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Abstract

Background: Cardiac Magnetic Resonance is in need of a simple and robust method for diastolic function assessment 
that can be done with routine protocol sequences.

Objective: To develop and validate a three-dimensional (3D) model-based volumetric assessment of diastolic function 
using cardiac magnetic resonance (CMR) imaging and compare the results obtained with the model with those obtained 
by echocardiography.

Methods: The study participants provided written informed consent and were included if having undergone both 
echocardiography and cine steady-state free precession (SSFP) CMR on the same day. Guide points at the septal and 
lateral mitral annulus were used to define the early longitudinal relaxation rate (E’), while a time-volume curve from 
the 3D model was used to assess diastolic filling parameters. We determined the correlation between 3D CMR and 
echocardiography and the accuracy of CMR in classifying the diastolic function grade.

Results: The study included 102 subjects. The E/A ratio by CMR was positively associated with the E/A ratio by 
echocardiography (r = 0.71, p  <  0.0001). The early diastolic relaxation velocity by tissue Doppler and longitudinal 
relaxation rate for the lateral mitral annulus displacement were positively associated (p = 0.007), as were the ratio between 
Doppler E/e’ and CMR E/E’ (p = 0.01). CMR-determined normalized peak E (NE) and deceleration time (DT) were able to 
predict diastolic dysfunction (areas under the curve [AUCs] = 0.70 and 0.72, respectively). In addition, the lateral E/E’ ratio 
showed good utility in identifying diastolic dysfunction (AUC = 0.80). Overall, echocardiography and CMR interobserver 
and intraobserver agreements were excellent (intraclass correlation coefficient range 0.72 – 0.97).

Conclusion: 3D modeling of standard cine CMR images was able to identify study subjects with reduced diastolic 
function and showed good reproducibility, suggesting a potential for a routine diastolic function assessment by CMR. 
(Arq Bras Cardiol. 2017; 108(6):552-563)

Keywords: Ventricular Function; Evaluation; Magnetic Resonance; Imaging Three Dimensional; Echocardiography, 
Three –Dimensional.

Introduction
the prevalence and cost of treatment of heart failure (HF) 

in the United States are high. In 2008, this condition was 
estimated to affected 5.3 million adults and was associated with 
a total spending of 34.8 billion dollars.1,2 Approximately 50% 
of the patients were reported to have diastolic HF.1,2 

Diastolic dysfunction is an increasingly recognized component 
of a variety of diseases of the myocardium,3,4 and its recognition 
is necessary for patient management.5

Echocardiography is currently used as the standard of 
reference to evaluate diastolic dysfunction.6-10 With cardiac 
magnetic resonance (CMR) imaging, diastolic function is 
assessed using special pulse sequences such as phase-contrast 
analysis or myocardial tissue tagging.5,6,8,11-16 These assessments 
require additional time and software for acquisition and analysis. 
As a result, the diastolic assessment with CMR is not routinely 
applied.5,17,18 Thus, CMR is in need of a simple and robust 
method for diastolic function assessment that can be done with 
routine protocol sequences.

A three-dimensional (3D) model of myocardial function 
has been developed to assess the myocardial function based 
on standard steady-state free precession (SSFP) CMR cine 
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Figure 1 – Flowchart of the study population. Abbreviation: CMR: cardiac magnetic resonance.
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images.19 A model-based analysis of the systolic function 
is relatively fast (~15 minutes per CMR study) and allows 
extraction of time-varying function parameters that may 
characterize the diastolic function.19-23

Thus, the purpose of this study was to perform an 
intraindividual analysis to develop and validate a 3D model-
based volumetric assessment of diastolic function using CMR 
imaging and compare the results obtained with this model 
with those obtained by echocardiography.

