Nitrogênio na água do solo do ecossistema Campina Amazônica (1)

Antonio dos Santos (²) Maria de Nazaré G. Ribeiro (²)

Resumo

As principais fontes de nitrogênio na água do solo do ecossistema Campina Amazônica são: o material em decomposição (litter), chuva, água de lavagem da floresta e produtos do metabolismo de microrganismos. Foram analisadas amostras de água colhidas do lençol freático em quatro locais no solo de areia branca (Regosol), com relação aos compostos do nitrogênio (amônia, nitritos e nitratos), e calculadas as concentrações de nitrogênio orgânico e total. O nitrogênio de origem orgânica apresenta concentração superior às demais frações analisadas: o nitrogênio amoniacal, como principal produto de desdobramento do material orgânico vegetal por microrganismos, aparece em segunda escala de grandeza, enquanto que nitritos e nitratos estão quase sempre ausentes devido às condições ácidas do meio (pH 3,0). Existem variações anuais e sazonais dos compostos nitrogenados, aparecendo valores mais elevados no meio do período seco, devido a imobilização do lençol freático. Nos solos de areia branca, em condições naturais, o nitrogênio não é fator limitante para o desenvolvimento da vegetação natural.

INTRODUÇÃO

A matéria nitrogenada mais complexa, na solução do solo, é formada de proteinas, ligninas e hemicelulose, sem valor direto para a nutrição dos vegetais superiores. Entretanto, estes compostos são aproveitados por microrganismos que vivem no solo e água do lençol freático (água intersticial) dos solos arenosos.

Através do trabalho de transformação enzimática destes compostos, os microrganismos adquirem a energia indispensável ao seu metabolismo e o nitrogênio liberado, dos compostos que sofrem este desdobramento, pode seguir duas direções: ou é sintetizado para compostos celulares dos próprios organismos transformadores ou permanece no solo sob a forma de compostos mais simples, como por exemplo, amônia.

Os compostos nitrogenados no ecossistema, provêm essencialmente dos resíduos orgânicos vegetais, pois os solos de areia branca são pobres em compostos nitrogenados de origem inorgânica. A regularidade e quantidade destes dependem, entretanto, da velocidade do desdobramento. Esse nitrogênio incorporado aos restos de vegetais, microrganismos e água do solo, quando da derrubada e queima da vegetação natural em equilíbrio biológico, retorna rapidamente à atmosfera sob a forma molecular de N2 ou N2O, tornando estes solos deficientes em compostos nitrogenados (Brinkmann & Nascimento, 1973).

Na Amazônia Central, área próxima de Manaus, há uma introdução de compostos nitrogenados pelo "litter" na ordem de 106 kg/ha/ano na mata de terra firme (Klinge & Rodrigues, 1968). Através das precipitações pluviais esta introdução é da ordem de 10 kg de N-total; 3,2 kg de N-amoniacal; 2,5 kg de N-orgânico e 2,5 kg de N-nitratos/ha/ano (Anon. 1972 a). Além disso, as condições de elevadas temperaturas e umidade, predominantes no ecossistema em questão (Ribeiro & Santos, 1975), aceleram o desdobramento de compostos nitrogenados mais complexos.

MATERIAL E MÉTODOS

No período de março de 1973 a setembro de 1974, excetuando o período seco (setembro de 1973 a fevereiro de 1974), foram analisadas amostras de água do lençol freático em quatro locais do ecossistema *Campina Amazônica*, com relação aos compostos nitrogenados na solução do solo em uma formação arenosa ao longo da rodovia BR-174 (tre-

 ^{(1) —} Trabalho inteiramente subvencionado pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

^{(2) —} Instituto Nacional de Pesquisas da Amazônia, Manaus.

cho Manaus-Caracaraí) km 60, pertencente ao INPA (Long. 60°00'00" W e Lat. 2°30'00" S), denominada Reserva Biológica de Campina (Fig. 1).

