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ABSTRACT

Background: Malaria is curable. Nonetheless, over 229 million cases of malaria were recorded in 2019, along with 409,000 deaths. 
Although over 42 million Brazilians are at risk of contracting malaria, 99% percent of all malaria cases in Brazil are located in or around 
the Amazon rainforest. Despite declining cases and deaths, malaria remains a major public health issue in Brazil. Accurate spatiotemporal 
prediction of malaria propagation may enable improved resource allocation to support efforts to eradicate the disease. 

Methods: In response to calls for novel research on malaria elimination strategies that suit local conditions, in this study, we propose 
machine learning (ML) and deep learning (DL) models to predict the probability of malaria cases in the state of Amazonas. Using a dataset 
of approximately 6 million records (January 2003 to December 2018), we applied k-means clustering to group cities based on their 
similarity of malaria incidence. We evaluated random forest, long-short term memory (LSTM) and dated recurrent unit (GRU) models and 
compared their performance. 

Results: The LSTM architecture achieved better performance in clusters with less variability in the number of cases, whereas the GRU 
presents better results in clusters with high variability. Although Diebold-Mariano testing suggested that both the LSTM and GRU 
performed comparably, GRU can be trained significantly faster, which could prove advantageous in practice. 

Conclusions: All models showed satisfactory accuracy and strong performance in predicting new cases of malaria, and each could serve 
as a supplemental tool to support regional policies and strategies.
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INTRODUCTION

Malaria is a curable, life-threatening disease caused by parasites. 
It is transmitted to people through the bites of infected female 
Anopheles mosquitoes. For non-immune individuals, symptoms 
usually appear 10–15 days after the infective mosquito bite and 
can progress to severe illness if left untreated1,2,3. The World Health 
Organization (WHO) recently estimated that 229 million cases 
of malaria and 409,000 deaths occurred in 20194. Malaria poses 
significant social and economic burdens; estimates suggest that 
over 52 million disability-adjusted life years have been lost due to 
malaria worldwide5. Research suggests that the reduction of the 
malaria burden is associated with increased household spending6 
and household consumption7, higher incomes for adults8, increased 
GDP9,10, greater wealth accumulation11, less work disability, and new 
forms of occupation12,13 as well as improved health, well-being, 
and quality of life.

Conditions suitable for the propagation of malaria exist in 
many regions worldwide. For example, over 138 million people 
are at risk of contracting malaria in Central and South America14. 
Although the number of cases and deaths in Brazil are in decline, in 
2018, approximately 42 million people were at risk of malaria, and 
232,000 cases were recorded15. Epidemiological studies suggest 
three discrete malaria transmission systems seem to function in 
Brazil, related respectively to the Amazon rainforest, the Atlantic 
rainforest, and the Brazilian coast. However, 99% of all malaria 
cases are located in the Amazon rainforest16. In 2015–2016, the 
states of Amazonas and Acre together reported 60-70% of malaria 
cases in the Amazonian region and Brazil as a whole16.

The persistent high rates of malaria in these regions have 
been variously attributed to several different factors, including 
anthropogenic environmental changes, human migration 
(including internal population movements and migration from 
other countries), and living standards16. Despite the high number 
of cases, the number of deaths is low, less than 3015. This is largely 
due to successive malaria control intervention programs such 
as the Amazon Basin Malaria Control Programme, the National 
Malaria Prevention and Control Programme, and the Plan for 
Elimination of Malaria in Brazil. Notwithstanding the progress 
in reducing the number of cases of malaria and malaria-related 
deaths, both the direct and indirect impact of malaria infection in 
the Amazon region remains significant17. Despite significant efforts 
and achievements in the control of malaria, further progress may 
be retarded due to threats of drug and insecticide resistance, the 
instability of international funding for malaria control, imported 
malaria from other countries, expansion of economic frontiers, and 
the falling cost-effectiveness of traditional interventions13. Indeed, 
recent work suggests that new scientific interventions to reduce 
mosquito biting and better insecticides should be complemented 
by research on the practical implementation of these methods to 
adapt strategies to suit local conditions14,18. Both demographic and 
epidemiological analyses of data suggest substantial heterogeneity 
and spatial clustering in the Amazon basin18,19. Consequently, 
there have been calls for intervention strategies targeting specific 
regions, potentially at lower administrative levels, or risk groups19. 