Methods

Study population
The study included participants who underwent both 

echocardiography and CMR between 2008 and 2009 in 
a substudy of the Multi-Ethnic Study of Atherosclerosis 
(MESA) at the Johns Hopkins Hospital. Details of the 
MESA study have been previously described.24 In brief, 
1096 participants free of clinically apparent cardiovascular 
disease and aged 45‑84  years, were enrolled at the 
Baltimore field center at baseline in 2000-2002. A total of 
149 consecutive participants were invited to participate 
in the CMR‑echocardiography substudy. Participants were 
excluded if they had not undergone both studies at the 
same day; if they had a heart rate variability of more than 
15 beats per minute between both studies, severe mitral 
annular calcification or mitral valve regurgitation; or if the 
qualitative assessments of the left ventricular (LV) function 
was impaired by arrhythmias or poor image quality by either 
modality (Figure 1). The study was approved by the local 
ethics committee, and all subjects gave a written informed 
consent for participation.

Since this study included a correlation between 
echocardiography and CMR, not all variables were used in the 
analysis. We will describe the variables that can be acquired 
by echocardiography and the 3D model-based volumetric 
assessment of diastolic function using CMR.

Echocardiography
Echocardiograms were obtained by expert sonographers 

according to the recommendations of the American Society 
of Echocardiography (ASE).10 The examinations were 
reviewed offline by two readers. Readers 1 (A.L.C.A.) and 
2 (A.C.A.) had 20 and 5 years of experience, respectively, 
in reading echocardiograms. Two-dimensional (2D) 
echocardiograms were recorded using an Aplio scanner 
(Toshiba Medical Systems Corp, Tochigi, Japan). The images 
were acquired from an LV apical four-chamber view. Image 
acquisitions were performed using B-mode harmonic images 
adjusting transducer frequencies (1.7-3.5 MHz), frame rate 
(40‑80 frames per second), focus, sector width (as narrow 
as possible), sector depth (minimal), and gain, in order to 
optimize myocardial image quality. The images were digitally 
recorded, stored on compact discs, and transferred to a 
computer terminal for post processing.

Mitral inflow velocities: All Doppler measurements 
were assessed according to the ASE recommendations.25  
From the transmitral recordings, the following measurements 
were carried out: a) transmitral early peak filling velocity 
during diastole (early peak filling rate [E]), in centimeters 
per second; b) (transmitral late peak atrial filling velocity 
during diastole [peak atrial velocity [A]), in centimeters 
per second; c) time elapsed between E and the point 
where the extrapolation of the deceleration slope of the E 
velocity crosses the zero baseline (deceleration time [DT]), 
in milliseconds; d) time elapsed between the systolic peak 
to E (time to peak E [relative TPE]), in milliseconds; e) time 
elapsed between the systolic peak to A (time to peak A 
[relative TPA], in milliseconds.

Tissue Doppler measurement of mitral annular velocity: 
Pulsed wave tissue Doppler imaging (TDI) was performed 
in the apical views to acquire the mitral annular velocities 
according to the ASE recommendations.25 The sample volume 
was placed in the ventricular myocardium immediately 
adjacent to the mitral annulus in the septal and lateral walls. 
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Figure 2 – Screenshots of different diastolic function examples using the program CIM. A) Normal, B) impaired, and C) reduced. The following measurements were 
assessed: end-systole (ES), end-diastole (ED), early peak filling rate (E), atrial peak filling rate (A), and deceleration time (DT). All timing measurements were defined 
semiautomatically with manual correction with the observer using a slider on the time/rate curve.
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With this method, the early diastolic myocardial relaxation 
velocity (e’; cm/s), as the annulus ascends away from the apex, 
was assessed in this study.

Cardiac magnetic resonance
Cine-CMR images were acquired on a 1.5 T scanner (Avanto, 

Siemens, Malvern, PA, USA) using a 2D SSFP acquisition in 
vertical long-axis, horizontal long-axis, and short-axis orientations 
with the following parameters: TE 1.16 ms, TR 3.2 ms, flip 
angle 60°, receiver bandwidth ±1220 kHz, FOV 36 cm, slice 
thickness 8 mm, slice gap 2 mm, acquisition matrix 205 × 256, 
number of averages = 1, number of frames = 30. The mean 
reconstructed temporal resolution (R-R interval/number of cardiac 
phases) was 30.43 ± 5.44 ms.

