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ABSTRACT

Zika virus (ZIKV) is an enveloped, single-stranded RNA arbovirus belonging to the genus Flavivirus. It was first isolated from a sentinel 
monkey in Uganda in 1947. More recently, ZIKV has undergone rapid geographic expansion and has been responsible for outbreaks 
in Southeast Asia, the Pacific Islands, and America. In this review, we have highlighted the influence of viral genetic variants on ZIKV 
pathogenesis. Two major ZIKV genotypes (African and Asian) have been identified. The Asian genotype is subdivided into Southwest 
Asia, Pacific Island, and American strains, and is responsible for most outbreaks. Non-synonymous mutations in ZIKV proteins C, prM, E, 
NS1, NS2A, NS2B, NS3, and NS4B were found to have a higher prevalence and association with virulent strains of the Asian genotype. 
Consequently, the Asian genotype appears to have acquired higher cellular permissiveness, tissue persistence, and viral tropism in 
human neural cells. Therefore, mutations in specific coding regions of the Asian genotype may enhance ZIKV infectivity. Considering that 
mutations in the genomes of emerging viruses may lead to new virulent variants in humans, there is a potential for the re-emergence of 
new ZIKV cases in the future.
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INTRODUCTION

Zika virus (ZIKV) is a Flavivirus transmitted through the bite of 
female mosquitoes of the Aedes, Culex, and Anopheles genera1. 
Zika was first isolated from a Rhesus monkey in 1947 in Zika Forest, 
Uganda2. In 1954, the first case reported in humans was described 
on the African continent3. ZIKV was also detected in Asia in 1966 
and has remained restricted to this region for almost five decades4.

In the early 2000s, ZIKV outbreaks were reported in regions 
of Southeast Asia, the Pacific Islands, and the Americas, with a 
proportional increase in infection rates. Outbreaks from Pacific 

Island and the Americas present higher numbers of cases5.  
In general, ZIKV had a higher epidemiological impact in tropical 
and subtropical countries once the mosquito Aedes spp. became a 
“cosmopolitan” vector, being widely distributed in tropical areas1. 
The first reported ZIKV outbreak occurred on Yap Island, Federated 
States of Micronesia, in 20076. In 2013, ZIKV was associated 
with the development of Guillain–Barre syndrome (GBS) in the  
Pacific Islands of French Polynesia7. In 2016, Brazil recorded 
440,000–1,300,000 suspected cases and 2,975 cases of ZIKV-
associated microcephaly8, which led the World Health Organization 
to declare a worldwide state of public health emergency9. 
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Acute ZIKV infections, known as Zika fever, generally result in 
mild illness in adults. The viral incubation period varies from 3 to 
10 days, and most patients do not require hospitalization5. Zika 
fever is clinically characterized by fever, rash, fatigue, conjunctivitis, 
arthralgia, headache, myalgia, and retroorbital pain. These 
symptoms manifest in about 20–25% of symptomatic individuals. 
However, a small percentage of cases have been associated with 
neurological disorders in neonates (mainly microcephaly), a 
condition later named congenital Zika syndrome (CZS)9. 

Decades later, efforts of the scientific community to identify a 
vector control method, as well as vaccines and treatments to combat 
ZIKV infection, continue. Similarly, elucidating the pathophysiological 
mechanisms underlying this infection remain a challenge. During 
infection, host cells demonstrate morphological and molecular 
alterations10,11 that eventually culminate in mitotic abnormalities 
and cell death12, leading to tissue loss and neurological injury13. 

Many studies have shown that structural and nonstructural 
proteins are crucial components of viral pathogenesis10,11. However, 
it remains unclear which genetic factors of ZIKV may increase 
infection rate and virulence in humans. Here, we discuss the latest 
findings related to ZIKV genetic variants in terms of the infection 
process, cellular permissiveness, and tissue persistence.

ZIKV genome and life cycle

The ZIKV genomic organization is similar among members 
of the Flavivirus genus (Flaviviridae family) such as dengue virus 
(DENV), yellow fever virus (YFV), and West Nile virus (WNV)14. The 
ZIKV genome consists of 10,794 nucleotides in a single-stranded 
positive-sense RNA that encodes a polyprotein of 3,424 amino acids 
and 10 proteins crucial for the viral life cycle10. ZIKV RNA has two 
untranslated regions (UTRs) and a single open reading frame (ORF). 

