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For several decades, the vascular endothelium was
considered a unicellular layer acting as a semipermeable
membrane between the blood and the interstitium. Recently,
it has been demonstrated that the endothelium performs a
large range of important biological functions, participating
in several metabolic and regulatory pathways. Along with
long-known specialized functions like gaseous exchange in
the pulmonary circulation and phagocytosis in the hepatic
and splenic circulation, the vascular endothelium performs
universal roles in the circulation that include participation in
thrombosis and thrombolytic control, vascular growth,
platelet and leukocyte interactions with the vascular wall,
and vasomotor tone.

The study of endothelium-dependent vasomotor
reactivity has produced over the years, scientific evidence
fundamental for the understanding of the endothelium’s
role in physiological and pathological situations. In 1977,
Moncada et al, published the first report indicating that the
endothelium plays a central role in the control of vascular
tone via the production of vasoactive substances 1. In 1980,
Furchgott and Zawadzki 2 demonstrated in an experimental
preparation of the rabbit aorta, the obligatory role played by
endothelial cells in vascular relaxation in response to effec-
tors like acetylcholine, and postulated the existence of a
vascular relaxing factor derived from the endothelium. In
1987, two research groups, lead by Ignarro et al 3, and by
Palmer et al 4, demonstrated that the relaxing factor derived
from the endothelium was nitric oxide, an odorless gas until
then considered as a mere pollutant.

Endothelial dysfunction was first characterized in hu-
mans in 1986 by Ludmer et al, 5 who demonstrated that athe-
rosclerotic coronary arteries contracted in response to in-
tracoronary infusion of acetylcholine, while normal corona-
ries showed dilatation. In 1992, endothelial dysfunction was
documented by Celermajer et al 6 in children and otherwise
healthy young adults with risk factors for atherosclerosis.

Under physiological conditions, the endothelium
keeps a reduced vasomotor tone, prevents leukocyte and
platelet adhesion, and inhibits the proliferation of vascular

smooth muscle cells. In contrast, endothelial dysfunction ap-
pears to play a pathogenic role in the initial development of
atherosclerosis 7-9 and of unstable coronary syndromes 10,
being associated with atherosclerotic disease risk factors 11-18,
and being present even before vascular involvement be-
comes evident 6,19-21.

Recent clinical studies have demonstrated that some
drugs well known to reduce the incidence of cardiovascular
events, improve endothelial function 22-25. On the other
hand, clinical interventions like the continuous administra-
tion of organic nitrates and percutaneous coronary inter-
ventions may be associated with adverse effects on the
vascular endothelium. In the present article, we will discuss
vascular endothelial function versus dysfunction, and
their impact on cardiovascular disease, in particular atheros-
clerosis.

The endothelium in cardiovascular homeostasis -
Vascular endothelium may be considered a dynamic, hetero-
geneous organ, having secretory, synthesizing, metabolic,
and immunological functions, vital to human beings 26. The
endothelium regulates the flow of nutrient substances, of
various biologically active molecules, and of blood cells
through the entire human body. It is selectively permeable,
possessing various cell membrane receptors for molecules
that include proteins (growth factors, coagulation, and
anticoagulation proteins), lipid-transporting particles
(LDL), metabolites (nitric oxide, serotonin), and hormones
(endothelin-1). The endothelium plays a central role in the
regulation of  vascular tone and blood flow by the secretion
and capture of  paracrine vasoactive substances, contrac-
ting or dilating specific vascular beds in response to
various stimuli.

The endothelium also possesses important anticoa-
gulant, antiplatelet, and fibrinolytic actions. Endothelial
cells are the largest sites of reactions involving thrombin 27.
Some of the stimuli that activate platelets (adenosine di-
phosphate and thrombin) also stimulate the release of
prostacyclin by the endothelium, inhibiting platelet aggre-
gation 1,28. In response to stimuli like noradrenaline, vaso-
pressin, thrombin, and vascular stasis, endothelial cells se-
crete tissue plasminogen activator 29, a potent thrombolytic
agent with wide clinical application, thus providing a
defense against uncontrolled coagulation. Other hemosta-
tic factors secreted by the endothelium, include plasmino-
gen activating factor (PAI-1) inhibitor, von Willebrand
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factor, and thrombomodulin. When stimulated by certain
physical or chemical factors, the endothelial cell undergoes
phenotypical modifications that determine its transforma-
tion into a thrombogenic surface. The dynamic equilibrium
existing between these two states often permits the endo-
thelial cell to return to its basal state, once the thrombogenic
stimulus has ceased.