CMR images were analyzed using a research version of 
the CIM 6.2 program modified to assess diastolic function 
(Auckland MRI Research Group, University of Auckland, 
New Zealand).19 CMR image analyses were done by two 
readers accredited by the Auckland MRI Research Group. 
Readers 1 (M.S.N.) and 2 (E.Y.) had 7 years and 1 year of 
experience, respectively, in reading CMR.

Time-volume curve: All timing measurements were 
defined semiautomatically with manual correction with the 
observer using a slider on the time/rate curve (Figure 2).  
The following measurements were assessed: a) diastolic volume 
recovery (DVR), defined as the time from end-systole (ES) to 
the time at which the volume has filled to 80% of the stroke 
volume (msec); b)  E  (mL/sec), the first maximum filling rate 
detected after ES. Peak E was also divided by the end-diastolic 
volume (EDV) to generate a normalized peak E filling rate (NE). 
Additional measurements included: c) relative time to early 

peak filling rate (RTPE) (msec), the trigger time to peak E from 
the ES phase; d) A (mL/sec), the second peak filling rate after 
ES. Peak A was also indexed by EDV to generate a normalized 
peak A filling rate (NA); e) relative time of atrial peak filling rate 
(RTPA; msec), the trigger time to peak A from the ES phase; 
and f) DT (msec), or the time delay of E subtracted from the E 
wave downslope intersecting the baseline.

Guide points at the junction of the LV wall with the septal 
mitral annulus and at the junction of the LV wall with the lateral 
mitral annulus in the four-chamber view were used to define g) 
E’ septal, and h) E’ lateral, respectively. The ratio between E and 
E’ was also calculated (Figure 3).

Note that CMR rates are expressed as volume (mL) 
per unit of time, whereas echocardiographic parameters 
are expressed as distance (cm) per unit of t ime. 
However, CMR‑derived E’ is expressed as a linear velocity 
similar to its echocardiographic correlate.

Data and statistical analysis
The diastolic function classif ication used three 

echocardiographic parameters recommended by the ASE for 
this purpose: (1) septal e’ < 8 cm/s, (2) lateral e’< 10 cm/s, 
and (3) ratio between average E and average e’ ≥ 10.25  
If all three criteria were present, the diastolic function was 
rated as type II (reduced). If only two criteria were present 
or one criteria plus LV hypertrophy, the diastolic function 
was rated as type I (impaired). The LV mass was assessed by 
echocardiography and divided by the body surface area to 
define the LV mass index (LVMi). LV hypertrophy was defined 
as an LVMi > 115 g/m2 for men and > 95 g/m2 for women, 
as recommended by the ASE.26
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Data are presented as mean ± standard deviation (SD) 
for continuous variables and as percentage for categorical 
variables. Multiple comparisons were tested by one-way analysis 
of variance (ANOVA) with post hoc Bonferroni correction. 
Fisher’s exact test was used to examine the differences between 
proportions. As the variables were normally distributed, 
linear regression analysis was performed using Pearson’s 
correlation coefficient (r) and setting echocardiography as 
the predictor variable and CMR as the dependent variable. 
We used Bland‑Altman to compare variables with the same 
units. However, in many cases, the CMR surrogates for 
echocardiographic parameters were represented in different 
units, so the Bland-Altman analysis was inappropriate.

Receiver operating characteristic (ROC) curve analysis 
was used to identify the diagnostic performance of CMR 
in predicting diastolic dysfunction. This was achieved by 
using the group with reduced diastolic function assessed by 
echocardiography as the “true positive” surrogate marker 
for diastolic dysfunction in this population, compared with 
the group with normal function as the “true negative” (area 
under the curve [AUC] ≥ 0.5 to < 0.7 = poor fit, AUC ≥ 0.7 
to < 0.9 = good fit, and AUC ≥ 0.9 to 1.0 = excellent fit).

Intraobserver and interobserver agreements were assessed using 
intraclass correlation coefficient (ICC) with a two-way random 
model (ICC < 0.40 = poor agreement, ICC ≥ 0.40 to 0.75 = fair 
to good agreement, ICC > 0.75 = excellent agreement).