The 5′ and 3′ UTRs exhibit methylated nucleotides and non-
polyadenylated forms, respectively, forming a loop structure. 
Moreover, the 5′ and 3′ UTRs have an essential function in virus 
replication. The 5′ UTR mediates the “start” signal for reading 
through the CAP AUG type 1 structure. Meanwhile, the 3′ UTR 
has a poly(A) tail that functions as a “stop” signal for the final step 
in polyprotein processing15,16. The ORF encodes three structural 
proteins (E, prM, and C) and seven nonstructural proteins  
(NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5)10. 

ZIKV must undergo attachment, entry, replication, and 
exocytosis to successfully infect human cells. ZIKV cell attachment 
is mediated by attachment factors such as negatively charged 
glycosaminoglycans17. These molecules retain viral particles 
on the cell surface, providing conditions for membrane fusion. 
The entry process occurs via ZIKV envelope protein E18, which 
interacts with entry receptors in the host cell, such as C-type 
lectin19 and phosphatidylserine (PS) receptors20. These interactions  
cause conformational changes in the cell membrane and induce 
clathrin-mediated endocytosis, allowing the release of the viral 
genome into the cytoplasm21. 

Considering this, C-type lectin receptors, such as DC-SIGN 
(dendritic cell-specific intercellular adhesion molecule-3-grabbing 
non-integrin) and L-SIGN (liver/lymph node-specific intercellular 
adhesion molecule-3-grabbing integrin) recognize N-glycans 
linked to viral protein E, allowing viral entry18,19, whereas PS (present 
in the ZIKV envelope) is recognized by PS receptors, such as TAM 
(Tyro3, Axl, and Mer) and TIM (TIM1, TIM3, and TIM4)20.

ZIKV protein E is the largest antigenic glycoprotein in flaviviruses 
and plays a role in adhesion, recognition, and fusion to the host 
cell. The dimeric structure of protein E contains an ectodomain with 
three domains: DI, DII, and DIII18,19,22. DI has a structural function in 
that it acts as a binder and chemical support for other domains. 
DII interacts and promotes fusion on the cell membrane through a  
loop-shaped structure located on the support loop with DI18. DIII is an 
immunoglobulin-like domain with the capacity to bind extracellular 
receptors23,24. Protein E contains a glycosylation site in an asparagine 
residue (Asn154), which may be associated with ZIKV virulence. 

This pattern of N-glycosylation is conserved among DENV, 
YFV, and WNV. In DENV, glycosylation follows the Asn154 and 
Asn67 residues19. According to Wen18, N-glycosylated residues on 
protein E may enhance ZIKV infectivity by increasing the affinity 
of protein E to the entry receptors. 

Once inside the cell, the low pH within the endosome 
enables the native state of protein E, which subsequently fuses 
to the endosome membrane and releases the viral RNA into 
the cytoplasm. Once in the cytoplasm, ZIKV undergoes particle 
assembly, followed by RNA replication and translation into viral 
proteins25. During maturation, newly assembled viral particles enter 
the endoplasmic reticulum (ER) and acquire PS. Viral particles then 
migrate from the ER to the Golgi complex where viral maturation 
occurs26. This process is mediated by the protein furin in the host, 
which cleaves the prM protein into the “pr” and “M” portions22,25. 
Finally, new mature ZIKV viral particles are released into the 
extracellular environment22.

ZIKV genotypes

To date, two major ZIKV genotypes have been identified: 
African and Asian. The African-ZIKV genotype has caused 
sporadic or recurrent infections in West African countries, with 
clinical manifestations of fever, conjunctivitis, and myalgia3,27. 
Nevertheless, the Asian-ZIKV genotype has circulated in Southeast 
Asia, the Pacific Islands, and the Americas, causing major outbreaks 
characterized by fever, arthralgia, conjunctivitis, CSZ, GBS, and 
ophthalmological anomalies6,7,9,28. Through the timespan of these 
major outbreaks, it has been reported that the number of people 
with severe symptoms has increased as the Asian-ZIKV epidemic 
has disseminated among continents29,30. 

