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Abstract 
Pharmacogenomics (PGx) studies the interaction between 

genes and drugs. By analysis of specific regions of DNA, it is 
possible to obtain information on patient’s metabolization 
profile of a given drug, as well as the expected profile of 
response to treatment. The results obtained are allies in the 
treatment of patients who are not responding adequately 
to a certain medication, either due to the lack of expected 
effects or presence of adverse effects. The aim of this review 
is to inform clinical cardiologists about this important area of 
knowledge and to update them on the topic, seeking to fill 
the gaps of the costs and benefits of PGx in cardiovascular 
diseases, and to provide information for the implementation 
of PGx-guided therapy in clinical practice. 

Introduction, the DNA and the Genes 
Pharmacogenomics (PGx) is the science of understanding 

the interaction between genes and drugs. The analysis of 
specific areas of the DNA provides information about a certain 
drug metabolism and about the expected response to a certain 
treatment. PGx also aims to reduce the incidence of adverse 
drug events (ADEs).1,2 Many studies in this area have focused 
on the identification of genes that predispose to diseases, 
modulate drug response, affect drug concentration and 
correlate with adverse effects of patients exposed to different 
types of drugs, so the desired therapeutic benefit is achieved.4

The causes of individual responses to a same drug 
dosage include age, genetic and immunological factors, 
comorbidities and interaction between active principles.5 
Genetic variability may influence not only pharmacodynamics, 
but also pharmacokinetics, which studies the relationship of 
the absorption, metabolism and excretion of the drug to its 
systemic concentration.1

ADEs are a public health problem in the world, as they 
significantly increase the length of hospital stay, and are 
considered the fourth of the six main causes of death in 
the United States in the last 20 years.6,7 Also, in the United 
States, more than two million people are hospitalized8 and 
at least 55,000 people die each year from abscence of 
treatment response or from ADE per se. In Brazil, data is still 
scarce and PGx could be a useful tool in the treatment of 
patients and optimization of financial expenses.10 The most 
common drug classes were antiretrovirals, anticoagulants and 
antihypertensives. In this study,10 the mean cost to treat a 
patient for ADE was BRL2,200, with a total cost of 18 million 
Brazilian reals.

In a recent publication, a national estimate of drug-related 
morbidity and mortality was conducted by the Brazilian 
Unified Health System (SUS) using data from the Datasus 
database.11 The estimate showed that of 150 million Brazilians 
that go to the doctor at least once a year, 86% leave the 
doctor with a drug prescription. The adverse events caused 
by the drugs are severe, not only from a clinical point of 
view, but also from an economical perspective – for every 
Brazilian real spent on drug provision, five Brazilian reals are 
spent on the treatment of drug-related comorbidities. The 
most expensive events are those caused by adverse reactions 
(39.3% of the expenses), non-adherence to treatment (36.9% 
of the expenses) and unusual dose regimens (16.9% of the 
expenses). Half of the cases could be prevented by a more 
careful and effective supervision of different therapies. Finally, 
it was estimated that 60 billion Brazilian reals were spent 
annually on drug-related morbidity and mortality by the SUS, 
corresponding to 30% of its initial budget.11

Cardiovascular disease (CVD) is the main cause of death in 
the world, significantly contributing to the increasing economic 
burden of health costs. In 2016, 31% of all deaths in the world 
(17.9 million) were caused by CVDs. These diseases cost the 
United States approximately $555 billion in that year, and 
estimates say that this cost will reach $1.1 trillion in 2035.12 

For this reason, the use of PGx tests, which is more 
widespread in countries like the United States, Spain and 
Canada, has gained importance in Brazil, with the potential 
to improve the drug-physician-patient relationship. With the 
aid of PGx, the physician could prescribe, in a safer and more 
assertive way, the most appropriate drug at the correct dose, 
since, in addition to other important factors, information about 
patient’s genetic profile would be now available.13 Thus, CVDs 
are at the forefront of PGx-guided therapy, and cardiologists 
should be alert to this area of knowledge.
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Several classes of drugs are known to reduce the risk of 
CVDs, but it is also known that there is a significant individual 
variation in treatment response.14 In addition to variations 
attributable to sociodemographic characteristics, there are 
genetic determinants of drug and responses that may affect 
how the drugs are metabolized, absorbed and distributed.1,14-16 
Therefore, genetic data can be used in the identification 
and evaluation of drug response, control of side effects, and 
prediction of results.17-19 With recent advances in gene cloning, 
genotyping and DNA sequencing, PGx has emerged as a 
useful component. Current knowledge may be applied at an 
individual gene level, to a therapeutic area or to specific drug: 
(a) PGx tests to predict an individual dose of the drug; (b) PGx 
tests to predict individual risk of drug toxicity in response to a 
drug prescribed or administered.