As amostras foram colhidas semanalmente de poços instalados em diferentes situações ecológicas. Estes são tubos de polietileno de 5" de diâmetro, enterrados no solo a profundidade variáveis (P_1 — 4,8 m; P_2 — 2,5 m; P_3 — 2,1 m; P_4 — 1,8 m), tendo a extremidade inferior fechada e suas paredes ranhuradas até uma altura de 1,5 m, permitindo o livre movimento da água dentro do tubo.

A comunidade florestal é referida na literatura como "Campina Forest in the Rio Negro Region" (Takeuchi, 1961). Sua estrutura consiste de árvores em três estratos, quase sempre cobertas de epífitas e lianas. O estrato

mais alto da Campina está representado pelo Macucu (Aldina latifolia Benth, Leguminosa) e Casca Doce (Glycoxylon inophyllum, Sapotácea). Os estratos inferiores têm composição florística ainda indefinida.

O solo, do tipo Regosol (IPEAAOC, 1971), caracteriza-se por apresentar um perfil do tipo AC. Aparece com o horizonte orgânico pouco profundo, constituído de u'a camada de húmus de 1 — 5 cm sob o Macucu e nas ilhas de mato formadas em sua maior parte de Casca Doce, apresenta acumulação de material parcialmente decomposto de até 30 cm de espessura.

As raízes das plantas encontram-se limitadas à camada de material em decomposição e raramente alcançam 50 cm de profundidade (Fig. 2), visto que elas exploram ao máximo a manta orgânica que recobre o solo.

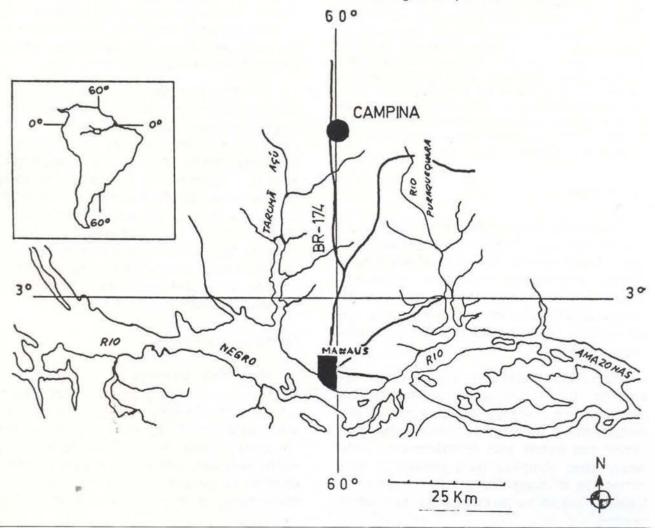


Fig. 1 — Local de trabalho próximo de Manaus.

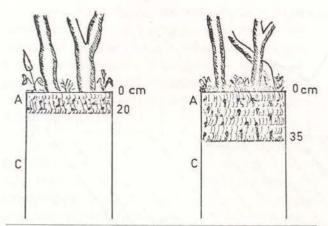


Fig. 2 — Representação esquemática da distribuibuição das raízes no solo da Campina.

Todo o perfil apresenta-se arenoso com estrutura de grãos individuais, solto e muito friável, aparecendo seixos após os 3 metros de profundidade misturados com caolim.

AMOSTRAS E PROCEDIMENTOS ANALÍTICOS

- 1 **Nitrogênio amoniacal:** foi determinado por nesslerização direta, sendo que as amostras colhidas no campo foram fixadas com 5 ml de H₂SO₄ 4N (IBP, Handbook n.º 8. 1969) em frascos de polietileno de 1000 ml a fim de eliminar a possibilidade de oxidação.
- 2 **Nitritos e nitratos:** usou-se o processo de (Grasshof, 1964) adaptado para as condições de trabalho na Amazônia Central. As amostras foram tratadas com CHCl₃ a fim de minimizar as transformações bacterianas. No laboratório foram submetidas a tratamento com soluções de NaOH e ZnSO₄ a 10% para eliminar a coloração produzida pelo material orgânico coloidal.
- 3 Nitrogênio de Kjeldhal: foi determinado em amostras normais (sem tratamento prévio); no laboratório 1000 ml foram tratados com 3 ml de H₂SO₄ concentrado e mistura reativa de Selênio (Reagente Merck n.° 8030) sob temperatura controlada até completa oxidação do mat€rial orgânico.
- 4 Nitrogênio total: foi calculado como a soma das frações (N-Kj)+(N-NO₂)+(N-NO₃).
- 5 Nitrogênio orgânico: calculado como a diferença entre as frações (N-Kj)-(N-NH₄).