The African-ZIKV genotype is subdivided into East African 
and West African strains. The Asian-ZIKV genotype is subdivided 
into Southwest Asia, Pacific Island, and American strains31. The 
African and Asian genotypes exhibit few different amino acid 
sequences14. Nevertheless, they share subcellular locations in host 
cells and protein function. ZIKV polyprotein from African and Asian 
genotypes are schematized in Figure 1. 

Shrivastava32 and Collins33 observed phylogenetic diversity in both 
African and Asian-ZIKV genotypes as well as insertions/deletions in 
their viral genomes. Moreover, Barzilai and Schrago34 posited that 
ZIKV spread may be associated with nonsynonymous mutations as 
a consequence of the viral evolution rate. Overall, Asian genotypes 
(lineages from Malaysia, Cambodia, and America) show higher 
genetic variants and single nucleotide variants in the viral genome 
than African genotypes (East and West African lineages)32–34. 

According to Collins33, the African genotype exhibits fewer 
synonymous mutations (G3589T, G3589A, C5080A, and C5080T) 
and nonsynonymous mutations (G3299A, A3300G, and T5079A) 
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FIGURE 1: ZIKV polyprotein from the African- and Asian-ZIKV genotypes, structural proteins (C, prM, and E) and nonstructural proteins (NS1, NS2A, NS2B, 
NS3, NS4A, NS4B, and NS5) as well as their sizes, in amino acids (aa), and functions in the viral cycle.

than the Asian genotype, with 18 nonsynonymous mutations and 
only one synonymous mutation. This may explain why both African 
strains remained restricted to the African continent32.

Taking into consideration the coding region sequences in the 
Asian genotype, Faria35 and Ye14 found great genetic similarities 
between ZIKV strains from the Pacific Islands and the Americas. 
However, these ZIKV strains exhibited a phylogenetic distance 
of decades compared to strains from Malaysia, which were later 
identified as a Southeast Asian strain35. In addition to phylogenetic 
differences, dissimilar nucleotides were also found between strains 
from the Pacific Islands and Malaysia14,35, indicating that these 
Asian strains do not share the same lineage. ZIKV strains from the 
Pacific Islands and Americas constitute only one lineage within the 
Asian genotype14,35. Among the lineages of the Asian genotype, 
Malaysian strains sampled in 1966 were the oldest35.

Ye14 suggested that the American strain constitutes a new clade 
within the Asian-ZIKV genotype. Reports also indicated a common 
origin among ZIKV strains from Micronesia, French Polynesia, and 
Brazil during outbreaks in 2007, 2013, and 2016, respectively14,31,36. 
However, many reports indicate that there are variations among 
amino acids throughout the Asian-ZIKV genome, which can lead 
to viral adaptations (Table 1). In this context, a study conducted 
by Kawai31 evaluated the pathogenicity of Southern Asian, Pacific 
Island, and American strains in vitro and in vivo. It has been shown 
that the American strain induces strong pathogenicity31.

In addition, Strottmann37 and Regla-Nava38 suggested that 
mutations in NS2A (A117V) and NS2B (I39V) from Asian strains 
may impact the infectivity of mammalian and insect cells. Using an 
in silico approach, mutations with relevant structural impacts were 
found in protein C (I80T) and NS2A (K113F, A143V, and I199V) of 
circulating ZIKV strains from French Polynesia, Brazil, and Colombia39. 
Strottman37 detected nonsynonymous mutations in proteins E 
(R166K), NS1 (V349M), NS2A (I30T, T34I, V117R, and V1181M), NS3 
(H92Y), and NS4B (I26T) of three ZIKV isolates from Brazilian regions.

Other in vitro and in vivo studies have been conducted to 
elucidate the impact of nonsynonymous mutations on the Asian-
ZIKV genome. Yan40 demonstrated that the mutation S139N in 
prM of the Asian genotype may contribute to the development 

of CZS. This mutation in the prM protein was detected before 
the outbreak in French Polynesia, and it remained stable during 
ZIKV spread until the outbreak in the Americas in 201540. In the 
viral protein NS4B, the substitution E2587D was observed in an 
Asian strain from China, in 201641. Moreover, two substitutions in 
protein E (D67N and V473M) may have increased ZIKV replication 
and neurovirulence as well as its transmission during pregnancy 
and viremia after the American epidemic42,43. In an Asian isolate 
from a Thai patient in 2021, unique nonsynonymous mutations 
were detected in proteins E (A310E and E393K) and NS3 (H355Y)24. 
These findings suggest that after the outbreak in French Polynesia 
and before the outbreak in the Americas, ZIKV strains might have 
mutated and acquired higher infectivity. 