Injury or activation in response to various pathologi-
cal factors leads to modifications of the endothelial cell’s re-
gulatory functions. The endothelium becomes incapable of
maintaining vascular homeostasis. This characterizes a
condition of endothelial dysfunction, which can be defined
as an imbalance between relaxing and contracting factors,
between procoagulant and anticoagulant mediators, or
between stimulants and inhibitors of cell growth and proli-
feration, respectively 30.

Endothelial vasomotor function - The endothelium
plays a fundamental role in the regulation of vasomotor tone
via the synthesis and release of vasodilator substancesni-
tric oxide, prostacyclin, and the endothelium-derived hyper-
polarizing factor, as well as by the liberation of vasocons-
trictor substances like endothelin-1 and platelet-activating
factor. Nitric oxide is probably the main mediator of va-
somotor tone in physiological situations, small amounts
being continuously secreted by the endothelial cells 4,31 to
maintain a reduced arterial tone in the systemic and pulmo-
nary circulations 32. The vasodilator activity of nitric oxide is
due to its interaction with the iron atom of the heme
prosthetic group of guanylate cyclase, causing its activa-
tion and increasing the intracellular levels of cyclic guanidi-
ne monophosphate (cGMP), 33. In smooth muscle cells, this
decreases intracellular calcium concentration, causing vas-
cular relaxation 34.

Nitric oxide is a free radical produced by the oxidation
of L-arginine to L-citrulline, via nitric oxide synthetase, an
enzyme that has at least three isoforms 35. Nitric oxide
synthetase type III is a constitutive enzyme of the endothe-
lial cell, which continuously produces small amounts of
nitric oxide. In contrast to other vasomotor agents (prosta-
cyclin, endothelin-1, and the platelet activating factor),
which are synthesized primarily in response to local factors,
the production of nitric oxide is regulated by various chemi-
cal and physical stimuli.

Endothelial cell constitutive nitric oxide synthetase
can be activated by stimuli that include thrombin, adeno-
sine diphosphate, bradykinin, substance P, muscarinic ago-
nists, catecholamines, and shear stress 12. Estrogens and
shear stress stimulate the expression of this synthase’s
gene. Two other forms of nitric oxide synthetase are
presently known: the neuronal constitutive form (type I)
and the inducible form (type II). The latter has been obser-
ved in various cell types, including vascular smooth mus-
cle, the endothelium, and macrophages. Inducible nitric oxi-
de synthetase is activated by cytokines like interleukin-1β
and the tumor-necrosing factor, being capable of producing
large amounts of nitric oxide in inflammatory processes.

In the presence of a normal endothelium, the release of
nitric oxide in response to catecholamines counteracts alpha-
adrenergic vasoconstrictor effects. In contrast, when the
endothelium is dysfunctional, an increase in coronary va-
soconstriction in response to adrenergic stimuli occurs 36,37.
The increased synthesis of nitric oxide consequent to shear
stress, contributes to the flow-mediated phenomenon of
vasodilatation that is an important auto-regulatory physio-
logical mechanism 38. The production of nitric oxide can be
blocked in vivo by analogues of L-arginine, like NG–
monomethyl-L-arginine (L-NMMA). Such blockade has
been considerably useful for the study of the role of nitric
oxide in physiological and pathological situations. The
infusion of L-NMMA in the brachial human circulation
leads to an increase in vascular peripheral resistance, and
intravenous infusion causes an increase in systemic arterial
pressure. These findings indicate that the vasculature is in
a constant state of vasodilatation due to the continuous
release of nitric oxide (fig. 1).