There are many clinical guidelines available in this area 
of knowledge, and the most relevant ones are:  the Clinical 
Pharmacogenetics Implementation Consortium (CPIC),20 
the Dutch Pharmacogenetics Working Group (DPWG),21 

the Canadian PGxs Network for Drug Safety (CPNDS),22 the 
Groupe de Pharmacologie Clinique Oncologique (GPCO/
Unicancer),23 the Réseau National de Pharmacogénétique 
Hospitalière (RNPGx),24 and the American College of 
Rheumatology (ACR).25

A Little of History 
Some of the main therapies based on a specific mutation, 

that changed significantly the prognosis of diseases, are 
trastuzumab therapy against HER2-positive breast cancer and 
imatinib in chronic myeloid therapy.26,27 Since then, Oncology 
has bet on the use of genetic information and today it serves 
to guide the therapeutic decision making, having included the 
genomic test in 39% of the clinical trials in the field in 2018.28 In 
addition to oncology, other areas have identified and improved 
therapies based on genetic variations. For cystic fibrosis, more 
than 100 causative mutations have been identified, that, even 
though make the development of a specific treatment for each 
variant difficult, enables the grouping of subtypes that seem 
to respond to similar treatments.29

Advances in genomic medicine are not limited to drugs that 
act at the protein level. Techniques like the clustered regularly 
interspaced short palindromic repeats (CRISPR) system, 
which refers to a specialized DNA region, have been used 
to silence genes and prevent the development of diseases in 
embryos and/or modify disease-related genes in adults.30 These 
techniques are part of what is known as genetic therapy and, 
although at embryonic stage, they are expected as potentially 
revolutionary alternatives.

Drug Metabolization
The main PGx guidelines have adopted terms that aim to 

facilitate clinical application of genetic results and harmonize 
reports from different laboratories.31 This classification varies 
with different types of genes, and takes into account the 
combination of variants identified in the same gene and 
its zygosity. One example is the consensual classification of 
cytochrome P450 2D6 (CYP2D6), one of the main enzymes 
of drug metabolism, which is involved in the metabolism of 

approximately 25% of the commercialized drugs. Patients 
may be classified into one of four phenotypes regarding the 
type of drug metabolizers: poor metabolizers, intermediate 
metabolizers, extensive metabolizers and ultrarapid 
metabolizers, as detailed below:

• Slow Metabolizers
Patients experience a very slow breakdown of medications, 

making side effects more pronounced. Patients of this group 
have two alleles with variants that cause a reduction, or even 
inactivity of the enzyme. Also, standard doses of certain drugs 
may not work as expected. Up to 15% of the population are 
in this group.32

• Intermediate Metabolizers 
Intermediate metabolizers may somehow affect the 

breakdown of medications, causing effects similar to those in 
poor metabolizers, but not as pronounced.33

• Extensive Metabolizers
The rate of metabolism of these patients is considered 

“normal”. Medication is likely to work as planned, and these 
individuals will take the dose recommended in the package 
insert of the medication;34

• Ultrarapid Metabolizers
Patients in this group metabolize medications very quickly, 

due to the presence of two alleles that produce highly active 
enzymes or of extra copies of the alleles (e.g. gene duplication 
or triplication).35

The CYP2D6 gene, responsible for the metabolism of 
nearly 25% of the medications prescribed,36 has the alleles that 
generate the four metabolizer types, previously described.37 

The prevalence of these alleles varies with ethnicity. For 
example, one of the main known nonfunctional alleles, the 
CYP2D6*4, has an estimated prevalence of 25% among 
Caucasians, whereas the CYP2D6*10 and the CYP2D6*17 
(both with reduced function) are more common in African and 
Asian populations, with an allele frequency of about 40%.38

