of minimum omission of
independent test points and moderate area predicted (an axis related
directly to commission error). The relative position of the cloud of
points relative to the two error axes provides an assessment of the
relative accuracy of each model. To choose best subsets of models, we
1) produced replicate models until we had produced 20 models with
omission error of <5% based on independent intrinsic test points, 2)
calculated the median area predicted present among these minimum-
omission points, 3) identified the 10 models closest to the overall
median area predicted, and 4) summed these ‘best subsets’ models.

Projection of the rule-sets for these models back onto geography
provided distributional predictions for each species. We tested model
quality via the independent extrinsic test sets of occurrence points in
two ways: one using all available test data points to permit best estimation
of levels of omission error, and the other using yet another random
subsetting down to 10% of the total occurrence points available for the
species to avoid differences in statistical power owing to different
sampling densities.The c2 tests were used to compare observed success
in predicting distributions of test points with those expected under
random models (proportional area predicted present provides an estimate
of the proportion of occurrence points correctly predicted were the
prediction to be random with respect to the distribution of the test
points). Predicted presence was conservatively defined as the area in
which all best-subsets models agreed in predicting presence.

RESULTS AND DISCUSSION

Ecological niche models and predictions of geographic
distributions of species predictably improved in their performance
as training sample size increased. For example, in models for
Lutzomyia fischeri, 1) omission error was quite high at 10% training
data density, moderate at 30% training data density, and lower
thereafter; and 2) statistical significance was unevenly related to
sample size and omission error (Figure 1). Results were similar
across all species, with low model significance at the smallest
training sample sizes; interestingly, model significance was also
lower at the largest training sample sizes (Table 1 and Figure 1).

Peterson AT et al



12

Figure 1 - Summary of entire spectrum of training data density for model-building for Lutzomyia fischeri, showing model improvement in terms
of avoidance of omission (X’s indicate models that do not omit heavily) and in terms of model significance (- no significance, + 0.1 > P > 0.05,
* 0.05 > P > 0.01, ** 0.01 > P > 0.001, *** P < 0.001).

  Pewrcent of points Number of points Significance No omission Result

 for building models for building models (all test points / 10% for test)

10

30

50

70

90

7

22

37

52

67

*** / -

- / -

- / -

** / *

++ / +

X

X

X

Table 1 - Summary of results of predictions for five Lutzomyia species across five data densities (10-90% of available
occurrence data for training).

                         Training

Species 10% 30% 50% 70% 90%

Lutzomyia fischeri 95.3 ***/- 72.0 -/- 55.6 -/- 36.4 **/* 42.9 +/+

Lutzomyia intermedia 85.4 ***/** 46.9 ***/- 28.6 ***/* 38.2 ***/* 41.7 -/-

Lutzomyia migonei 82.8 **/- 69.6 ***/- 36.4 ***/* 35.0 +/- 28.6 +/+

Lutzomyia pessoai 100 -/- 85.7 **/*** 55.0 +/* 50.0 +/- 66.7 -/-

Lutzomyia whitmani 98.5 -/- 64.2 ***/- 31.6 ***/** 26.1 **/* 37.5 +/+

Numbers presented are percent omission values, as measured with independent test data (-) no significance, (+) 0.1 > P > 0.05, * 0.05 > P >
0.01, ** 0.01 > P > 0.001, *** P < 0.001).
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Inspecting levels of omission error across different data densities for
each species, trends are remarkably coincident (Figures 2 and 3). At
smallest training sample sizes (<10 points), all models for all species
showed high omission error rates (80-100%). In each case, at intermediate
sample sizes (40-50 points), omission rates reached minima, and were
relatively constant or slightly higher thereafter (Figure 3).

Overall, model predictivity was maximal at intermediate sample
sizes, when both training and test data sample sizes are substantial,
and neither is small. When training sample sizes are too small,
model parameters are not estimated accurately. On the other hand,
when testing sample sizes are small, statistical power is too low to
detect good models. These results coincide with the results of
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Figure 2 - Comparison of models for Lutzomyia species in São Paulo State based on 10% of points for training models versus 90%
of points for training models.

10% for training 90% for training

previous tests of the effects of sample size on model predictivity13 29; in the
present case, sample sizes considered adequate (40-50 unique points)
were somewhat higher than in previous studies, probably owing to the
imprecise georeferencing involved. More generally, the unreliability and
unpredictable behavior of significance tests regarding model predictions
coincides with the results of previous comparative tests17.

The asymptotes of the omission error X training sample size
curves are relatively high - that is, even the best models are still
plagued by error rates of 30-40%. This seemingly poor performance
results from the use of municipality centroids for georeferencing
occurrence records - a sizeable proportion of centroids may fall in
areas of predicted absence, even though some portion of the
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Figure 3 - Summary of model quality as a function of training point
sample size for Lutzomyia species in São Paulo State. Model quality is
measured as proportional omission of independent test points.

municipality is predicted present. Hence, given this imprecise level of
georeferencing, a certain base level of omission error is to be expected.

On a much more positive note, this study demonstrates that
moderate sampling densities - at sample sizes that likely characterize
many epidemiological surveys of vector or reservoir distributions - are
sufficient to produce excellent summaries of species’ geographic
distributions. That is, even with moderate sample sizes, it is possible to
interpolate into unsampled or poorly sampled areas, and produce reliable
and predictive maps of species’ geographic distributions. This capacity
permits development of geographic predictions for poorly known species
important in understanding the geography of disease systems, which
have important implications for human health issues11.
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