In addition to the modulation of vasomotor tone,
endothelial cell-derived nitric oxide has several important
vascular effects. Nitric oxide inhibits adhesion, activation,
and platelet aggregation 39 and promotes platelet deaggre-
gation, in part by a cGMP-dependent mechanism. Nitric oxide
produced in response to thrombin inhibits platelets and mo-
dulates blood coagulation. Nitric oxide derived from the endo-
thelium also inhibits leukocyte adhesion to the endothelium
40,41, migration 42, and proliferation 43 of vascular smooth
muscle cells and stimulates the migration and proliferation
of endothelial cells 44.

The contribution of endothelial cells to the regulation
of vasomotor tone involves the production of other vasodi-
lator compounds like prostacyclin and the endothelium-de-
rived hyperpolarizing factor. Prostacyclin is synthesized
from arachidonic acid by cyclo-oxygenase 1, being rapidly
produced and released from endothelial cells 45 in response
to humoral and hemodynamic factors. It interacts synergi-
cally with nitric oxide, causing vasodilatation and inhibition
of platelet adhesion and aggregation 46. The stimulation of
adenyl cyclase and increased intracellular concentration of
cyclic adenosine monophosphate in smooth muscle cells
and platelets mediate its actions. Prostacyclin does not
appear to be continuously produced by endothelial cells 47,
but to be synthesized in response to specific stimuli like
bradykinin, adenosine diphosphate, hypoxia, and increa-
sed shear stress.

Endothelium-derived hyperpolarizing factor, another
vasodilator substance produced by the endothelium, pro-
motes vascular smooth muscle cell relaxation by increasing
cell membrane conductance of potassium 48. This factor is
also secreted in response to acetylcholine and blocked by
ouabain, an inhibitor of sodium/potassium ATPase. The en-
dothelial-derived hyperpolarizing factor has not yet been
isolated, and its physiological role remains uncertain.

In contrast, endothelial cells produce the most potent
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vasoconstrictor known, endothelin-1 49. Endothelins
constitute a family of polypeptides produced by various
cell types. Of the three isoforms known, endothelial cells
appear to produce only endothelin-1. This is a 21 amino-
acid peptide formed from its inactive precursor pre-endo-
thelin-1, which seems to exert a role as an arterial blood flow
regulator in both normal and pathologic conditions 50. In res-
ponse to stimuli like thrombin, adrenalin, angiotensin II,
hypoxia, and increased shear stress, endothelin-1 is relea-
sed from endothelial cells, binding to specific receptors in
vascular smooth muscle cells causing increased intracellu-
lar concentration of calcium leading to vasoconstriction 51.
Intramyocardial vessels are more sensitive to endothelin,
suggesting that this peptide plays a major role in blood flow
control. It is interesting that in functionally intact endothe-
lia, endothelin stimulates the production of nitric oxide and
of prostacyclin, which, therefore, modulates vasoconstric-
tor action and reduces the synthesis of endothelin itself.
Two types of vascular receptors for endothelin have been
identified. Receptor ETB is observed in endothelial cells,
being responsible for the stimulation of nitric oxide and
prostacyclin formation. Receptors ETA and ETB, observed
in smooth muscle cells, mediate contraction and prolifera-
tion of these cells. A large number of endothelin receptor
antagonists developed in recent years, are being tested ex-
perimentally and clinically.

Thromboxane A2 and prostaglandin H2 are cons-
trictor factors also secreted by the endothelium. They acti-
vate the thromboxane receptor in smooth muscle cells and
platelets, in opposition to the effects of nitric oxide and
prostacyclin. However, the role of these substances in coro-
nary circulation has not been clearly established. Platelet
activation factor is another vasoconstrictor synthesized
and released by endothelial cells in response to humoral
and hemodynamic stimuli, which probably participates in
the regulation of vasomotor tone. Finally, the endothelium
also expresses the angiotensin-converting enzyme, which
is identical to kinase II, which metabolizes bradykinin. The-
refore, the angiotensin-converting enzyme also determines
local levels of bradykinin, which stimulates nitric oxide and
prostaglandin production. In addition, the angiotensin-
converting enzyme synthesizes angiotensin, which directly
stimulates the production of endothelin.