Randomized Clinical Trials
Over the last years, several studies have been conducted 

to test the role of PGx in clinical practice. A randomized 
clinical trial (RCT)39 involving 1,956 patients infected with 
human immunodeficiency virus were randomly assigned to 
one of two groups – to undergo prospective HLA-B*5701 
screening, with exclusion of HLA-B*5701-positive patients 
from abacavir treatment, or to undergo a standard-of-care 
approach of abacavir use without prospective HLA-B*5701 
screening (control group). The incidence of hypersensitivity 
reaction was lower in the prospective-screening group (3.4%) 
than in the control group (7.8%). This result made the US Food 
and Drug Administration (FDA) require the inclusion of PGx 
test in the package insert of the medication.39 More recently, 
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Smith et al.40 reported a reduction by 30% in pain intensity 
in chronic opioid users when the therapy was guided by the 
presence of CYP2D6. A meta-analysis including five RCTs 
found that individuals receiving genotyping-guided therapy 
were 1.71 times more likely to achieve symptom remission 
compared with individuals who received standard treatment.41 

Regarding studies on CVDs, most are related to antiplatelet 
and anticoagulation agents. After retrospective observations 
that the presence of genetic variants classified as loss of 
function had an impact on the effects of clopidogrel, initiatives 
have emerged to evaluate the benefits of including PGx 
tests as a routine approach. The Implementing Genomics 
in Practice (IGNITE) investigators observed, in a group of 
1,815 patients, higher rates of cardiovascular events in 
patients with a CYP2C19 loss-of-function allele prescribed 
clopidogrel compared with alternative antiplatelet therapy, 
including prasugrel or ticagrelor (hazard ratio [HR] 2.26, 95% 
confidence interval [CI] 1.18-4.32; p=0.013).42 Another RCT 
showed an important decrease in late coronary events with 
implementation of PGx strategy for clopidogrel prescription.43

Regarding warfarin, most studies evaluated genetic variants 
related to its metabolization in CYP2C9 and VKORC1 genes. 
The European Pharmacogenetics of anticoagulant therapy (EU-
PACT) showed that a genotype-guided therapy significantly 
increased the percentage of time in the therapeutic range of 
2.0 to 3.0 for the international normalized ratio (INR).44 More 
recently, the Genetics Informatics Trial of Warfarin to Prevent 
Deep Vein Thrombosis (GIFT) study showed a significant 
reduction in major bleeding, venous thromboembolism and 
death in patients on genotype-guided therapy with warfarin 
during the perioperative period of elective surgeries of hip 
or knee arthroplasty.45 These two studies involving warfarin 
included a predominantly white populations and therefore, 
further studies including CYP2C9 variants that are more 
common African-descendant populations are needed to 
obtain in accurate results related to these groups. Interestingly, 
the largest study on warfarin, the Clarification of Optimal 
Anticoagulation Through Genetics (COAG) study, showed 
contrasting results, reporting no difference in initiating 
warfarin therapy based on clinical information and initiating 
warfarin therapy based on individual’s genotype (search for 
CYP2C9 variants, which are far more common in European-
descendant populations, in a cohort composed of 27% of 
African-Americans).46 On the other hand, considering the 
cost-benefit of the use of warfarin and clopidogrel, a recent 
systematic review including 31 RCTs showed that, the PGx 
test was superior to standard therapy in 81% of the times.13

Parallel to studies on one type of medication, the concept 
of preventive test has gained importance and shown evidence 
of benefit. In 2012, Schildcrout et al.47 estimated that 64.8% 
of 52,942 medical home individuals were exposed to at least 
one medication with a mechanism influenced by genetic 
variants. The authors also estimated that 398 potential 
adverse events could have been prevented with an effective 
preemptive genotyping. The study on genotype data of 
44,000 participants of the Estonian Biobank showed that 
99.8% of these individuals had a genotype associated with 
increased risks to at least one medication.48 Concordant 
results were reported in the RIGHT (Right Drug, Right Dose, 