This situation is complicated by the COVID-19 pandemic, 
which introduces additional competition for funding for malaria 
control interventions and leads to challenging social and economic 
conditions20,21. In such situations, accurate data on future human 
resource requirements for spraying and treatment based on likely 

malaria cases by region is critical for managing disease control 
and mitigation where resource availability may be constrained 
due to social distancing, self-isolation, worker safety, or funding.

Statistical methods and machine learning (ML) models have 
been proposed to identify the distribution of malaria cases and 
vectors in India22,23,24, China25, and Thailand26,27. These studies use 
classical statistical methods and their capacity for generalization to 
other contexts is limited owing to the malaria vectors examined and 
geographic idiosyncrasies. In contrast, few studies have considered 
the use of deep learning (DL) to predict the distribution of malaria 
vectors and cases, especially for the Amazon region specifically.

Some ML models have been proposed to identify the 
distribution of malaria cases and vectors, particularly in Asia. Moyes 
et al.22 used data analysis and a boosted regression tree model to 
identify the distribution of host monkeys and mosquito vectors of 
the parasite P. knowlesi. This parasite is the leading cause of malaria 
in Malaysia. The authors analyzed the relationship between these 
species and potential environmental variables such as forest cover. 
Their findings suggest that the relative probability of host macaque 
species and members of the Leucosphyrus Complex occurring in 
disturbed forest areas such as plantations timber concessions, and 
vegetation mosaics brings species into close contact with human 
activities. This has implications for both mitigation and eradication 
plans in addition to treatment and economic development.

Sarkar et al.23 proposed the use of time-series models based 
on epidemiological data. They used autoregressive integrated 
moving average (ARIMA), generalized autoregressive conditional 
heteroskedastic (GARCH), and random walk models to predict the 
incidence of malaria caused by the parasite P. vivax in Chennai, 
India. Their results suggested that the models chosen fit well with 
epidemiological data and provided useful predictions for malaria 
incidence, where these models have not been used extensively with 
appropriate parameter choices. This work could provide inputs for 
the design of malaria control programs.

In general, most methods reported in the relevant literature 
have adopted classical regression models and conventional ML 
techniques to predict the incidence of malaria. Chae et al.,28 
proposed a DL model along with other methods to forecast three 
different infectious diseases in South Korea, including malaria, 
chickenpox, and scarlet fever. Four types of data (search query 
data, social media big data, temperature, and humidity) were 
used to predict cases, and their proposed deep learning models 
outperformed the traditional ARIMA28.

It is important to note that while P. vivax is widespread in Brazil, 
P. falciparum still plays an important role in malaria transmission, 
and the studies above may not be generalizable to Brazil due to 
the difference in malaria vectors and environmental context. While 
a limited number of studies have been conducted that focus on 
Brazil, they typically focus on mapping the geospatial patterns of 
malaria using a variety of techniques, including pattern detection 
using normalized difference vegetation index29, Poisson normal 
models30, free-form covariance models31, and Bayesian and Markov 
chain Monte Carlo methods32, along with several others. Cunha et 
al.33 focused on the municipality of Cantá in the state of Roraima, 
Brazil to measure the risk of malaria cases according to the annual 
parasitic index (IPA). Cantá has one of the highest index values in the 
country. The authors proposed a multilayer artificial neural network 
(feedforward) using a database with records from 2003 to 2008.
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FIGURE 1: Monthly time series of malaria cases for the State of Amazonas from 2003 to 2018.

In this work, we consider the following research question. "Does 
grouping cities by confirmed cases of malaria improve the performance 
of ML/DL methods for predicting malaria cases in the state of 
Amazonas?” This study includes two main contributions. First, we 
evaluated DL models to predict the occurrence of malaria in the state 
of Amazonas, Brazil. The present work is among the first DL studies 
on malaria in Brazil, and we utilized a substantial clinical dataset. DL 
models may contribute to better prediction results and consequently 
lead to the development of more effective intervention strategies. 
The second contribution of this work relates to the use of clustering 
models to group cities based on similarity of malaria incidence.

METHODS

Data set

The state of Amazonas is the largest in Brazil, with an area 
of over 1,559,161 square kilometers34, and is one of the largest 
country subdivisions in the world, comprising 62 cities. It is 
dominated by tropical jungle, having the largest area of preserved 
forest among the states in the region.

We used data from the Sistema de Informação de Vigilância 
Epidemiológica de Malária (SIVEP-MALARIA), which is a specific 
information system for reporting malaria cases in the Brazilian 
Amazon. The dataset includes data related to malaria cases 
that occurred from January 2003 to December 2018 in the state  
of Amazonas, comprising approximately 6 million records.  