Figure 3 – Three-dimensional displays of the model fits throughout the cardiac cycle in one R-R interval of 870 ms (outside images) for volume- and derivative-curve 
assessment (mL/s). Septal and lateral guide points motion can be evaluated through time, calculating the distance between the defined point and the model apex for 
myocardial longitudinal relaxation rate (mm/s). The endocardial surface is shaded in red and drawn with green lines.
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The statistical analysis was performed using Stata, version 12.0 
(StataCorp LP, College Station, Texas, USA). A p value < 0.05 was 
considered significant.

Results
A total of 102 participants met the inclusion criteria 

(Figure 1). On echocardiography, the diastolic function was 
classified as normal in 66 (64.7%) patients, impaired in 21 
(20.6%), and reduced in 15 (14.7%) of them. The mean 
duration of the CMR analysis (systolic and diastolic function) 
was 18.3 ± 4.5 minutes. Note that the CMR analysis also 
yields parameters such as LV volume and mass, since the 
analysis is performed over the full cardiac cycle. The mean 
duration of the echocardiographic analysis (diastolic function 
only) was 4.6 ± 0.6 minutes (p < 0.0001 compared with 
the CMR analysis). Reduced diastolic function was more 
frequent in diabetic and hypertensive participants. Major 
variables, e.g., age, gender, body mass index (BMI), systolic 
blood pressure (SBP), LV mass, EDV, and heart rate, showed 
no significant variance between groups. The characteristics of 
the subjects and the clinical data related to their LV function 
are summarized in Table 1.

Echocardiographic parameters showed increasing mean 
values in association with diastolic dysfunction severity 
(p < 0.05, Table 2). However, A alone showed no statistically 
significant difference between groups. NE and DT obtained 
from derivative volume-curves by CMR showed trends toward 
diastolic dysfunction severity similar to those obtained by 
echocardiography (p < 0.05). The E/A ratio by CMR was 
1.10 ± 0.38 in the normal group, and was lower in the impaired 
group (1.01 ± 0.26) and higher in the reduced diastolic function 
group (1.33 ± 0.45, p = 0.03). All other variables showed no 
difference between groups (Table 2).

Tissue Doppler velocities by echocardiography assessed 
e’ and the E/e’ ratio. In all regions (septal and lateral mitral 
annulus), e’ showed significantly decreased mean values in the 
normal diastolic function group (e’ lateral = 11.6 ± 2.4 cm/s) 
and in the reduced diastolic function group (e’ lateral = 
6.9 ± 1.8 cm/s, p < 0.05). Also, E/e’ increased from the group 
with a normal diastolic function to the one with reduced 
diastolic function (6.65 ± 1.8 and 13.3 ± 5.2, respectively, 
p < 0.0001). Compared with CMR, E’ and E/E’ showed similar 
trends toward worse diastolic function for both septal and lateral 
walls (p < 0.05 and p < 0.001, respectively) (Table 2).

Table 3 highlights the associations between the diastolic 
function measured by echocardiography and CMR.  
E/A ratios on echocardiography were positively associated 
with E/A ratios on CMR (r = 0.71, p < 0.0001). The 95% 
limits of agreement between the two methods were -0.45% 
to +0.62%. A small bias (0.081%) toward a higher E/A ratio 
by CMR was detected (Figure 4).

Values of e' by tissue Doppler and E’ for the lateral mitral 
annulus displacement were positively correlated (r = 0.26, 
p = 0.007), as were E/e’ by CMR and echocardiography 
(r = 0.24, p = 0.01). However, both septal measurements 
were not correlated (p > 0.05).

Prediction of reduced diastolic function by cardiac 
magnetic resonance

Table 4 shows the ROC curve analysis for reduced diastolic 
function for all CMR parameters. CMR-determined NE and DT 
were able to predict diastolic dysfunction (AUCs = 0.70 and 
0.72, respectively). In addition, the lateral E/E’ ratio appeared 
to be useful in the classification of diastolic dysfunction 
(AUC = 0.80) (Table 4).