Right Time Using Genomic Data to Individualize Treatment) 
protocol, created by the Mayo clinic/eMERGE initiative, 
which performed sequencing of a panel that included 
solute carrier organic anion transporter family member 1B1 
(SLCO1B1), CYP2C19, CYP2C9, VKORC1 and CYP2D6. 
The study demonstrated that 99% of 1,013 individuals 
had at least one variant associated with increased risks to 
a medication.49 

In the United States, medications with recommendations 
related to PGx constitute 18% of all prescriptions50 and 30% 
of the most prescribed medications that have a high PGx 
risk represent 738 million prescriptions a year.51 These data 
corroborate the idea of a positive impact of the preemptive 
PGx test, not only for the increase in therapeutic efficacy and 
cost-benefit, but also for the potential in preventing ADEs. In 
addition, a Dutch study showed a beneficial effect by reducing 
the risk of fluoropyrimidine-induced toxicity from 73% to 28% 
by genotype-guided dosing and reduction of drug-induced 
death from 10% to 0%.52

Importance of Pharmacogenomics
Over the last years, PGx has emerged as an area of 

increasing interest and enthusiasm, as it essentially leads 
with the so-called “personalized medicine”, considering the 
influence of patients’ genomic variation on drug responses.53 

Many benefits can be achieved with deployment of PGx:

•	 To increase therapeutic power and reduce likelihood of 
intoxication;

•	 To initiate a therapy in more appropriate time.

In addition, PGx may contribute to the reduction of costs in 
healthcare, as presented in Figure 1. It is important to mention 
that a large amount of deaths per year are related to ADEs, 
with a cost of approximately €80 billion.54   

It is estimated that a considerable proportion of patients 
do not show a satisfactory response to drug treatment.55,56 In 
this regard, the FDA recommends, for example, that PGx tests 
be carried out before chemotherapy with mercaptopurine (a 
drug commonly used in the treatment of patients with acute 
leukemia) is initiated.57 This recommendation is based on 
the fact that, since the drug may cause severe side effects 
and increase the risk of infection, depending on individual’s 
genetic variant, the therapy may not achieve intended results.

The Genomics and Targeted Therapy Group, an arm of 
the FDA’s Office of Clinical Pharmacology, works to ensure 
that PGx strategies are applied appropriately by means of its 
functions of regulatory review, research, policy development, 
and professional education. Part of this work included the 
construction of a table describing pharmacological instructions 
of 161 drugs that display PGx information on the label. The 
last update provides a remarkable number of biomarkers 
associated to drugs used in several areas of medicine, many 
of them widely used in clinical practice58 (Table 1).

Finally, it is expected that PGx soon become more accessible 
and that its responsible use contribute to more accurate drug 
prescription, with a higher likelihood of therapeutic success 
and a lower risk of ADEs.
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Association Between Genetic Variants and Drug Responses 
in Cardiovascular Diseases 

It is widely known that factors like age, comorbidities, 
weight, and demographic aspects can contribute to significant 
differences in the response to a certain medication, as well 
as to the development of ADE.59,60 In this context, genetic 
variation may represent a cornerstone in this outcome. It is 
believed that many deaths could be prevented if physicians 
were aware of PGx profile of patients and prescribe them 
medications at correct doses.61 Patients diagnosed with the 
same disease are treated following the same therapeutic 
protocol although their responses to drug treatment may vary 
significantly. A tailored therapy can reduce ADEs and increase 
efficacy rates, as described in Figure 2. For example, there is 
a huge variation (up to 20 times) in the daily dose of one of 
the most used anticoagulants in clinical practice, warfarin, 
among patients.62 The dose of propranolol, a medication of 
the beta blocker class, may vary up to 40 times among users.60  
Some medications widely used in cardiology, that may have 
important genetic associations, are listed in Table 2. 

Warfarin
Warfarin is a vitamin K antagonist that has been largely 

used for the prevention of thrombotic events.63 Evidence 
has suggested that the individual response to warfarin and 
to other vitamin K antagonists, may be influenced by genetic 
variations in cytochrome P450 2C9 (CYP2C9) and vitamin K 

Figure 1 – Advantages of pharmacogenomics and potential health cost reduction. *Due to possible earlier detection.