RESULTADOS

O nitrogênio amoniacal liberado nos solos ácidos como o da Campina (pH 3,0) é particularmente importante para a nutrição dos vegetais superiores. A concentração de nitrogênio amoniacal na água do lençol freático (Tabela 1 e figura 3) apresenta variações características para cada parte do ecossistema.

TABELA 1

Amônia livre N-NH₄ (ug/1)

Médias mensais

Mês	CAMPINA				
	\mathbf{P}_1	P ₂	P ₃	P	
III. 1973	148	211	219	433	
IV	259	312	203	267	
V	235	334	193	325	
VI	353	512	222	375	
VII	239	254	161	310	
VIII	120	198	179	203	
IX	-	283	141	236	
III. 1974	145	180	116	266	
IV	180	240	92	194	
V	122	248	123	210	
VI	156	246	123	212	
VII	160	252	152	215	
VIII	_	287	200	212	
IX	-	216	138	172	
Minima	78	145	55	103	
Máxima	403	655	324	641	
Média	192	269	162	259	

No período de março a setembro de 1973, devido as condições climáticas e a conseqüente mobilização do lençol freático, houve maior variação das concentrações de nitrogênio amoniacal em todos os poços. No período de março a setembro de 1974, esta variação foi menos acentuada, podendo ser observado que os poços de n.º 1 e 3, por estarem localizados em manchas de areia branca e afastados da zona de deposição dos detritos, apresentam concentrações mais baixas que os de n.º 2 e 4, evidenciando assim o trabalho de desdobramento do material orgânico vegetal por parte de microrganismos.

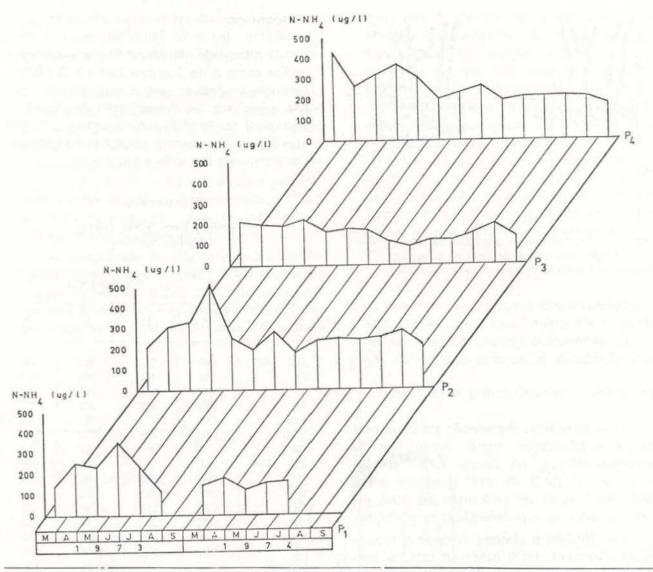


Fig. 3 — Variações mensais de Nitrogênio amoniacal.

Nitritos e nitratos: Nos solos de areia branca o processo de nitrificação fica bastante inibido devido às condições ácidas do meio, e a oxidação amônia-nitritos-nitratos se realiza muito lentamente. Sendo esta troca bastante lenta a concentração de nitritos nas amostras foram sempre nulas (abaixo da sensibilidade do método 1 ug/l).