Pathophysiology of endothelial dysfunction – Endo-
thelial dysfunction can be determined by the reduction of
the endothelium-derived vasodilators, by local increases in
antagonists to these substances, or by an association of
these two factors (fig. 2). Reduction in the synthesis or local
availability of nitric oxide have been frequently considered
the major causes of endothelial dysfunction in various cli-
nical conditions. Nitric oxide release from the endothelium is

Fig. 1 – Diagram describing the action of various effectors on functionally intact endothelium. Receptor stimulation or direct action of these agents led to the liberation of
endothelium-derived relaxation factors (nitric oxide, prostacyclin) that cause vascular smooth muscle cells to dilate. In contrast, serotonin, catecholamines, endothelin,
acetylcholine, thrombin, hypoxia, adenosine diphosphate (ADP), and the stress of shearing (blood flow) may cause contraction of vascular smooth muscle cells. In functionally
intact endothelium, vasodilatation predominates (H2- histamine receptor, a2- a-adrenergic receptor; 5-HT- serotoninergic receptor; B- bradykinin receptor; M- muscarinic recep-
tor; P- purinergic receptor; ET- endothelin receptor; T- thrombin receptor).
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decreased in patients with established coronary atheroscle-
rosis 5,52. A reduction in vascular availability of nitric oxide
determines damage to endothelium-dependent vasodilata-
tion, an increased tendency for platelet aggregation and
adhesion of monocytes to the endothelium, and influences
the proliferation of vascular smooth muscle cells, probably
contributing to the onset and progression of atheroscle-
rosis. In animal models of hypercholesterolemia, pharma-
cological inhibition of nitric oxide synthesis accelerates
atherosclerosis 53, but increased availability of nitric oxide
decreases and may even lead to the regression of the
disease 54,55.

The inactivation of nitric oxide by oxygen-derived free
radicals can be an important factor in the development of en-
dothelial dysfunction 56. Experimental studies suggest that
antioxidant agents may  reestablish endothelial function 57,58.
Vitamin C, a potent antioxidant in vivo and in vitro 59 that
inhibits superoxide-mediated lipid peroxidation 60, improves
endothelial function in the brachial artery of coronary arte-
ry disease patients 61, in patients with diabetes mellitus 62

and in smokers 63.
An increase in endogenous inhibitors of nitric oxide

synthesis may also be involved in the genesis of endothelial
dysfunction. In particular in renal insufficiency, plasma
levels of methylated analogues of arginine (asymmetric
dimethylarginine) are significantly increased and may com-
pete with L-arginine in the synthesis of nitric oxide 64. More
recently, it was demonstrated that asymmetric dimethylar-

ginine levels are increased in young individuals with hyper-
cholesterolemia and that this increase is associated with en-
dothelium-dependent vasomotor dysfunction 65.

Another frequently observed mechanism of vasomo-
tor endothelial dysfunction is the increase of endothelin-1.
High plasma concentrations of endothelin-1 have been re-
ported in myocardial infarction, cardiogenic shock, unsta-
ble angina pectoris, coronary artery disease in general, car-
diac failure, and essential hypertension 66,67. Endothelin-1
action, unopposed by nitric oxide, tends to promote vaso-
constriction and proliferation of vascular smooth muscle
cells in states of endothelial dysfunction 68.

Evaluation of endothelial function – The most fre-
quently employed method in clinical studies of endothelial
function has been the evaluation of endothelium-depen-
dent vasomotor responses to pharmacological stimuli or
modifications of blood flow in conduction arteries and resis-
tance vessels. In humans, the study of endothelial control
of vascular tone is limited by various factors that need to be
considered for adequate interpretation of results obtained.
These limitations are related to the pharmacological and
physical interventions used to stimulate endothelium-de-
pendent mechanisms of vasodilatation and to the methods
used to measure vascular response secondary to such inter-
ventions.

