CONSTITUÍNTES VOLÁTEIS DOS FRUTOS DE Licania tomentosa BENTH.

Eloisa H. A. ANDRADE¹, Maria das G. B. ZOGHBI¹, José Guilherme S. MAIA²

RESUMO — O aroma dos frutos de *Licania tomentosa* foi obtido por hidrodestilação e extração com pentano, e seus constituintes voláteis identificados através de cromatografia de gás acoplada à espectrometria de massas (CG/EM). Os principais componentes identificados foram 1-hexanol (11,1%), 4-heptanol (10,5%), butanoato de 3-metilbutila (7,4%), hexanal (7,1%) e mirceno (6,4%).

Palavras-chave: Chrysobalanaceae, oiti, oitizeiro, aroma, álcoois, ésteres, aldeidos, CG-EM.

Volatile Constituents of the Fruits of Licania tomentosa Benth.

SUMMARY — The aroma of *Licania tomentosa* was obtained by hydrodistillation and extraction with pentane and their volatiles constituents were identified by gas chromatography - mass spectrometry (GC/MS). The main components identified were 1-hexanol (11.1%), 4-heptanol (10.5%), 3-methylbutyl butanoate (7.4%), hexanal (7.1%) and myrcene (6.4%).

Key words: Chrysobalanaceae, oiti, oitizeiro, aroma, alcohols, esters, aldehydes, GC-MS.

INTRODUÇÃO

O gênero Licania é predominantemente neotropical (Prance, 1979), e composto por árvores de pequeno e grande porte, ou arbustos, raramente sufrútices; amplamente distribuído no Novo Mundo, com 150 espécies que ocorrem desde o México, Flórida, Antilhas, até o Sul do Brasil (Prance, 1982). Licania tomentosa (Moquilea tomentosa Benth., Pteragina odorata Arruda), conhecida popularmente por oiti, oiti-da-praia, oiti-cagão, oiti-mirim e goiti, é uma árvore muito bela, de 6 a 10 m de altura, procedente das restingas costeiras do Nordeste. Seu tronco esgalhado a baixa altura e, copa bastante ampla, levou ao seu cultivo e uso em arborização de ruas de cidades situadas nas regiões amazônica e nordestina, como árvore de sombreamento. Possui fruto drupa elipsóidea ou fusiforme, casca amarela mesclada de verde quando madura, cerca de 6-8 cm de comprimento; polpa pastosa, algo pegajosa, amarelada, de odor forte; caroço volumoso e oblongo. Floresce de julho a agosto, com frutos maduros nos meses de dezembro e janeiro (Prance & Silva, 1975; Cavalcante, 1991). Como parte do inventário da composição química do aroma dos frutos das Amazônia, apresenta-se neste trabalho os resultados obtidos com os frutos do oiti. coletados em Belém, janeiro de 1997. No levantamento da literatura não foi encontrada nenhuma referência sobre o estudo químico dos constituintes voláteis dos frutos de Licania tomentosa.

MATERIAL E MÉTODOS

Os frutos do oiti foram coletados no estacionamento do aeroporto de Valde-Cães, em Belém (PA). A amostra foi identificada por comparação com as

Museu Paraense Emílio Goeldi, Departamento de Botânica, CP 399, 66040-170 Belém, Brasil

² Universidade Federal do Pará, Departamento de Química, CP 8600, 66075-900, Belém, Brasil

exsicatas existentes no herbário do Museu Paraense Emílio Goeldi. A polpa e a casca dos frutos frescos (63 g) foram submetidos a hidrodestilação por uma hora usando um micro-sistema de destilação Chrompack; o aroma foi extraído com pentano (2 ml). A análise por CG/EM foi realizada em sistema CG/EM Finnigan (cromatógrafo de gás Varian 3400; espectrômetro de massas Finnigan INCOS-XL), equipado com coluna capilar de sílica fundida DB-5 (30 m x 0,25 mm d.i.; 0,25 µm de espessura do filme), nas seguintes condições operacionais: programa de

temperatura, 40°-60°C (2°C/min), 60° - 260°C (4°C/min); temperatura do injetor, 220°C; gás de arraste, hélio numa velocidade linear de 32 cm/seg (medido a 100°C); tipo de injeção: splitless; espectrômetro de massas: impacto eletrônico, 70 eV; temperatura da fonte de íons, 180°C. Os constituintes voláteis foram identificados através da comparação dos seus espectros de massas e índices de retenção com os de substâncias-padrão existentes nas bibliotecas de referências utilizadas e, com dados da literatura (Jennings, 1980; Adams, 1995).

Tabela 1. Constituintes voláteis do aroma dos frutos de Licania tomentosa.