Moreover, Li44 proposed that proteins E, C, and prM contribute 
to Asian-ZIKV attachment, permissiveness, and cytopathic effects in 
human glial cells. In addition, NS2A recruits unprocessed proteins to 
be cleaved by NS2B/NS3 serine-protease at the E-prM-C site45. NS2A 
and NS4B also play a role in the assembly of new particles11. Haddow36 
demonstrated that ZIKV genotypes can exhibit different N-glycosylation 
sites, whereas Bos46 found new glycosylated residues in protein E (I152, 
T156, and H158) in Brazilian ZIKV strains. Highly glycosylated residues 
may influence ZIKV attachment, entry, and fusion with host cells46. 

Cellular permissiveness of ZIKV

 ZIKV is known to infect different hosts, ranging from 
mosquitoes to mammals, as well as many cell types and tissues 
(Figure 2). Rat mesenchymal stem cells, mouse embryonic 
fibroblasts, murine macrophages, monkey kidneys, and mosquito 
larvae cells are some non-human cellular models that have been 
described as susceptible to ZIKV entry, replication, and release47. 

The entry processes of African and Asian genotypes in  
humans share a highly conserved mechanism that requires  
clathrin-mediated endocytosis21. Among human cells, ZIKV is known 
to infect dermal fibroblasts48, fetal neurons49, primary Hofbauer50 
and mesenchymal stem cells47, epidermal keratinocytes48, fetal 
cortical astrocytes49, primary trophoblasts50, embryonic kidney 
cells47, and sperm cells51. Furthermore, some types of innate immune 
cells (such as primary monocytes and plasmacytoid dendritic cells) 
have been identified as permissive to viral infectivity30. 
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TABLE 1: Characterization of nonsynonymous mutations on the Asian-ZIKV genome.

Protein Polyprotein position Isolates Substitution* Reference

C 81 Malaysia I → M 32

81 Thailand I → M 32

81 México I → M 32

81 Honduras I → M 32

prM 139 French Polynesia S → N 40

139 Brazil S → N 40

168 Malaysia D → K 32

E 356 China D → N 43

451 Colombia D → E 32

451 Panama D → E 32

456 Brazil R → K 37

763 China V → M 42 

600 Thailand A → E 24 

620 Puerto Rico V → L 32

620 Malaysia L → V 32

683 Thailand E → K 24

691 Malaysia Y → H, H → Y 32

NS1 852 Panama F → S 33

969 Honduras Y → S 33

1033 Colombia S → N 32

1033 Porto Rico S → N 32

1033 Panama S → N 32

1143 Brazil V → M 37

NS2A 1176 Brazil T → I, I → T 37

1180 Brazil I → Y, T → I 37

1263 Brazil V → A 37

1263 Malaysia V → A 32

1263 Thailand A → V 32

1303 Panama A → V 32

1303 Malaysia V → A 32

1327 Brazil M → V, V → M 37

1370 Honduras G → R 33

NS2B 1411 Cambodia I → T 38

NS3 1594 Brazil H → Y, Y → H 37

1857 Thailand H → Y 24

NS4B 2295 Brazil I → T 37

2857 China E → D 41

*I: isoleucine; M: methionine; S: serine; N: asparagine; D: aspartic acid; K: lysine; E: glutamic acid; R: arginine; V: valine; L: leucine; Y: tyrosine; T: threonine; A: alanine; 
G: glycine; H: histidine.

Bernardo-Menezes L et al. | An overview of Zika
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FIGURE 2: Permissiveness and replication cycle of the ZIKV genotypes in host cell.

During ZIKV infection, the skin cells mediate an early innate 
immune response48. In vitro studies have evaluated the persistence 
of ZIKV infection in human skin cells in an attempt to understand 
the infection route following mosquito bites in mammalian hosts. 
Hamel52 observed that human epidermal keratinocytes, dermal 
fibroblasts, and immature dendritic cells were fully permissive to 
French Polynesia isolates. However, Hou26 showed that fibroblasts 
and epidermal human lineages did not display any differences in 
permissiveness, infection rate, and replication modes between 
isolates from Uganda and Puerto Rico. 

