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ABSTRACT
Introduction: Purpureocillium lilacinum is emerging as a causal agent of hyalohyphomycosis that is refractory to antifungal 
drugs; however, the pathogenic mechanisms underlying P. lilacinum infection are not understood. In this study, we investigated 
the interaction of P. lilacinum conidia with human macrophages and dendritic cells in vitro. Methods: Spores of a P. lilacinum 
clinical isolate were obtained by chill-heat shock. Mononuclear cells were isolated from eight healthy individuals. Monocytes 
were separated by cold aggregation and differentiated into macrophages by incubation for 7 to 10 days at 37°C or into dendritic 
cells by the addition of the cytokines human granulocyte-macrophage colony stimulating factor and interleukin-4. Conidial 
suspension was added to the human cells at 1:1, 2:1, and 5:1 (conidia:cells) ratios for 1h, 6h, and 24h, and the infection was 
evaluated by Giemsa staining and light microscopy. Results: After 1h interaction, P. lilacinum conidia were internalized by 
human cells and after 6h contact, some conidia became infl ated. After 24h interaction, the conidia produced germ tubes and 
hyphae, leading to the disruption of macrophage and dendritic cell membranes. The infection rate analyzed after 6h incubation 
of P. lilacinum conidia with cells at 2:1 and 1:1 ratios was 76.5% and 25.5%, respectively, for macrophages and 54.3% and 
19.5%, respectively, for cultured dendritic cells. Conclusions: P. lilacinum conidia are capable of infecting and destroying both 
macrophages and dendritic cells, clearly demonstrating the ability of this pathogenic fungus to invade human phagocytic cells.
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Purpureocillium lilacinum (Thom) Luangsa-ard, Houbraken, 
Hywel-Jones & Samson, comb. nov 2011, previously called 
Paecilomyces lilacinus (Thom) Samson 1974 is a fi lamentous, 
asexual hyaline fungus. The new genera Purpureocillium was 
established after a recent molecular and morphological study 
suggested that P. lilacinus was not related to the Paecilomyces genus1.

Purpureocillium lilacinus is widely considered as a 
cosmopolitan, saprophytic fungus frequently detected in the 
environmental soil samples; it can cause deterioration of 
grains, food, and paper. The fungus can also be recovered 
from contaminated skin creams and lotions used clinically, and 
from clinical materials such as catheters and plastic implants. 

Currently, it is considered an important opportunistic pathogen 
in both immunocompromised and immunocompetent hosts2,3. 
It has been found parasitizing insects and nematodes, and hence, 
some researchers have described a potential use of this fungus as 
a biocontrol agent4. It can also cause infection in other animals 
such as cats5.

Purpureocillium lilacinum is one of the causal agents of 
hyalohyphomycosis, a mycotic infection caused by a group of 
fungi including Acremonium spp, Beauveria spp, Fusarium spp, 
Scopulariopsis spp, and Paecilomyces spp. In this condition, 
the fungi are observed in the affected tissues as septate hyphae 
with pigmentless cell walls6,7. Most clinical manifestations of 
P. lilacinum hyalohyphomycosis are associated with ocular, 
cutaneous, or subcutaneous infections and the major risk 
factors are organ transplantations, corticosteroid therapy, 
primary immunodeficiency, diabetes mellitus, acquired 
immunodefi ciency syndrome, intraocular lens implantation, 
and ophthalmic surgery2,3,8,9. No effective treatment has 
been established for this infection, and antifungal agents, 
including amphotericin B, fl ucytosine, and fl uconazole, have 
often provided unsatisfactory results3. However, some of the 
so-called new azoles, such as posaconazole, ravuconazole, 
and voriconazole, have recently demonstrated good activity 
against P. lilacinum in vitro10. In many cases, a combination of 
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METHODS

antifungal agents or application of these agents together with 
surgical treatment was necessary to induce remission2,10.

An in vivo study using an animal model has demonstrated that 
P. lilacinum virulence is generally low, as evidenced by the high 
inoculum (106-107 conidia per animal) and immunosuppression 
required to establish a successful infection3. On the other hand, 
we have previously shown that both immunocompetent and 
immunosuppressed mice that intravenously received about 104 
P. lilacinum conidia developed the infection: fungal structures 
were observed and fungal cells were recovered from different 
organs2,11. These data indicate the need of additional studies to 
better comprehend the real invasive capability of P. lilacinum.