The majority of clinical studies have evaluated endo-
thelial function in regional circulatory beds, in particular

Fig. 2 – Diagram describing the actions of various effectors on dysfunctional endothelium. In the presence of endothelial dysfunction, a reduction in the action of endothelium-
derived relaxation factors occurs, with predominance of vasoconstriction (H2- histamine receptor, a2- a-adrenergic receptor; 5-HT- serotoninergic receptor; B- bradykinin recep-
tor; M- muscarinic receptor; P- purinergic receptor; ET- endothelin receptor; T- thrombin receptor).
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the forearm or the coronary circulation. The administration
of endothelium-dependent agents to regional circulatory
compartments allows the use of relatively low doses. It is
expected that this precaution will prevent the adminis-
tered agent from setting off systemic reflex responses. The
absence of modifications of blood pressure and of heart
rate is normally used as evidence of a purely local effect.
Although, undetected, small systemic effects with conse-
quent reflex activation may occur. Also, the standardiza-
tion of the concentrations administered is difficult to
obtain, due to the variability of blood flow at basal con-
ditions and in response to the administration of endothe-
lium-dependent vasodilators 69. Regarding acetylcholine,
its in vivo concentration is also affected by the action of
circulating pseudocholinesterase. Furthermore, the phy-
siological role of these various agents has not yet been
clearly defined.

Acetylcholine is the most frequently used agent in cli-
nical studies of endothelial function. When infused into
the coronary or brachial circulation of normal individuals,
acetylcholine causes dose-dependent vasodilatation and
increased blood flow. The vasodilatation is partly mediated
by this increased blood flow, which in turn is caused by
arteriolar dilatation with reduction of peripheral resistance.
The direct action on endothelial cells of acetylcholine, asso-
ciated with the increased flow of blood, leads to the produc-
tion and release of nitric oxide, causing tone reduction and
vasodilatation. In opposition, acetylcholine also causes
vasoconstriction by its direct effect on muscarinic recep-
tors of the vascular smooth muscle cells 70,71. In the presence
of endothelial dysfunction, inbalance occurs between the
dilator (endothelium-mediated) and constrictor (smooth
muscle cell-mediated) actions of acetylcholine, with predo-
minance of vasoconstriction.

Other endothelium-dependent vasodilator agents
used for the evaluation of endothelial function, include se-
rotonin, bradykinin, and substance P. While bradykinin and
substance P do not possess vasoconstrictor actions, cau-
sing solely endothelium-dependent vasodilatation, seroto-
nin has a double effect, similar to that of acetylcholine, de-
termining vasoconstriction by direct stimulation of vascu-
lar smooth muscle. Mental activity and exposure to cold can
also be used for the study of endothelial vasomotor func-
tion. These stimuli are associated with the release of cate-
cholamines, which have their vasoconstrictor action accen-
tuated in the presence of endothelial dysfunction 36,37.

The vasomotor response to endothelium-dependent
agents is frequently compared to the response to vasodila-
tors that act independently of the endothelium, like sodium
nitroprusside or nitroglycerin. These substances act by a
common pathway that is the intracellular production or
liberation of nitric oxide, leading to the activation of guany-
late cyclase and relaxation of smooth muscle cells 72,73.

Dilatation of conducting arteries in response to increa-
sed blood flow has also been used as an indicator of endo-
thelial function. One of the stimuli most commonly used to
increase blood flow is reactive hyperemia determined by

ischemia induced by temporary interruption of arterial blood
flow, causing metabolic vasodilatation of the microcir-
culation and arterioles. Similar flow increases can be obtained
by the administration of adenosine or dipyridamole, which
cause arteriolar vasodilatation. Physical exercise and pace-
maker-induced tachycardia can also be used to obtain in-
creased blood flow. Pacemaker-induced tachycardia produ-
ces a lesser increase in flow, associated  with metabolic vaso–
dilatation. Physical exercise causes a complex physiological
response, involving metabolic vasodilatation and systemic
release of catecholamines. The use of the response to an in-
creased blood flow as an index of endothelial function is vali-
dated by the experimental demonstration that flow-dependent
vasodilatation of conductance arteries is determined by the
release of nitric oxide from the endothelium 74-77.