Constituintes	Índice de retenção	Aroma (%)
Hexanal	798	7,1
Butanoato de etila	800	3,1
Butanoato de isopropila	820	5,1
trans-2-Hexenal	839	3,7
cis-3-Hexen-1-ol	848	2,5
Acetato de isoamila	863	0,6
1-Hexanol	867	11,1
4-Heptanol	880	10,5
Nonano	896	1,8
Benzaldeido	954	1,0
Sabineno	969	0,7
5-Metila-5-hexen-2-ona	975	0,4
Mirceno	987	6,4
Butanoato de butila	990	3,4
Hexanoato de etila	996	1,4
Acetato de hexila	1009	1,0
Isobutirato de pentila	1054	7,4
Butanoato de isopentila	1067	5,4
1-Octanol	1069	0,4
1,2-Heptanediol	1091	3,6
Undecano	1096	0,5
Butanoato de pentila	1099	1,5
cis-β-Diidroterpineol	1142	0,1
Metilbutanoato de 3-pentila	1151	0,3
4-Terpineol	1172	0,2
Butanoato de hexila	1176	3,5
Dodecano	1202	0,2
Hexanoato de pentila	1248	1,0
Safrol	1284	1,6
(E,Z)-2,4-Decadienal	1300	0,3
Hexanoato de hexila	1380	0,2
Hexadecano	1586	0,1
Ácido palmitico	1964	0,6

RESULTADOS E DISCUSSÃO

A Tabela 1 relaciona os componentes voláteis identificados no aroma dos frutos de *L. tomentosa*. Os principais constituíntes identificados foram 1-hexanol (11,1%), 4-heptanol (10,5%), butanoato de 3-metilbutila (7,4%), hexanal (7,1%), mirceno (6,4%) e butanoato de etenila (5,4%). Alcoois e ésteres alifáticos, além de terpenos, são constituíntes importantes e de ocorrência comum em aromas de frutos (Van Straten et al., 1983-1988). Do óleo das sementes de oiticica (Licania rigida) foram isolados os ácidos αlicânico e α-eleosteárico que não são apropriados para o consumo humano (Kalfmann & Sud, 1960). Plantas dos gêneros Licania, Parinarium e Couepia, da família Chrysobalanaceae, são conhecidas por conterem em suas sementes o ácido licânico (Badami & Patil, 1981). No óleo das sementes de Couepia edulis e C. longipendula, que ocorrem na Amazônia, foram identificados os ácidos α-licânico e α-eleosteárico (Spitzer et al., 1991a; 1991b). Pelo método simultâneo de destilação por arraste a vapor e extração com solvente (pentano), utilizado na obtenção dos voláteis de L. tomentosa, não foi possível separar ácidos graxos do tipo α-licânico ou α-eleosteárico. No entanto, como citado acima, analisando a questão do ponto de vista quimiotaxonômico é provável que a polpa de L. tomentosa contenha compostos similares e, portanto, seja tóxica como fonte de alimentos.

Bibliografia Citada

Adams, R. P. 1995. Identification of Essential Oil Components by Gas Chromatography/ Mass Spectroscopy. Allured Pub-

- lishing Corporation, Illinois, 499pp.
- Badami, R. C.; Patil, K. B. 1981. Prog. Lipid Res.,
 19:119. In: Spitzer, V., Marx. F., Maia, J.G.S.
 & Pfeilsticker, K. 1991. Identification of Conjugated Fatty Acids in the Seed Oil of Acioa edulis (Prance) syn. Couepia edulis (Chrysobalanaceae). Jaocs, 68:183.
- Cavalcante, P. B. 1991. Frutas Comestíveis da Amazônia. Belém, CEJUP, 279p.
- Gomes, P. 1972. Fruticultura Brasileira. São Paulo, Nobel. 446p.
- Jennings, W.; Shibamoto, T. 1980. *Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography*. New York, Academic Press, 472p.
- Kalfmann, H. P.; Sud, R. K. 1960. Fette Seifen Anstrichm., 62:160. In: Spitzer, V., Marx, F., Maia, J.G.S.; Pfeilsticker, K. 1991. Identification of Conjugated Fatty Acids in the Seed Oil of Acioa edulis (Prance) syn. Couepia edulis (Chrysobalanaceae). Jaocs, 68:183.
- Prance, G. T.; da Silva, M. F. 1975. Arvores de Manaus. Manaus, INPA, 312p.
- Prance, G. T. 1979. New Genera and Species of Chrysobalanaceae from Malesia and Oceania. *Brittonia*, 31(1):79-95.
- Prance, G.T. 1982. Chrysobalanaceae, p 325-487, In: Flora de Venezuela, Vol. 4, 2ª parte, Ediciones Fundación Educación Ambiental, 1982, 487p.
- Spitzer, V.; Marx, F.; Maia, J. G. S.; Pfeilsticker, K. 1991a. Identification of Conjugated Fatty Acids in the Seed Oil of *Acioa edulis* (Prance) syn. *Couepia edulis* (Chrysobalanaceae). *Jaocs*, 68:183.
- Spitzer, V.; Marx, F.; Maia, J. G. S.; Pfeilsticker, K. 1991b. Occurrence of Conjugated Fatty Acids in the seed Oil of Couepia longipendula (Chrysobalanaceae). Jaocs, 68:440.
- Van Straten, S.; Maarse, H.; de Beauveser, J.C.; Visscher, C. A. 1983-1988. Volatiles Compounds in Foods, 5th Edn. Division for Nutrition and Food Research TNO, Zeist. In: Mac Leod, G.; Ames, J. M. 1990. Volatile Components of Starfruit. Phytochemistry, 29:165.

Aceito para publicação em 29.10.97