 
Diastolic time periods and cardiac cycle duration

No significant differences were detected in relative TPE and 
RTPA values obtained by CMR compared with those obtained 
by echocardiography (mean RTPA: 183.3  ±  47.32  ms 
versus 181.5 ± 27.45 ms, respectively, p = 0.90; mean 
TPE:  544.32  ±  145.62 ms versus 550.77 ± 196.19 ms, 
respectively, p  =  0.91). The cardiac cycle duration (R-R 
interval) was also not significantly different by CMR versus 
echocardiography (mean 943.65 ± 135.11 ms versus 
944.77 ± 135.42 ms, respectively, p = 0.95).

Interobserver and intraobserver agreements
Overall, echocardiography and CMR interobserver and 

intraobserver agreements were excellent (Table 5). The mean 
ICC for measurements by echocardiography was excellent 
(0.89) and slightly higher than those obtained by CMR (0.86). 

Discussion
The purpose of this study was to evaluate the role of 

cine CMR for diastolic function assessment and compare 
values obtained with this method with those obtained with 
echocardiography. Using a relatively fast and reproducible 
method, CMR-derived parameters were shown to be 
comparable to those obtained by echocardiography, with 
good correlations. Importantly, this study demonstrated 
that CMR was capable of identifying diastolic dysfunction 
in most patients with diastolic dysfunction detected by 
echocardiography. This suggests a role for CMR in the 
assessment of LV diastolic function in the general population.

Echocardiography has long been used to evaluate 
diastolic dysfunction. The combination of mitral inflow 
velocity curves and tissue Doppler velocities of the mitral 
annulus are known to provide better estimates of LV filling 
pressures than other methods.27 Although routinely reported 
by echocardiography, diastolic function by CMR is usually 
not routinely assessed due to the requirement of additional 
phase contrast or tagged sequences, as well as separate 
post processing. Automated segmentation of LV volumes 
for all temporal phases holds the potential to rapidly assess 
diastolic filling patterns;28 however, this method alone 
only provides partial information regarding the diastolic 
physiology needed to differentiate all degrees of diastolic 
dysfunction severity.

Recently, CMR software innovations19,29,30 have allowed 
the assessment of similar parameters using SSFP cine CMR 
with 3D post processing. HF with preserved ejection fraction 
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Table 1 – Population characteristics by diastolic function grades