The quantification of vasodilatation or vasoconstric-
tion of the arterial conducts in response to a stimulus can be
made by radiographic or  ultrasonographic techniques or by
plethysmography. The determination of the response of
coronary conducting arteries to endothelium-dependent
agents is obtained by the injection of radiological contrast
media and measurement of coronary diameter by quantita-
tive analysis of angiograms, preferably using computer as-
sisted systems. The study of variations in coronary blood
flow secondary to endothelium-dependent responses of
the microcirculation demands the utilization of invasive
methods like intracoronary Doppler. Vascular spasm in res-
ponse to coronary catheter or Doppler guide wire may ren-
der the interpretation of these measurements difficult.

In the peripheral circulation, endothelial function can
be evaluated in a noninvasive manner from the vasomotor
response of the brachial artery or the forearm’s microcircula-
tion, using respectively, ultrasound or plethysmography.
Responses of the peripheral microcirculation can also be
evaluated noninvasively, by measuring blood flow by vas-
cular Doppler. Few authors have used other vascular beds
like the lower limb/femoral artery for the study of endothelial
function.

Besides endothelium-dependent relaxation, other en-
dothelial functions that may be investigated in human
beings include the condition of the vascular renin-angioten-
sin system 78,79, adhesive endothelial properties related to
leukocytes and platelets 80,81 and factors involved in throm-
botic and fibrinolytic homeostasis 82. In this connection,
circulatory levels of endothelin, bradykinin, prostaglandins,
von Willebrand factor, tissue plasminogen activator, and
soluble forms of cell surface adhesion molecules (like E-se-
lectin, ICAM-1, and VCAM-1) are potentially useful indi-
cators of endothelial function. However, the functional role
of some of these substances in human beings has not been
clarified. Furthermore, the impact of different clinical con-
ditions on the levels of these substances and on the con-
centration of the soluble forms of adhesion molecules,
remains undetermined.

Clinical implications - The implications of endothelial
dysfunction in cardiovascular disease are not fully unders-
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tood. Nevertheless, there is convincing evidence that injury
and dysfunction of the endothelium play a pathogenic role in
the initial development of atherosclerosis 7-9 and, in a more de-
layed way, in unstable coronary syndromes 10. Endothelial
dysfunction has been associated with diverse risk factors
for atherosclerotic disease 11, including the presence of hy-
percholesterolemia 12, smoking 13, arterial hypertension 14,
diabetes mellitus 15, family history of premature coronary di-
sease 16, hyperhomocysteinemia 17, and aging 18, even befo-
re vascular damage becomes evident.

Like atherosclerosis, endothelial dysfunction is
evidenced earlier in the bifurcations of human coronary
arteries 19. In the presence of coronary atherosclerosis, the
intensity of endothelial dysfunction is directly related to
the atherosclerotic damage 5. In primates, diet-induced de-
velopment of atherosclerosis is preceded by endothelial
dysfunction, and the regression of the atherosclerotic pla-
que is associated with the normalization of responses to
acetylcholine 20. It has also been demonstrated that endo-
thelial dysfunction precedes the development of obstruc-
tive coronary disease in cardiac transplant patients 21. To
date, no studies are available that demonstrate whether
other groups of patients with endothelial dysfunction will
develop atherosclerosis.

A fundamental physiological function of the endothe-
lium is to facilitate blood flow by providing an antithrombotic
surface, which inhibits platelet adhesion and thrombi
formation. As we have discussed, the injured  or activated en-
dothelial cell may either loose this anticoagulant activity or
acquire pro-coagulant properties, or both. Although the role
of the endothelium in pathogenesis of thrombosis  in vivo
has not been clearly documented, available evidence indica-
tes that  endothelial dysfunction is fundamental for the de-
velopment of various thrombotic disturbances, in particular
in acute ischemic syndromes.