Figure 1 presents the time series for the number of malaria cases 
per month in the state of Amazonas. Between 2003 and 2007, the 
number of cases was higher than in the preceding years, reaching 
30,000 cases in July 2005. After 2008, the number of cases decreased.

We used the holdout validation method35 to carry out the 
experiments with city clusters. We selected 80% of the available 
historical data (from January 2003 to October 2015) to train the model, 
and 20% (October 2015 to December 2018) to perform testing. We 
conducted experiments for each technique ten times to ensure the 
statistical validity of the results. We then calculated the average root 
mean square error (RMSE) and standard deviation for each model.     

Clustering

Clustering techniques divides the samples of a dataset into 
groups according to the similarity of the characteristics of each 
element36. The k-means algorithm is among the most well-known 
data clustering methods. It partitions a predefined number of 
clusters k using an unsupervised classification. The algorithm 
compares elements based on the Euclidean distance between 
average values of the data37.

In our study, the clusters were created using the k-means 
algorithm, considering the mean, median, and maximum cases 
of malaria per 1,000 inhabitants as statistical features38. For 
convenience, we defined nine clusters (k=9) based on the health 
regions in the State of Amazonas, as shown in Figure 2. Cities in 
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FIGURE 2: Clusters resulting from the k-means algorithm (k = 9). Each color represents a cluster as described in Table 1. Monthly time series of malaria cases 
for the State of Amazonas from 2003 to 2018.

Amazonas are marked in colors based on the cluster to which they 
belong. As the clustering was performed according to statistical 
data of reported malaria cases, cities in a given cluster need not 
necessarily be geographically close to each other.

Metrics

To quantitatively assess the ML models, as per24, we used the 
root mean square error (RMSE) owing to its advantages in terms 
of unbiased errors compared to other metrics39 such as the mean 
absolute error (MAE) model. The RMSE can be defined as:

where yt is the actual value, ŷt is the value predicted by the 
model, and N is the value given the number of measured points 
or days (4,667 points for the training dataset and 1,169 points for 
the test dataset)40. The smaller the RMSE, the better the predictions 
of the model.

Tests were repeated ten times with long short-term memory 
(LSTM), gated recurrent unit (GRU), and random forest models, 
and then the RMSE arithmetic mean and standard deviation were 
calculated based on the time-series data (number of cases of 
malaria) normalized between 0 and 1. The main objective of the 
data normalization method was to produce better quality data to 

feed the learning algorithms. Time-series data can take on a wide 
range of values, so such datasets need to be scaled to the same 
range of values to improve the learning process41.

To create the prediction models, we considered three different 
approaches, including LSTM and GRU as DL techniques, and 
random forest as a conventional ML technique.

LSTM and GRU models

Recurrent neural networks (RNNs) are a variation of traditional 
neural networks that are capable of working with previous 
connections, thus allowing decision-making based on both 
preceding and recent information. LSTM and GRU are special types 
of RNN that specifically address the gradient dissipation problem. 
This dissipation is a failure that occurs for excessively long data 
sequences, which results in an increase in gradient values along 
the sequence’s growth.

The architectures of both LSTM and GRU are very similar. 
LSTM and GRU networks both include internal mechanisms called 
gates, designed to control the flow of information42. These gates 
can identify which data is important to retain during the learning 
process and which data can be discarded. This process helps to 
maintain important information during a longer chain of data 
compared to traditional RNNs43.

2 ,
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We consider two DL models to predict the occurrence 
of malaria - an LSTM and GRU. Both models have the same 
architecture, composed of two layers (LSTM or GRU), both with fifty 
units per layer. Each LSTM or GRU layer is followed by a dropout 
layer, with parameters set to 20% chance of readjusting weights to 
reduce overfitting followed by a layer fully connected with a unit 
that provides the malaria forecast as an output. The parameters 
(such as the number of layers and units) were chosen empirically. 
After each recurring layer (LSTM and GRU), we use the dropout 
technique with a probability of 20%44.

Random Forest model

The random forest algorithm involves the construction of 
specialized decision trees45. It can be applied to various prediction 
problems, having few parameters to adjust. The method is simple to 
use, and is known for its accuracy and ability to deal with small sample 
sizes46. It has been widely used in the context of malaria, including 
object detection in malaria images47,48, quantification of malaria 
parasitemia in microscopy49, and reactive case detection50, among 
other applications. It has also been used as a comparator in malaria 
case detection and classification studies using different techniques28,51,52.