Normal n = 66 (64.70%) Type I n = 21 (20.60%) Type II n = 15 (14.70%) p value

Age (years) 66.8 ± 8.9 65.5 ± 7.5 64.4 ± 9.7 0.60

45 to 64 years 24 (36.3) 11 (52.3) 7 (46.6) 0.48*

65 to 84 years 42 (63.6) 10 (47.6) 8 (53.3) 0.48*

Gender (male) 26 (39.3) 7 (33.3) 6 (40.0) 0.91

Race

White, Caucasian 41 (62.0) 11 (55.0) 6 (40.0) 0.25*

Black, African-American 25 (38.0) 10 (45.0) 9 (60.0) 0.25*

Weight (kg) 77.5 ± 15.1 80.3 ± 19.4 80.3 ± 22.2 0.73

Height (cm) 168.0 ± 9.4 166.0 ± 11.2 166.1 ± 9.7 0.65

BMI (kg/m2) 28.0 ± 4.4 29.1 ± 5.7 28.2 ± 7.1 0.71

BSA 1.8 ± 0.2 1.8 ± 0.2 1.8 ± 0.2 0.89

Smoking status

Never 27 (40.9) 9 (42.8) 5 (33.3) 0.37*

Former 33 (50.0) 12 (57.1) 7 (46.6) 0.37*

Current 6 (9.0) 0 (0.0) 3 (20.0) 0.37*

Systolic blood pressure (mmHg) 121.8 ± 18.7 119.8 ± 14.6 121.3 ± 25.9 0.91

Diastolic blood pressure (mmHg) 71.2 ± 11.2 66.3 ± 10.6 69.1 ± 10.7 0.21

Hypertension (%) 33 (50.0) 7 (33.3) 9 (60.0) 0.28*

Any hypertension medication 31 (46.9) 6 (28.5) 9 (60.0) 0.20*

Diabetes (%) 3 (4.5) 2 (9.5) 3 (20.0) 0.11*

Triglycerides (mg/dL) 111.9 ± 60.5 100.3 ± 67.3 101.3 ± 54.8 0.68

LDL cholesterol (mg/dL) 111.5 ± 32.3 109.1 ± 34.2 112.4 ± 42.9 0.95

HDL cholesterol (mg/dL) 58.9 ± 18.4 62.4 ± 24.9 52.6 ± 12.0 0.33

Total cholesterol (mg/dL) 192.8 ± 38.5 191.5 ± 38.8 185.2 ± 52.7 0.81

Metabolic syndrome 21 (31.8) 4 (19.0) 2 (13.0) 0.26*

Echocardiographic measurements

Heart rate (beats/min) 64.8 ± 9.6 65.0 ± 9.4 62.6 ± 5.7 0.66

End-diastolic diameter (mm) 4.4 ± 0.5 4.5 ± 0.5 4.6 ± 0.4 0.44

Diastolic septal thickness (mm) 1.0 ± 0.2 1.0 ± 0.1 0.9 ± 0.1 0.18

Diastolic inferolateral thickness (mm) 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 0.66

CMR measurements

Heart rate (beats/min) 65.2 ± 10.4 66.4 ± 9.7 61.6 ± 5.5 0.31

Ejection fraction (%) 69.0 ± 7.3 70.7 ± 7.0 70.6 ± 10.2 0.51

End-diastolic volume (mL) 106.8 ± 24.4 110.6 ± 28.7 99.6 ± 22.1 0.43

End-systolic volume (mL) 33.8 ± 13.6 33.5 ± 14.2 28.8 ± 10.6 0.42

LV mass (g) 124.8 ± 34.4 132.5 ± 38.2 121.8 ± 26.2 0.59

Stroke volume (mL) 73.0 ± 15.1 76.5 ± 18.0 73.1 ± 17.5 0.67

BMI: body mass index; BSA: body surface area; CMR: cardiac magnetic resonance; LV: left ventricular. Note: * Fisher’s exact test was used to compare proportions 
between diastolic severity grades.
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Table 2 – Diastolic measurements by echocardiography and cardiac magnetic resonance