Nas áreas onde estão localizados os pocos n.º 1 e 3, não existindo acumulação de material caído "litter", a água do solo em seu movimento ascendente e descendente entra em contato com o ar contido nos espaços porosos do solo arenoso, sendo constantemente oxigenada, permitindo o desenvolvimento de uma flora bacteriana, fungos e actinomicetos que em presença de oxigênio dissolvido na água desdobram o nitrogênio amoniacal, aparecendo nestes locais significativas concentrações de nitratos (Tabela 2 e figura 4), o que não acontece nos poços n.º 2 e 4 localizados na zona de acumulação de material vegetal. Aí o oxigênio contido no solo é utilizado para a respiração da fauna existente nos horizontes iniciais do solo e oxidação do material orgânico, tornando-se nestes locais a água do lençol freático pobre em oxigênio dissolvido (Figura 5), não permitindo o desenvolvimento da microflora bacteriana.

Estudos iniciais revelaram a existência de ± 100 000 colônias de bactérias e fungos por m! de água no poço n.º 3 (Brinkmann, inédito).

Sendo esta forma de nitrogênio a mais aproveitada para a formação dos corpos orgânicos, as baixas concentrações mostram que a medida com que a oxidação se realiza, nitratos são absorvidos do meio e voltam a integrar o ciclo produtivo da vegetação e do solo no ecossistema.

O nitrogênio de crigem orgânica na água do solo (Tabela 3 e figura 6), representa o produto final do desdobramento dos compostos nitrogenados incorporados ao material vegetal e restos de microrganismos; o complexo é formado pelas frações dos ácidos orgânicos (húmico, fúlvico, apocrénico), ligninas e hemicelulose, que constituem o colóide do solo. As variações apresentadas são características das situações ecológicas dos poços.

O nitrogênio total representa o somatório das frações orgânicas e inorgânicas na solução do solo. Devido a deficiência de nitritos e nitratos a concentração de N-total é, pràticamente, igual à concentração de N-Kj (Tabelas 4 e 5). Nos solos de areia branca em equilíbrio biológico, o nitrogênio não é fator limitante para o desenvolvimento da comunidade florestal (Figuras 7 e 8).

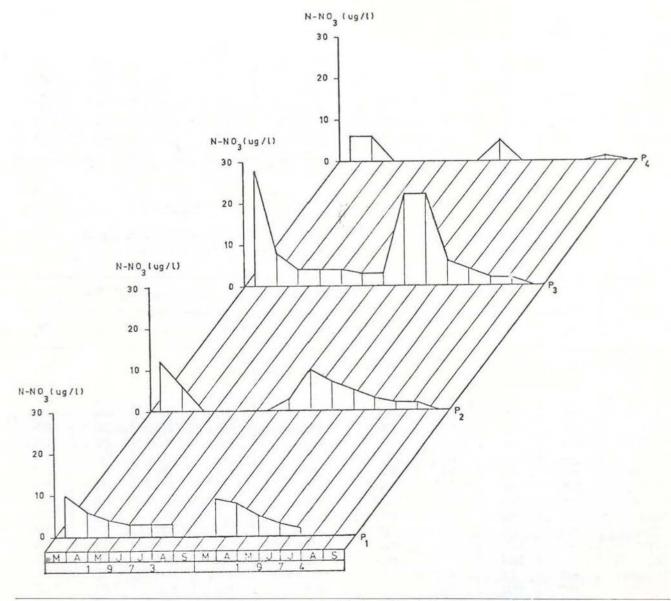


Fig. 4 — Variações mensais de Nitrogênio nítrico.

TABELA 2

Nitratos N-NO₃ (ug/1)

Médias mensais

TABELA 3 Nitrogênio orgânico (ug/1) Médias mensais

Mês	CAMPINA				
	P ₁	P ₂	P ₃	P ₄	
III. 1973	10	12	28	6	
IV	6	6	8	6	
V	4	0	4	0	
VI	3	J	4	0	
VII	3	0	4	0	
VIII	3	0	3	0	
IX	_	3	3	0	
III. 1974	9	10	22	5	
IV	8	7	22		
V	5	5	6	0	
VI	3	3	4	0	
VII	2	2	2	0	
VIII	_	2	2	1	
IX	-	0	0	0	
Mínima	1	1	1	1	
Máxima	25	55	60	10	
Média	5	4	8	1	