Random forest model can be defined in a simple manner by 
two parameters: the number of decision trees and their maximum 
depth. The number of decision trees used in this work was equal 
to 100, and this value was based on repeated tests conducted 
to verify the best performance according to this parameter. The 
maximum depth was selected for its default value (zero) to expand 
the nodes until all leaves contained as few samples as possible.

RESULTS

Table 1 presents the average of the RMSE results for city 
clusters in the state of Amazonas, the number of municipalities 
contained, and their respective standard deviations. The GRU 
model exhibited the best RMSE for the majority of city clusters 
(7 of 9), varying from 0.0131 (Cluster 9) to 0.0782 (Cluster 7). The 
exceptions were Cluster 5, on which the random forest model 
obtained the best RMSE (0.1543), and Cluster 9, on which the 
LSTM presented the best RMSE (0.0127). In general, the best RMSE 
results were achieved for Cluster 9, and the worst for Cluster 5.

TABLE 1: RMSE results by cluster.

LSTM GRU Random Forest

Cluster 1 (n = 17) 0.0384 (±0.0099)  0.0363 (±0.0005) 0.0368 (±0.0001)

Cluster 2 (n =  4) 0.0565 (±0.0106)  0.0499 (±0.0022) 0.0588 (±0.0004)

Cluster 3 (n =  1) 0.0543 (±0.0125)  0.0483 (±0.0021) 0.0556 (±0.0001)

Cluster 4 (n = 11) 0.0406 (±0.0114)  0.0383 (±0.0007) 0.0398 (±0.0002)

Cluster 5 (n =  5) 0.1707 (±0.0560) 0.1564 (±0.0017)  0.1543 (±0.0004)

Cluster 6 (n = 16) 0.0477 (±0.0085)  0.0450 (±0.0015) 0.0492 (±0.0002)

Cluster 7 (n =  6) 0.0863 (±0.0239)  0.0782 (±0.0008) 0.0838 (±0.0003)

Cluster 8 (n =  1) 0.0622 (±0.0131)  0.0586 (±0.0005) 0.0618 (±0.0003)

Cluster 9 (n =  1)  0.0127 (±0.0011) 0.0131 (±0.0008) 0.0134 (±0.0000)

RMSE results for each city cluster in the State of Amazonas. RMSE results by cluster (average of 10 repetitions). ±: Indicates notation for standard deviation.

To confirm the results obtained, we performed a statistical test to 
compare the results of the proposed models. We use the Diebold-
Mariano (DM) test, a two-sample hypothesis test, to compare the 
prediction of two predicted time series. By definition, the DM test 
gives negative results when the predicted time series on the left 
achieves a better result and provides a positive value when the 
predicted time series on the right achieves a better result53.

Based on the results presented in Table 1, the DL models 
outperformed the random forest model in all clusters with the 
exception of Cluster 5. Cluster 5 exhibited the greatest variation 
in the number of malaria cases in the time series, no clear pattern 
was evident (Figure 3). Such behavior impacts the performance 
of DL models, which rely on learning patterns in the data to make 
predictions. This reinforces the earlier conclusions from the cluster 
analysis in that the LSTM model may be considered more suitable 
for predicting cases of malaria using data with few oscillations, 
whereas the GRU model performs better at predicting cases where 
there is greater variability.

The LSTM model exhibited a greater standard deviation than the 
other models. Figure 4 presents the prediction results by city cluster 
for each model. Figure 3 presents the dispersion graphs for the RMSE 
results for each city cluster. The LSTM model showed the highest 
dispersion. However, the results were very similar. Consequently, 
the Diebold-Mariano test was also conducted for these results.

Table 2 presents the DM test results by city cluster. The results 
suggest that the LSTM and GRU models outperformed the random 
forest model in most of the clusters. Compares the LSTM and 
random forest models, the former outperformed the latter in 
seven of the nine clusters, and the GRU model outperformed the 
random forest model in eight of the nine clusters.

DISCUSSION

In this study, we analyzed the prediction of malaria cases 
between 2003 and 2018 by city clusters, and constructed models 
that exhibited improved performance, with RMSE results ranging 
from 0.0131 to 0.0782. The standard deviation was practically 
insignificant, varying from ±0.0001 to ±0.0560. From a deep 
learning perspective, our results are consistent with those of 
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FIGURE 3: Scatter plot for the three models used in tests by city cluster (average of 10 repetitions).
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TABLE 2: Diebold-Mariano results by cluster.