↓ Required dose

↓ Time of treatment

↓ Possible adverse reactions

↓ Number of failed drug tests

↓ Time for drug approval

↓ Disease injury

COSTS

Table 1 – Number of pharmacogenomic biomarkers in drug 
labeling by medical field, based on the US Food and Drug 
Administration table 

Area Biomarkers

Oncology 167

Infectious disease 35

Psychiatry 34

Neurology 29

Hematology 25

Anesthesiology 23

Cardiology 22

Gastroenterology 17

Rheumatology 11

Pneumology 10

Endocrinology 7

Inborn errors of metabolism 7

Urology 5

Dermatology 4

Toxicology 2

Transplant 1
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Figure 2 – Potential clinical applications of Pharmacogenomics; Adapted from Johnson, 2003.99

Patients with the Same Diagnosis 
of Cardiovascular Disease

Non-responsive 
to medication 

Satisfactory response 
to medication 

Increased predicted 
risk of toxicity

Table 2 – Association between genes and medications

Genes Medications Class Genetic variant Allele effect

CYP2C9, VKORC1 Warfarin Vitamin K antagonist

CYP2C9*2 (p.Arg144Cys; 
rs1799853)

Reduced drug clearance; reduced 
dose required 

CYP2C9*3 (p.Ile359Leu; rs1057910) Reduced drug clearance; reduced 
dose required

VKORC1 (-1639G>A; rs9923231) ↑ Sensitivity to medication;
Reduced dose required

CYP2C19 Clopidogrel Receptor P2Y12 inhibitor
CYP2C19*2 (c.681G>A; rs4244285) ↑ Risk of cardiovascular events; loss 

of function; lower antiplatelet effect.

CYP2C19*17 (c.-806C>T; 
rs12248560)

↑ Sensitivity to medication; loss of 
function; ↑ risk of bleeding

SLCO1B1 Simvastatin HMG-CoA reductase inhibitor SLCO1B1*5 (p.Val174Ala; 
rs4149056)

↑ Risk of myopathy or 
rhabdomyolysis

ADRB1 Atenolol, metoprolol Beta blocker
ADRB1 (p.Ser49Gly; rs1801252) Better blood pressure control;  

↑ LVEFADRB1 (p.Arg389Gly; rs1801253)

CES1 Dabigatran Direct oral anticoagulant CES1 (G143E, rs71647871) ↑ Metabolism of medication  
and its metabolites

ITGB3 Aspirin Antiplatelet agent ITGB3 (PlA1/A2 [T1565→C], rs5918) ↓ Antiplatelet effect

LVEF: left ventricular ejection fraction; CYP2C9: Cytochrome P450 2C9; VKORC1: vitamin K epoxide reductase C1; CYP2C19: P450 2C19; SLCO1B1: Solute 
carrier organic anion transporter family member 1B1; CYP4F2: cytochrome P450 family 4 subfamily F member 2; ADRB1: beta-1 adrenergic receptor; CYP11B2: 
Cytochrome P450 family 11 subfamily B member 2; FUT4: Fucosyltransferase 4; CES1: carboxylesterase 1; ITGB3: Integrin beta-3.
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epoxide reductase C1 (VKORC1), target of these drugs,64,65 
and polymorphisms of cytochrome P450 family 4 subfamily 
F member 2 (CYP4F2).66 Variations in the CYP2C9*2 and 
CYP2C9*3 have been shown to reduce enzymatic activity of 
CYP2C9 and inhibit the anticoagulant metabolism,67 whereas 
the polymorphism of VKORC1- 1639G>A seems to influence 
the pharmacodynamic response to vitamin K antagonists.68 For 
these issues, the FDA indicated the need for displaying PGx 
information in the package insert of warfarin.