The antifungal immune response, although exhibiting certain 
species-specifi c variations, is generally initiated by phagocytic 
cells. Neutrophils, macrophages, and monocytes are important 
antifungal effector cells. Additional effector cells, including 
neutrophils and monocytes, are recruited to the sites of infection 
by infl ammatory signals such as cytokines, chemokines, and 
complement components12.

Professional antigen-presenting cells (APCs) belong to 
the host innate immune system and are represented mainly by 
macrophages and dendritic cells (DCs). These cells capture and 
process antigens, express lymphocyte costimulatory molecules, 
migrate to lymphoid organs, and secrete cytokines to initiate 
immune response13. DCs are important components of the 
immune system; they provide the fi rst line of defense and are 
therefore essential for the onset of a strong immune response to 
several incoming pathogens14,15. DCs play an instrumental role 
in linking innate and adaptive responses against a variety of 
pathogenic fungi including Aspergillus fumigatus, Cryptococcus 
neoformans, and Candida albicans12. 

This study aimed to analyze the in vitro interaction between 
P. lilacinum conidia and two types of human APCs, macrophages 
and DCs, to help elucidate the pathogenesis of infection caused 
by this fungus.

A clinical P. lilacinum isolate from the nasal sinus, 
which was kindly provided by Dr. Annette W. Fothergill 
(Fungus Testing Laboratory, University of Texas Health Science 
Center, San Antonio, USA), was grown on potato-dextrose agar 
(Difco, Detroit, MI, USA) at room temperature for 14 days. 
Spores were collected by scraping the colonies, suspended in 
50mM phosphate-buffered saline (PBS), pH 7.2, chilled to 4°C, 
and heated to 37°C. The suspension was then centrifuged at 
200 × g for 30min, and the number of conidia in the resultant 
supernatant (rich in conidia but free of hyphae) was estimated 
by microscopy using a Neubauer hemocytometer16. All the 
conidial suspensions were freshly prepared for each experiment.

Peripheral blood mononuclear cells (PBMCs) were obtained 
from buffy coats of eight peripheral blood samples from healthy 
donors screened for human immunodefi ciency virus (HIV) and 
hepatitis B virus (kindly provided by Serviço de Hemoterapia, 
Hospital Universitário Clementino Fraga Filho, RJ, Brazil). 

The cells were isolated using a Ficoll-Hypaque 1077 gradient 
(Sigma, St. Louis, MO, USA)17. Briefl y, cells were washed, 
resuspended in Roswell Park Memorial Institute (RPMI) 
medium containing L-glutamine and penicillin-streptomycin 
(Sigma), and quantifi ed using the Neubauer hemocytometer. 
Monocytes were separated from lymphocytes by cold 
aggregation during 30min17. The cells were resuspended in fresh 
RPMI medium containing 10% fetal bovine serum (Hyclone®; 
Thermo Scientifi c, South Logan, UT, USA) and seeded at 
2 × 105 cells/well into eight-well chamber slides (Lab-TekTM 
Nunc International, Rochester, NY, USA) and at 1 × 106/tube 
into Falcon® polystyrene tubes (Becton Dickinson Company, 
Franklin Lakes, NJ, USA) for cell phenotype evaluation 
by flow cytometry. For differentiation into macrophages, 
monocytes were incubated at 37°C in a humidifi ed incubator 
with a 5% CO2/95% air mixture (model MC0-19AIC-UV; Etten 
Leur, The Netherlands) for 7 to 10 days. For differentiation 
into DCs, monocytes were incubated in the presence of 
100U/mL recombinant human granulocyte-macrophage colony 
stimulating factor (rhGM-CSF; Peprotech, Rocky Hill, NJ, 
USA) and 1,000U/mL recombinant human interleukin-4 
(rhIL-4; Peprotech) as described above17,18. For phenotypic 
evaluation, cells were washed with 200µl PBS containing 
0.1% bovine serum albumin and 0.01% sodium azide and 
stained with fl uorescein isothiocyanate (FITC)-conjugated 
monoclonal antibodies against cluster of differentiation 14 
(CD14) and peridinin-chlorophyll protein-cyanine dye (PerCP-
Cy5.5)-conjugated CD209, also known as dendritic cell-specifi c 
intercellular adhesion molecule-3-grabbing nonintegrin 
(DC-SIGN)19-21, on ice for 60min. Cells were washed 
and analyzed using an Accuri C6 fl ow cytometer (Accuri 
Cytometers Inc., Ann Arbor, MI, USA) and the FlowJoTM 

software (Tree Star, Ashland, OR,USA).
The interaction experiments were conducted with three 