Normal n = 66 (64.70%) Type I n = 21 (20.60%) Type II n = 15 (14.70%) p value

Echocardiography

Mitral inflow velocities

E (cm/s) 74.53 ± 16.43 74.89 ± 20.76 87.68 ± 20.94 0.03

DT (ms) 220.14 ± 45.19 247.95 ± 76.70 258.4 ± 77.69 0.03

A (cm/s) 77.66 ± 19.59 75.40 ± 19.55 77.18 ± 23.09 0.90

E/A 0.99 ± 0.24 1.02 ± 0.22 1.23 ± 0.47 0.01

Tissue Doppler velocities

Septal

e’ (cm/s) 9.38 ± 1.69 8.33 ± 2.12 6.00 ± 1.26 <0.0001

E/e’ 8.20 ± 2.24 9.23 ± 2.22 15.37 ± 5.91 <0.0001

Lateral

e’(cm/s) 11.61 ± 2.45 8.23 ± 1.68 6.97 ± 1.80 <0.0001

E/e’ 6.65 ± 1.82 9.37 ± 3.22 13.36 ± 5.21 <0.0001

Mean

e’ (cm/s) 10.47 ± 1.59 8.27 ± 1.45 6.48 ± 1.44 <0.0001

E/e’ 7.25 ± 1.78 9.12 ± 2.06 14.19 ± 5.40 <0.0001

CMR

Volume-curves

E (mL/s) 189.30 ± 66.39 206.30 ± 62.58 213.60 ± 71.67 0.33

NE (s-1) 1.77 ± 0.46 1.89 ± 0.50 2.11 ± 0.43 0.03

DT (ms) 186.61 ± 43.94 211.08 ± 43.75 218.37 ± 42.59 0.01

TPE (ms) 504.86 ± 82.41 493.46 ± 68.75 517.54 ± 37.80 0.63

A (mL/s) 181.13 ± 72.08 211.09 ± 75.17 164.73 ± 43.96 0.11

NA (s-1) 1.70 ± 0.53 1.98 ± 0.76 1.71 ± 0.58 0.16

TPA (ms) 837.27 ± 193.40 861.57 ± 155.17 866.00 ± 115.64 0.78

E/A 1.10 ± 0.38 1.01 ± 0.26 1.33 ± 0.45 0.03

DVR (ms) 535.32 ± 117.96 542.44 ± 122.45 516.08 ± 78.16 0.80

Longitudinal relaxation rate

Septal

E’ (mm/s) 75.35 ± 24.49 66.49 ± 25.31 58.22 ± 24.11 0.03

E/E’ (mL/mm) 2.64 ± 0.96 3.45 ± 1.60 4.65 ± 3.38 0.0002

Lateral

E’ (mm/s) 82.36 ± 26.14 70.88 ± 28.45 61.06 ± 27.73 0.01

E/E’ (mL/mm) 2.40 ± 0.83 3.32 ± 1.80 4.52 ± 3.54 0.0001

Mean

E’ (mm/s) 78.86 ± 24.85 68.69 ± 26.26 59.64 ± 25.45 0.02

E/E’ (mL/mm) 2.50 ± 0.87 3.33 ± 1.53 4.55 ± 3.44 0.0001

E: early peak filling rate; DT: deceleration time; A: atrial peak filling rate; E/A:E/A ratio; e’: early diastolic myocardial relaxation velocity; E/e’: E/e’ ratio; NE: normalized 
peak E filling rate; NA: normalized peak A filling rate; DVR: diastolic volume recovery; E’: early longitudinal relaxation rate; CMR: cardiac magnetic resonance, 
TPE: time to peak E; TPA: time to peak A.

is increasing in incidence and has a high clinical relevance,8 
although a clear consensus for its diagnosis has yet to be 
established.31 In this study, we decided to follow the ASE 
recommendations25 to delineate normal versus reduced 
diastolic function groups.

CMR is considered a reference standard for ventricular 
systolic function, including the analysis of regional wall 
motion, mass, and volumes, and estimation of ejection 
fraction.32 The assessment of diastolic function by CMR 
is usually not routinely performed in our clinical practice.  
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Figure 4 – Results obtained using cardiac magnetic resonance (CMR) three-dimensional volume-curve and echocardiography Doppler mitral valve inflow. The ratio between 
the early peak filling (E) and atrial peak filling rate (A) using velocity (cm/s) by echocardiography and flow (mL/s) by CMR. (A) Linear regression and Pearson’s correlation; 
(B) Bland-Altman analysis.
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CMR diastolic assessment typically requires an increased scan 
time for image acquisition (e.g., additional phase-contrast 
sequences), as well as a tedious imaging post-processing 

analysis. Automated segmentation of LV volumes for all 
temporal phases holds the potential to assess rapidly diastolic 
filling patterns;28 however, this method relies on a sequential 
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Table 3 – Associations between measures of diastolic function by echocardiography and cardiac magnetic resonance (n = 102)