In practice, heterozygous carriers for CYP2C9*2 or CYP2C9*3 
may require a reduced warfarin dose, by approximately 30% 
and 47%, respectively, and homozygous carriers for CYP2C9*3 
may require greater reductions (~80%).69-71 The -1639 G>A 
variant of the VKORC1 gene seems to reduce the expression of 
proteins, which in theory represents the requirement of a lower 
maintenance dose of warfarin compared with non-carriers of 
the variant.72 Also, combinations of some variants associated 
with ultrarapid metabolism limit the systematic definition of a 
therapeutic INR of these patients.73 In this scenario, the CPIC 
guidelines recommend considering a direct oral anticoagulant 
(e.g. edoxaban).74 

Clopidogrel
In the United States, it is estimated that more than 

three million individuals are prescribed clopidogrel after 
stent implantation.75 Clopidogrel belongs to the class of 
thienopyridines and exerts antiplatelet effect.76 The individual 
response to clopidogrel may be altered by the polymorphism 
of CYP2C19.77 

The CYP2C19*2 loss-of-function variant allele was 
associated with an increased risk of adverse cardiovascular 
events, including stent thrombosis during clopidogrel therapy.78 
More specifically, the CYP2C19*2 (rs4244285) allele causes 
loss of function and was associated with reduced antiplatelet 
effect of the drug.79 Also, carriers of the CYP2C19 *3 
(rs4986893) allele show poor response to clopidogrel and 
higher rates of recurrent adverse cardiovascular events as 
compared with non-carriers.80,81 It is important to mention 
that the frequencies of CYP2C19 *2 and CYP2C19 *3 are 
higher in Asian populations, suggesting that these individuals 
are more likely to be resistant to this medication.82 In contrast, 
the CYP2C19*17 (rs3758581) allele promotes gain of function 
and has been associated with increased enzymatic activity 
and improved platelet inhibition. Carriers of the CYP2C19*17 
variant have been called ultrarapid metabolizers.83

In addition, race seems to play an important role in this 
scenario. Cresci et al.84 compared the effect of polymorphism 
of CYP2C19 on cardiovascular adverse events between 
patients with acute myocardial infarction in Caucasians and 
African Americans treated with clopidogrel. The authors 
found a significant association of the CYP2C19*2 allele with 
increased one-year mortality and an increasing trend in the 
incidence of recurrent myocardial infarction in Caucasians. 
The CYP2C19*17 was associated with higher one-year 
mortality and higher risk of bleeding in African Americans. 
Also, it is of note that CYP2C19*2 carriers that undergo 
percutaneous coronary intervention may have higher risk of 
stent thrombosis. In a RCT in which nearly 2,500 patients 

that were pre-treated with 600mg clopidogrel, there was a 
significanly higher stent thrombosis rate amongst CYP2C19*2 
allele carriers, in 30 days, when compared with wild-type 
CYP2C19 allele carriers.85 In this same line, the meta-analysis 
conducted by Mega et al.,86 including studies on more severely 
ill patients receiving more aggressive treatment, found an 
increased risk of stent thrombosis when the allele *2 was 
identified by PGx. 

Despite these evidences, a systematic review and meta-
analysis including 15 studies did not corroborate these findings 
and did not show a clear influence of polymorphisms of 
the CYP2C19 gene on the clinical efficacy of clopidogrel,87 
suggesting that the use of individualized antiplatelet regimens 
guided by CYP2C19 genotype is not justified.

Today, the American College of Cardiology, in conjunction 
with the American Heart Association, does not recommend 
PGx tests for CYP2C19 as a routine approach.88 However, a 
more recent meta-analysis demonstrated that patients who 
may benefit from the PGx study are those with coronary 
artery disease, undergoing percutaneous myocardial 
revascularization.89 In this context, the CPIC officially 
recommends that patients with acute coronary syndrome and 
even those undergoing percutaneous coronary intervention 
undergo PGx testing. The CPIC emphasizes that those patients 
with one or two copies of loss-of-function variants should 
receive alternative antiplatelet agents (prasugrel or ticagrelor), 
to reduce the risk of adverse cardiovascular events.90 On the 
other hand, PGx testing is not indicated for other patient 
populations (e.g. atrial fibrillation patients), in which the use 
of clopidogrel is debatable.