Mês	CAMPINA				
	Pı	P ₂	P ₃	P ₄	
III. 1973	655	661	618	473	
IV	484	398	333	524	
v	382	625	199	497	
VI	297	394	212	466	
VII	535	588	545	420	
VIII	486	503	479	506	
IX	_	844	644	804	
III. 1974	328	314	230	537	
IV	426	649	289	660	
v	533	703	330	794	
VI	480	709	309	717	
VII !	595	734	353	731	
VIII	-	925	622	840	
IX	_	897	737	911	
Minima	223	270	156	300	
Máxima	875	1319	861	1524	
Média	473	639	421	634	

TABELA 4

Nitrogênio total (ug/1)

Médias mensais

TABELA 5 Nitrogênio de Kjeldhal (ug/1) Médias mensais

Mês -		CAI	MPINA		200
	P ₁	P ₂	P ₃	P ₄	Mês
III. 1973	813	884	865	906	III. 1973
IV	748	827	564	797	IV
V	621	959	400	828	v
VI	654	906	438	841	VI
VII	797	842	710	730	VII
VIII	609	701	662	709	VIII
IX	_	1134	788	1040	IX
III. 1974	483	624	368	807	III. 1974
IV	578	896	403	854	IV
V	660	956	458	1000	V
VI	640	958	436	928	VI
VII	757	991	507	945	VII
VIII	_	1214	875	1053	VIII
IX		1114	875	1083	IX
Mínima	404	474	292	302	Mínima
Máxima	997	1512	1032	1633	Máxima
Média	669	929	596	894	Média

Mês	CAMPINA				
	P,	P ₂	P ₃	P ₄	
III. 1973	803	872	837	900	
IV	741	824	536	791	
v	617	959	392	822	
VI	651	906	434	841	
VII	794	842	706	730	
VIII	606	701	658	709	
IX	_	1127	785	1040	
III. 1974	474	494	346	803	
IV	570	889	381	854	
V	655	951	452	1000	
VI	636	955	432	928	
VII	755	989	505	946	
VIII	_	1211	873	1052	
IX	_	1114	875	1083	
Mínima	393	458	260	302	
Máxima	993	1510	1031	1627	
Média	663	773	593	892	

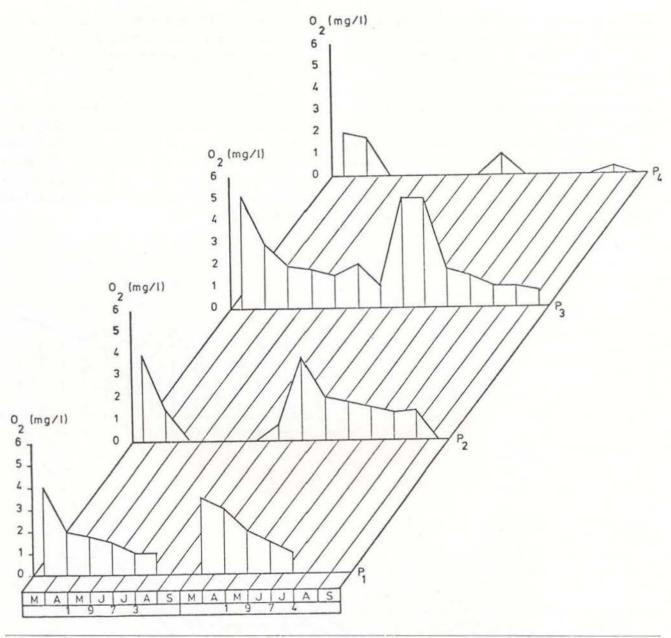


Fig. 5 — Variações mensais de Oxigênio dissolvido.

Os dados analíticos sobre os compostos nitrogenados na solução do solo da Campina estão superiores às demais concentrações encontradas para as águas pretas da Amazônia Central (Anon, 1972 b).

Estas investigações serão intensificadas no decorrer dos próximos anos com o estudo das frações orgânicas existentes na água do solo, material vegetal, solo e atmosfera da floresta, nos estudos integrados do ciclo do nitrogênio na Amazônia Central.