According to Hou26, immunological cells did not demonstrate 
a difference in permissiveness between African- and Asian-
ZIKV genotypes. However, Osterlund53 observed differences in 
replication rates among these genotypes, although both showed 
great replication in human dendritic cells. Unlike the African 
genotype, viral replication in the Asian genotype is attenuated in 
human macrophages53. These findings suggest that the Asian-ZIKV 
genotype may use immunological cells as a viral reservoir.

Tissue persistence and viral tropism

During ZIKV infection, some cells and tissues may become viral 
reservoirs, contributing to the dissemination of Asian-ZIKV to nearby 
tissues. It was observed in vitro that both ZIKV genotypes have 
the capacity to infect human peripheral blood mononuclear cells26, 
indicating that these cells may act as an “entry door” for ZIKV spread. 

Moreover, ZIKV-infected monocytes exhibited a quicker 
transmigration process than cell-free viruses on endothelial 
barriers in studies using in vitro, in vivo, and ex vivo models30. 
ZIKV-infected mast cells were also detected in situ in the placental 

tissue of pregnant Brazilian women54. These reports indicate that 
ZIKV-infected immunological cells might circulate throughout the 
host’s blood tissue, promoting Asian-ZIKV spread and contributing 
to vertical transmission. 

Asian-ZIKV has also been found to be transmitted by the sexual 
route. For instance, Rashid55 observed the infection and replication 
of ZIKV (isolates from Puerto Rico) in primary human Sertoli cells 
in vitro, confirming ZIKV persistence in the reproductive tract and 
high cellular permissiveness. In addition, Matulasi51 demonstrated 
that ZIKV isolates from French Polynesia infect reproductive and 
somatic testicular cells in vitro, as well as, replicates in human 
testes ex vivo. These studies suggest that American ZIKV strains 
can replicate in the male reproductive system. 

In this context, ZIKV-infected sperm cells can also infect tissues 
of the female reproductive system during sexual encounters. 
Using an in vitro approach, studies have demonstrated that 
human primary endometrial56, Hofbauer, and trophoblast cells50 
are vulnerable target cells of American ZIKV strains. Thus, once 
ZIKV infects and replicates in reproductive tissues, it poses a risk 
at different stages of pregnancy.

Considering that neuronal progenitor cells and glial cells, 
which are crucial for neurogenesis, can also be targeted by ZIKV, 
the central nervous system (CNS) inflammatory process during 
gestation can significantly impact brain development. Hence, 
diverse studies have shown positive tropism between ZIKV 
genotypes and cells in the CNS. Li57 demonstrated that both 
African and Asian genotypes can infect and replicate in neurons 
and glial cells in vitro. In parallel, in vitro astrocytes have a good 
tolerance for high viral load rates for both viral genotypes49. 

Rev Soc Bras Med Trop | on line | Vol.:55 | (e0263-2022) | 2022
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However, according to Goodfellow58 and Aguiar59, loss of cellular 
proliferation, neuronal migration, and abnormal extracellular 
matrix have been observed only in infections caused by the Asian 
genotype. In addition, Cugola60 proposed that ZIKV strains that 
circulate in Brazil can trigger autophagy and apoptotic pathways, 
leading to cell death in cortical progenitor cells.

Thus, compared to African isolates, Brazilian ZIKV isolates 
exhibited higher neurotropism for neural cell lineages. These data 
led us to believe that the Asian genotype has greater virulence 
because its strains have accumulated large nonsynonymous 
mutations over the time of dissemination.

CONCLUSIONS

We gathered information on the genetic variants of ZIKV and 
their influence on the viral life cycle, cellular permissiveness, and 
tissue persistence. Based on the reviewed papers, we found that 
nonsynonymous mutations in the ZIKV genome may increase viral 
entry, RNA replication, particle assembly, and viral load. Considering 
that mutations in the genomes of emerging viruses may lead to 
new virulent variants in humans, this might be a possibility for 
the future re-emergence of new cases. Further in vitro and in 
vivo experiments are required to better evaluate these mutations.
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