Echocardiography CMR Pearson’s correlation coefficient (r) p value

Mitral inflow velocities Volume-curves

E (cm/s) E (mL/s) 0.06 0.51

E (cm/s) NE (s-1) 0.1 0.18

A (cm/s) A (mL/s) 0.22 0.01

A (cm/s) NA (s-1) 0.28 0.003

E/A E/A 0.71 < 0.0001

Tissue Doppler Longitudinal relaxation rate

Septal Septal

e’ (cm/s) E’ (mm/s) 0.11 0.26

E/e’ E/E’ (mL/mm) 0.11 0.30

Lateral Lateral

e’ (cm/s) E’ (mm/s) 0.26 0.007

E/e’ E/E’ (mL/mm) 0.24 0.01

Mean Mean

e’ (cm/s) E’ (mm/s) 0.22 0.02

E/e’ E/E’ (mL/mm) 0.17 0.07

CMR: cardiac magnetic resonance; early peak filling rate; A: atrial peak filling rate; e’: early diastolic myocardial relaxation velocity; NE: normalized peak E filling rate; 
NA: normalized peak A filling rate; E/A: E/A ratio; E’: early longitudinal relaxation rate. Echocardiography corresponds to Doppler echocardiography.

Table 4 – Prediction of reduced diastolic function by cardiac magnetic resonance (n = 81)

CMR Area under the ROC curve p value

Volume-curves

E (mL/s) 0.60 0.21

NE (s-1) 0.70 0.008

DT (ms) 0.72 0.01

A (mL/s) 0.53 0.37

NA (s-1) 0.48 0.92

DVR (ms) 0.51 0.57

E/A 0.66 0.05

Longitudinal relaxation rate

Septal

E’ (mm/s) 0.67 0.01

E/E’ (mL/mm) 0.76 0.0003

Lateral

E’ (mm/s) 0.70 0.0004

E/E’ (mL/mm) 0.80 < 0.0001

Mean

E’ (mm/s) 0.69 0.006

E/E’ (mL/mm) 0.78 0.0001

CMR: cardiac magnetic resonance; ROC: receiver operating characteristic; E: early peak filling rate; NE: normalized peak E filling rate; DT: deceleration time; A: atrial 
peak filling rate; NA: normalized peak A filling rate; DVR: diastolic volume recovery; E/A: E/A ratio; E’: early longitudinal relaxation rate; E/E’: E/E’ ratio.
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Table 5 – Intraobserver and interobserver agreement (n = 20)

Intraclass correlation coefficient (ICC) Bias 95% limits of agreement

Echocardiography R1 versus R2

Mitral inflow velocities

E (cm/s) 0.93 -1.66 -11.70 to 8.36

DT (ms) 0.84 9.84 -38.67 to 58.36

A (cm/s) 0.95 -1.12 -14.84 to 12.59

Tissue Doppler velocities

Septal

e’ (cm/s) 0.85 0.42 -1.84 to 2.68

Lateral

e’ (cm/s) 0.89 -0.37 -1.76 to 2.49

Echocardiography R1 versus R1

Mitral inflow velocities

E (cm/s) 0.95 -1.39 -9.22 to 6.44

DT (ms) 0.72 6.77 -62.40 to 75.96

A (cm/s) 0.96 -0.22 -12.85 to 12.39

Tissue Doppler velocities

Septal

e’ (cm/s) 0.89 0.28 -1.78 to 2.35

Lateral

e’ (cm/s) 0.92 -0.59 -2.06 to 0.86

CMR R1 versus R2

Volume-curves

E (mL/s) 0.84 2.54 -79.77 to 84.86

DT (ms) 0.77 -21.52 -81.75 to 38.70

A (mL/s) 0.82 22.89 -51.20 to 97.00

Longitudinal relaxation rate

Septal

E’ (mm/s) 0.75 -4.90 -32.59 to 22.63

Lateral

E’ (mm/s) 0.89 -5.48 -25.24 to 14.27

CMR R1 versus R1

Volume-curves

E (mL/s) 0.97 -1.36 -33.73 to 31.00

DT (ms) 0.84 12.93 -28.46 to 28.46

A (mL/s) 0.96 -15.51 -64.82 to 33.79

Longitudinal relaxation rate

Septal

E’ (mm/s) 0.85 -2.93 -23.91 to 18.03

Lateral

E’ (mm/s) 0.94 -4.11 -18.93 to 10.70

Note: R1: reader 1 and R2: reader 2. E: early peak filling rate; DT: deceleration time; A: atrial peak filling rate; e’: early diastolic myocardial relaxation velocity; E’: early 
longitudinal relaxation rate.
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