CONCLUSÕES

As principais fontes de nitrogênio na água do solo do ecos sistema Campina Amazônica são: o material em decomposição (litter), água da chuva, água de lavagem da floresta, fixação por leguminosas e subprodutos do metabolismo de microrganismos.

As fases do nitrogênio na solução do solo não são exclusivas nem se desenvolvem em caráter contínuo; existe apenas predominância do nitrogênio orgânico, em face da rápida velocidade de percolação, devido à constituição física arenosa do solo e das condições climáticas que prevalecem no ecossistema.

O ecossistema tem uma tendência natural para perder nitrogênio em excesso da solução do solo, isto porque a área está sujeita a um mecanismo de lixiviação e drenagem intensos e os mecanismos de decomposição atuam com suas ações super-rápidas.

O ecossistema desenvolveu formas especiais para manter uma provisão de nitrogênio suficiente a fim de manter o equilíbrio biológico, a existência deste mecanismo é a grande quantidade de leguminosas nas faixas de areia branca.

Trabalhos integrados de silvicultura, química do solo, agricultura e meio ambiente, a fim de conservar o nitrogênio, poderão ter resultados espetaculares em termos de aproveitamento racional não só dos solos arenosos, mas de todos os grupos de solos na Amazônia Central.

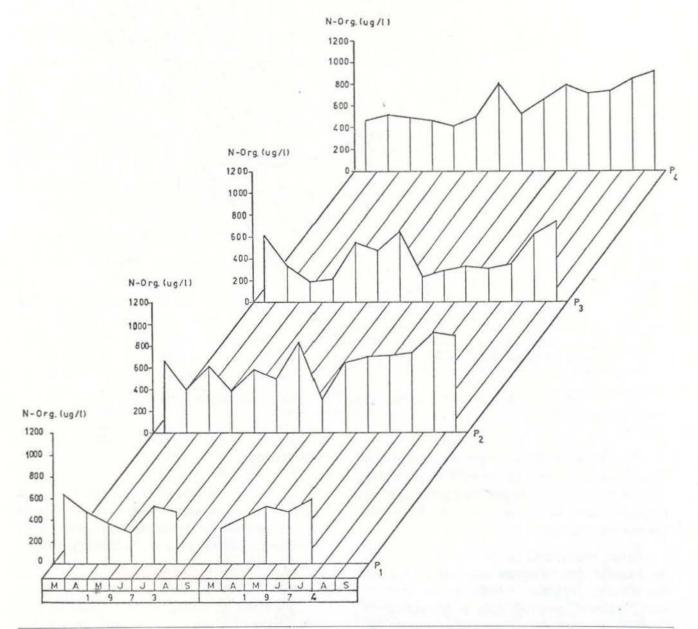


Fig. 6 — Variações mensais de Nitrogênio orgânico.

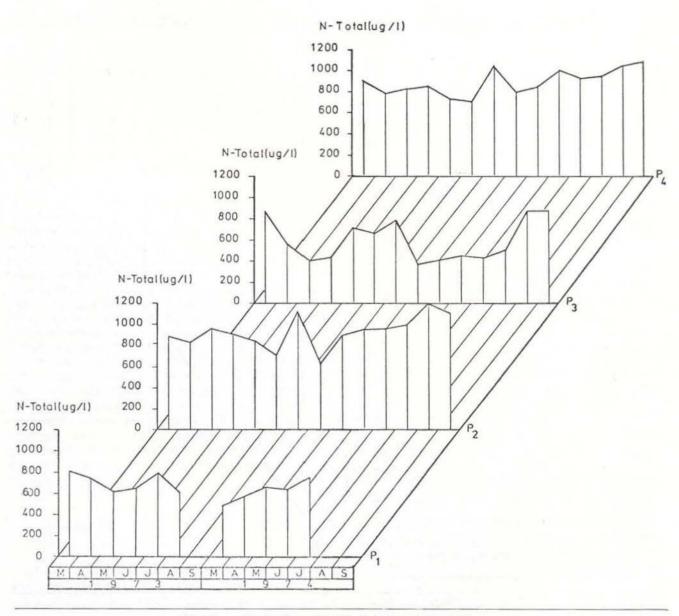


Fig. 7 — Variações mensais de Nitrogênio total.