It is probable that endothelial dysfunction in addition
to involvement in the development of  atherosclerosis and
acute ischemic events, potentiates the development of
myocardial ischemia even in the absence of obstructive
atherosclerotic lesions by hindering an appropriate increa-
se in blood flow in situations of stress. Up to 40% of the total
coronary resistance resides in small diameter arteries (110-
400mm) that are not under metabolic control 83. These small
arteries may importantly influence coronary resistance 84

and, consequently, maximal velocity of blood flow. Under
physiological conditions, vasomotor tone of these small ar-
teries is indirectly coupled with  metabolic necessities by
flow-mediated vasodilatation. This means that when
arteriolar vasodilatation causes increased blood flow, the re-
sulting increase in shear stress will increase nitric oxide pro-
duction and dilate the small arteries 83-85, leading to an ad-
ditional reduction in  peripheral resistance and increased
blood flow. When endothelial dysfunction is present, flow-
mediated dilatation may be reduced or lost in small diameter
arteries, causing subtotal increases in blood flow.

Several clinical studies have associated intracoronary
infusion of endothelium-dependent vasodilators, with the
development of angina pectoris in some patients with
endothelial dysfunction. Recently, Hasdai et al. 86 demons-
trated the presence of perfusion defects detected by 99mTc
sestambi in patients with reduced coronary flow in response
to intracoronary acetylcholine. However, the clinical rele-
vance of these findings remains arguable, because in this
study the radioactive drug was administered together with
the infusion of acetylcholine. In another study, where we
compared the vasomotor response to acetylcholine with
results of effort myocardial perfusion scintillography or
with dobutamine stress echography in patients free of
significant coronary stenosis, we failed to find an asso-
ciation between the development of coronary vaso-
constriction and the presence of reversible ischemia 87.
This incapacity of adequately increasing blood flow as-
sociated with endothelial dysfunction has been conside-
red as one of the possible mechanisms of development of
angina in patients with microvascular angina, or syn-
drome X. In this group of patients, we demonstrated that
endothelium-dependent vasomotor dysfunction is pre-
sent in more that 50% of  cases, becoming progressively
more severe with aging, but not being related to other risk
factors for coronary artery disease 88.

In the same way, endothelial dysfunction appears to
play a pathogenic role in various clinical situations, inclu-
ding systemic and pulmonary arterial hypertension, conges-
tive heart  failure, and septic shock.

Clinical interventions on endothelial function - Recent
clinical studies have demonstrated improved endothelial
function following the use of drugs like angiotensin-con-
verting enzyme inhibitors 22, oral hypolipemic agents 23,24,
and acetylsalicylic acid 25, known to reduce the incidence of
cardiovascular events. At least part of the clinical benefits
due to these therapeutic interventions are probably related
to the reversal of endothelial dysfunction. These studies
vouch for the role of endothelial function in the maintenan-
ce of vascular homeostasis.

The beneficial effects of acetylsalicylic acid in the
evolution of atherosclerosis are well substantiated, being
attributed to its antiplatelet action. Recently, the effects of
acetylsalicylic acid on endothelial function were clinically
evaluated in 19 patients with atherosclerosis or with risk
factors for cardiovascular disease 25. Acetylsalicylic acid
improved endothelium-mediated vasodilatation in respon-
se to acetylcholine in atherosclerotic patients. This sugges-
ted that the drug might improve endothelial function by re-
ducing a tendency towards vasoconstriction and thrombo-
sis inhibiting in this way as well, the progress of atheroscle-
rosis. Inhibition of angiotensin-converting enzyme with
quinapril 22 and inhibition of HMG-CoA reductase with lo-
vastatin 23,24 improved endothelial function in coronary
atherosclerotic patients, this being a possible mechanism
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for the reduction of adverse coronary events caused by the
use of these drugs.

Reversal of endothelial dysfunction has also been ob-
tained by the administration of antioxidant vitamins C and E
in various clinical situations 61-63,89-92, estrogen  replacement
therapy 93, and the administration of folic acid to hyper-
homocysteinemic 94 or hypercholesterolemic 95 patients. It
remains open for discussion whether a relevant clinical be-
nefit has been achieved by these interventions.