Cluster LSTM vs. GRU LSTM vs. RF GRU vs. RF

Cluster 1 (n = 17) -6,28 -4,57 -1,45

Cluster 2 (n =  4)  4,39  9,40 -8,05

Cluster 3 (n =  1) -6,50 -10,2 -8,09

Cluster 4 (n = 11) -4,87 -4,93 -1,99

Cluster 5 (n =  5)  2,50  2,63   0,95

Cluster 6 (n = 16) -7,21 -8,96 -5,67

Cluster 7 (n =  6)  0,47 -4,25 -5,25

Cluster 8 (n =  1) -2,57 -4,46 -3,59

Cluster 9 (n =  1) -3,61 -4,19 -2,96

Diebold-Mariano test results by city cluster. Diebold-Mariano results by cluster (average of 10 repetitions).

previous works54. The DM results also suggest that although the 
LSTM model achieved a higher RMSE based on cluster samples, 
the number of forecast points contributing to this error was not 
as high as that observed in the random forest or the GRU model. 
Notwithstanding the comparable performance of the LSTM and 
GRU methods, the latter has significantly faster training times18,55, 
which may prove advantageous in practice.

Our results also showed that the LSTM model exhibited better 
performance in clusters with less variability in the number of 
malaria cases, whereas the GRU model exhibited better results in 

clusters with high variability. From an epidemiological perspective, 
high variability can represent a more complex scenario because 
epidemic episodes are present (represented by peaks), reinforcing 
the practical applicability of our proposed GRU model. An accurate 
computational model to predict this variability can be a useful 
public health tool because policymakers can consider decisions 
in advance, optimizing resource allocation and planning social 
actions to reduce the impacts of a possible outbreak of malaria.

Based on the results, the proposed models present a highly 
accurate prediction of malaria cases and could serve as a 
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FIGURE 4: Prediction results by city cluster.
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supplemental tool to support regional policies and strategies56, 
considering both regional characteristics and the relevant 
epidemiological profile.

CONCLUSION

Recent research has suggested any efforts to eliminate malaria 
depends on the incidence and effectiveness of interventions in the 
Amazon region due to unequal distribution of malaria incidence 
in Brazil,18. In response to calls for novel work on the adaptation 
of malaria mitigation and eradication strategies to suit local 
conditions, in this study, we have proposed ML and DL models to 
predict the probability of malaria cases in the state of Amazonas. 
Using a dataset of approximately six million records, we have 
evaluated random forest, LSTM, and GRU models. Our findings 
suggest that all models showed satisfactory accuracy and strong 
potential to predict new cases in city clusters. While Diebold-
Mariano testing suggested that both the LSTM and GRU models 
achieved comparable results, GRUs have significantly faster training 
times, which could prove advantageous in practice.

The rapid and accurate prediction of the distribution of new 
cases at lower spatial resolutions, in this case by city, is an important 
first step in using big data analytics to estimate human disease 
risk and inform disease control planning at both national and 
lower administrative levels. Malaria in the state of Amazonas is 
significantly impacted by the unique socio-environmental factors 
associated with the Amazon rainforest. It is particularly at risk from 
future frontier expansion and population mobility within Brazil and 
from other countries. Lana et al.18 suggested that spatiotemporal 
heterogeneity in Brazilian malaria transmission requires a radical 
rethinking of malaria surveillance and elimination strategies in 
Brazil with a shift to from a ‘one-size fits all’ approach to targeted 
and dynamic surveillance. Our research suggests that ML and 
DL models can be potentially low-cost decision support tool for 
supporting national, regional, and local malaria control strategies.

This work involves some limitations.  The source database 
contained data only on patients diagnosed with malaria in the state 
of Amazonas between 2003 and 2018.  Future work can replicate and 
extend our work to other states in Brazil, as well as other countries 
where malaria is prevalent. The main objective of this study was 
not to locate individuals at a higher risk of malaria, but to compare 
computational models capable of predicting malaria cases. For this 
research, the number of clusters was defined by the number of health 
regions in the state of Amazonas (nine in total) to serve as a baseline. 
We only considered tests on k-means clusters. Consequently, the k 
value of the clusters was not evaluated for values other than nine. 
Future work might consider other spatially significant clustering 
strategies at lower spatial resolutions as well as other subpopulations.

The next stage of this research is to extend the current work to 
an index of risk and then consider how the sophistication of the 
model can be developed to consider other risk factors. In addition 
to the pluviometric regimes and associated seasonal changes, we 
plan to explore geospatial, environmental, and socioeconomic 
factors (including occupation), the distribution of disease vectors 
of varying types, and the impact of other disease control programs, 
such as COVID-19, on malaria control and resource management.
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