AGRADECIMENTOS

Expressamos aqui nossos agradecimentos ao Dr. Herbert O. R. Schubart pelas sugestões apresentadas na apreciação do manuscrito, e a Sra. Anne Prance pela versão inglesa do sumário.

SUMMARY

The main source of nitrogen in the water of the soil of the eco-system of the Amazon Campina are the decomposing material, (litter), rain, water running of the vegetation and the biproducts of the metabolism of micro-organisms. Water samples taken from water table from four white sand sites (regosol) were analized for the components of nitrogen (Ammonia, nitrites, nitrates) and the concentration of the organic nitrogen and the total nitrogen were calculated. There was a greater concentration of nitrogen of an organic origin present than that from other origins. Ammoniac nitrogen was the principal product of the formation of organic material by micro-organisms and it had the second largest concentration, while nitrates and nitrites were almost always absent because of the acidity of soil (pH 3,0). There are annual and seazonal variations in the nitrogen compounds. The highest quantities are obtained in the middle of

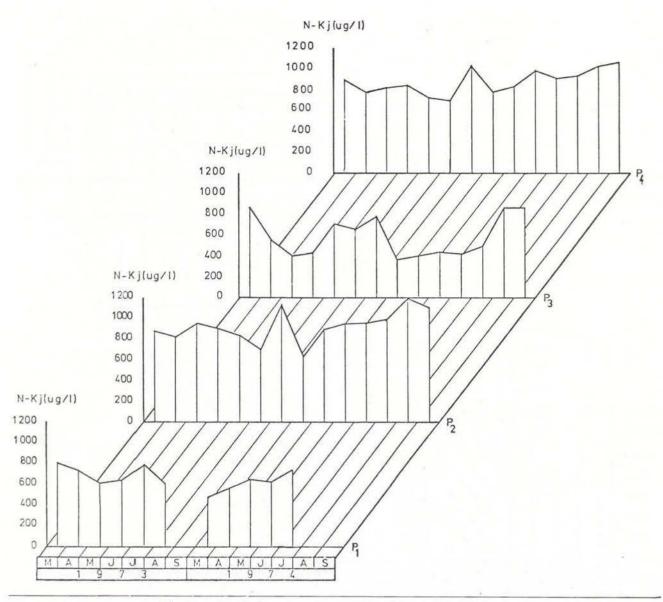


Fig. 8 — Variações mensais de Nitrogênio de Kjeldhal.

dry season owing immobilization of water table. In the natural conditions on white sand nitrogen is not a limiting factor for the development of the natural vegetation.

BIBLIOGRAFIA CITADA

ANON.

1972a — Regenwasseranalysen aus Zentralamazonien, ausgeführt in Manaus, Amazonas, Brasilien, von Dr. Harald Ungemach. Amazoniana, Kiel, 3(2): 186-198.

1972b — Die Ionenfracht des Rio Negro, Staat Amazonas, Brasilien, Nach untersuchung von Dr. Harald Ungemach. Amazoniana, Kiel, 3(2): 175-185. BRINKMANN, W.L.F. & NASCIMENTO, J.C. DO

1973 — The effect slash and burn agriculture on plant nutrients in the Tertiary Region of Central Amazonia. Acta Amazonica, Manaus, 1(3): 55-61.

IPEAAOC

1971 — Solos do Distrito Agropecuário da Suframa. Série solos, Manaus, 1(1): 13-99.

KLINGE, H. & RODRIGUES, W.A.

1968 — Litter Production in an Area Amazonian Terra Firme Forest Part I. Litter-fall. Organic Carbon and total Nitrogen contents. Amazoniana, Kiel, 1(4):287-302.

RIBEIRO, M.N.G. & SANTOS, A. DOS

1975 — Observações climáticas no ecossistema Campina Amazônica. (no prelo).