In contrast, other clinical interventions may  be asso-
ciated with adverse effects on the vascular endothelium.
In two recently published clinical studies 96,97, we have
evaluated the effects of potentially deleterious interven-
tions on endothelium-dependent vasomotor function in
coronary arteries. One of these studies demonstrated that
the prolonged use of nitroglycerin leads to the develop-
ment of endothelial dysfunction 96. Fifteen patients were
randomized to  receive 0.6mg/hour of transdermal  nitrogly-
cerin  for five days or to a control group. In comparison to
the controls, greater coronary constriction in response to
acetylcholine was observed in the patients who had
received nitroglycerin; this response persisted for at least
three hours following discontinuation of the nitroglycerin
treatment (fig. 3). These findings are in agreement  with
those of animal experiments demonstrating that the
continuous administration of organic nitrates leads to
biochemical changes in the vascular wall such as  increa-
sed oxidative stress 98 and increased production of endo-
thelin-1 99, which may evoke endothelial dysfunction.
These results have clinical implications related to the de-
velopment of nitrate tolerance and the potential for re-
bound following prolonged nitroglycerin therapy.

Percutaneous coronary angioplasty  is another clinical
intervention that might intensify endothelial dysfunction in
atherosclerotic patients. Angioplasty  of coronary stenosis
determines a severe mechanical lesion of the vascular wall 100.
Although the injured endothelium appears to regenerate,
endothelium-dependent vasodilatation remains altered for
a long time, even following re-endothelialization 101,102.
These alterations in endothelial vasomotor function are as-
sociated with increased oxidative stress 103, which may be
reversed by the administration of antioxidant vitamins 104. In
agreement with these phenomena, studies in humans have
shown abnormal endothelium-dependent vasomotor func-
tion in arteries several months following coronary balloon
angioplasty 105-107.

The long-term effects on endothelial function of diffe-
rent percutaneous coronary interventions are not known.
Following a coronary intervention, the severety of the en-
dothelial dysfunction may depend on the intensity of the
injury, as well as on the specific type of the percutaneous
intervention performed. The implantation of coronary en-
doprostheses, or stents, may cause more  severe arterial
injury 108,109, and a more intense inflammatory response in

the vascular wall than other percutaneous coronary in-
terventions 110,111, and be associated with incomplete en-
dothelial regeneration 112. Recent experimental evidence
indicates that stent implantation may be associated with
both more severe and prolonged endothelial dysfunc-
tion 113.

To evaluate endothelial function following a percuta-
neous coronary intervention, we studied vasomotor res-
ponses to acetylcholine of  the coronary arteries of 39 pati-
ents who had undergone more than six months earlier a per-
cutaneous intervention for stenosis in the anterior descen-
ding artery and did not have a recurrence of  the stenosis 97.
Twelve of these patients had received stents, 15 had had
angioplasty by balloon catheter, and 12 had had directional
atherectomy. Patients who received stents had significantly
more endothelial dysfunction in comparison with those
treated with balloon catheter angioplasty or directional
atherectomy (fig. 4). These findings may have implications
regarding the progress of atherosclerosis in coronary
arteries treated with percutaneous interventions, in particu-
lar stent implantation; these findings require confirmation
by additional studies.

Conclusion

The endothelium plays a central role in vascular home-
ostasis: endothelial dysfunction contributes to pathological
conditions characterized by vasospasm, vasoconstriction,
excessive thrombosis, and abnormal vascular proliferation.
In fact, deterioration of endothelium–dependent vascular

Fig. 3 – Percent modification of the average luminal diameter of the anterior descending
coronary artery (LAD) from the baseline, in response to an intracoronary infusion of
acetylcholine (10 – 4 molar) in patients who had received nitroglycerin versus patients in
a control group. * P<0.01 versus controls during nitroglycerin therapy; † P<0.01 versus
controls following withdrawal of nitroglycerin; ‡ P<0.05 in nitroglycerin group versus
controls.           = nitroglycerin group.        = control group.
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