different ratios of conidia to human cells (5:1, 2:1, and 1:1). 
Briefl y, the conidial suspension was added to each well of the 
chamber slides at the desired concentration, and incubated with 
APCs (macrophages or DCs) differentiated from monocytes of 
each donor for 1h, 6h, and 24h at 37°C in a 5% CO2 atmosphere. 
Subsequently, the cells were washed gently with sterile PBS at 
room temperature to remove extracellular conidia, fi xed with 
methanol for 3min, stained with Giemsa solution (Sigma) for 
15min, and then examined under a light microscope (model 
Axiophot, Carl Zeiss Microscopy GmbH, Göttingen, Germany). 
Control APCs without conidia were treated and evaluated in the 
same manner. Quantifi cation was performed by counting 100 
fi elds on duplicate coverslips and the results were expressed 
as follows: % of infected cells = [(APC with fungus - control) 
÷ control] × 100%22. The data were analyzed by the Student’s 
t-test and the difference at p < 0.05 was considered statistically 
signifi cant. 

Ethical considerations

This study was reviewed and approved by the Research 
Ethics Committee of the Federal University of Rio de Janeiro, 
Brazil (license number 168/09).
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RESULTS

Immunophenotyping of the cells was performed to monitor 
the differentiation of monocytes to macrophages and DCs. The 
differentiated DCs were characterized by the high expre ssion of 
CD209 (DC-SIGN) and low expression of CD14 (Figure 1). In 
contrast, the differentiated macrophages displayed high expression 
of CD14 and low levels of CD209 (Figure 1).

For all three tested ratios of conidia to human cells (5:1, 2:1, 
and 1:1), phagosome-like structures containing conidia could 
be observed inside the cells, indicating that conidia were 
phagocytized by APCs (Figure 2). The control APCs presented 
typical morphology (Figures 2A and 2B). The results obtained 
with the 5:1 ratio showed that conidia were phagocytized by APCs, 
similar to the fi ndings for the 2:1 sample (Figures 2C and 2D). 
However, because of the excessive number of conidia inside and 
outside APCs, it was not possible to quantify the internalized 
conidia.

For the 1:1 ratio of conidia to human cells, the infection 
could be followed for 1h, 6h, and 24h (Figures 2E to 2J). 
Within 1h of interaction, P. lilacinum conidia were internalized 
by macrophages (Figure 2E) and DCs (Figure 2F); at 6h, 
the internalization gradually increased and some conidia 
became infl ated (Figures 2G and 2H). After 24h interaction, 
macrophages and DCs presented infl ated conidia that formed 
germ tubes and hyphae (Figures 2I and 2J); in many cells, 
they developed into septate hyphae and fi nally destroyed both 
macrophages and DCs (data not shown). This pattern of infection 
was observed for APCs from all the donors.

We also analyzed the percentage of infected APCs 
(macrophages and DCs) after 6-h interaction, because at this 

FIGURE 2 - Macrophages (A, C, E, G, I) and dendritic cells (B, D, F, H, J) derived from monocytes isolated from human mononuclear 
cells were infected in vitro with conidia of a Purpureocillium lilacinum human isolate, stained using Giemsa staining, and analyzed 
by light microscopy at ×1,000 magnifi cation. Macrophages (A) and dendritic cells (DCs; B) incubated without the fungi were used as 
negative controls and did not show any changes throughout the experiment. The conidia were phagocytized by macrophages and DCs, 
as evidenced by the presence of phagosome-like structures containing conidia (→) after 1h of interaction at the 2:1 (C and D) and 1:1 
(E and F) ratios of conidia to human cells. At 6h of contact using the 1:1 ratio, the internalization gradually increased and some conidia 
became infl ated (→) inside macrophages (G) and DCs (H) and at 24h of interaction, the conidia with germ tubes () and hyphae (→) were 
observed in macrophages (I) and DCs (J). Scale bar, 10µm.
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FIGURE 1 - Percentages of CD14- and CD209-expressing cells 
among macrophages and dendritic cells differentiated from 
monocytes isolated from buffy coat samples of eight healthy 
donors. CD: cluster of differentiation.

time point, the infection was well established and conidia 
were clearly observed inside the cells (Figures 2G and 2H). 
No signifi cant differences between the infected macrophages 
and DCs containing P. lilacinum conidia were detected at both 
ratios analyzed (1:1 and 2:1, conidia:human cells) (Figure 3).

A C E G I

B D F H J

DISCUSSION

In the present study, we performed in vitro analysis of the 
interaction between P. lilacinum conidia and human professional 
APCs derived from human monocytes, and demonstrated that 
fungal conidia were capable of infecting and destroying both 
macrophages and DCs. 
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