Claassens et al.91 conducted a recent RCT to evaluate the 
results of a genotype-guided antiplatelet therapy in patients 
with acute myocardial infarction with ST segment elevation. 
Patients were assigned to receive either clopidogrel, based on 
early CYP2C19 genetic testing (non-carriers of loss-of-function 
alleles received clopidogrel) or standard treatment with either 
ticagrelor or prasugrel. No difference was found between the 
groups in the incidence of thrombotic events and therefore, 
the genotype-guided strategy was noninferior to standard 
treatment with ticagrelor or prasugrel, which is more expensive 
and associated with higher incidence of bleeding.91

Results of the TAILOR PCI clinical trial were recently 
published. The authors assessed a genotype-guided strategy 
(n=2,652) versus standard therapy (n=2,650) in patients with 
stable or unstable coronary artery disease, aiming to determine 
whether genetic testing could identify the best anti-platelet 
therapy in these individuals. In the genotype-guided group, 
CYP2C19 *2 or *3 carriers received ticagrelor 90 mg twice 
a day or non-carriers received clopidogrel 75 mg daily. In 
the standard therapy group, patients received clopidogrel 
75 mg daily and underwent genotyping test at 12 months. 
The primary outcome was cardiovascular death, myocardial 
infarction, stroke, stent thrombosis or recurrent ischemia in 12 
months. The primary outcome and the incidence of bleeding 
were not different between the treatment groups. However, it 
is worth mentioning the 34% reduction in these events at one 
year and a 40% reduction in the number of events per patient 
in the genotype-guided group. Finally, a post-hoc analysis 
revealed a reduction of approximately 80% in the adverse 
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event rate in the first three months of treatment in the group of 
patients randomized to the genotype-guided therapy arm.92,93

Beta Blockers
This class of medications has been extensively used in 

the treatment of cardiac arrhythmias, chest pain, myocardial 
infarction, and hypertension.94 The genes associated with 
individual response to beta blockers include the CYP2D6, the 
beta-1 adrenergic receptor (ADRB1), the beta-2 adrenergic 
receptor (ADRB2) and G protein-coupled receptor kinase 
5 (GRK5).95 For example, some beta-blockers, including 
propranolol and metoprolol, are metabolized by the CYP2D6, 
which very frequently presents with a ‘loss of funtion’ 
variant.34 Evidence has suggested that hypertensive patients, 
homozygous for the wild-type allelic variant Arg389, showed 
a 3-fold greater reduction in diurnal diastolic pressure with 
metoprolol compared with carriers of the allelic variant 
Gly389.96 Other findings,97 despite not so consistent, indicated 
that patients homozygous for the ADBR1 Arg389 haplotype 
seem to present a more satisfactory response to the family of 
beta-blockers, with a better left ventricular ejection fraction 
as compared with carriers of the Gly389 allele.97 

Regarding the skin color, the higher frequency of the 
Gly389 allele in African Americans compared with white 
skin may be a plausible explanation for the reduced response 
to beta blockers. Although ethnicity and polymorphisms of 
ADRB1 have been reported as independent predictors of 
responses to beta blockers,98 further prospective studies to 
elucidate the role of these genetic variants in ethnicity-specific 
responses are needed.

Therefore, there are no recommendations for the use of PGx 
in guiding the use of beta blockers in heart failure treatment.

Statins 
Statins represent a class of medications that target the 

HMG-CoA reductase (3-hydroxy-3-methyl-glutaryl-coenzyme 
A reductase) inhibition, and are used to reduce cholesterol 
levels, especially LDL cholesterol.99 Combined with changes in 
lifestyle, these drugs are considered first-line therapy for primary 
and especially secondary prevention of CVDs. However, large 
interindividual variability has been observed in the extension 
of LDL reduction, explained, in part, by environmental and 
genomic factors.100 Thus, a dose tailoring may be needed for 
each patient, to obtain a more effective response. 

More recently, Licito et al.101 evaluated association of the 
PGx profile and neuromuscular pain in 76 type 2 diabetes 
mellitus patients and previous CVD using anti-diabetic and 
anti-cholesterolemic agents, such as statin. Different variants 
were studied, including the SLCO1B1, ABCB1, ABCC8, 
and drug biotransformers of cytochrome P450 Family (CYP) 
including CYP2C9*2 CYP2C9*3 CYP2C8*3, and CYP3A4*22. 
Approximately 17% of 35 patients treated with statin had 
neuromuscular pain. The PGx analysis showed a lack of any 
correlation between candidate gene polymorphisms and 
toxicity, except for the SLCO1B1 T521C allele. Thus, when 
available, analysis of the SLCO1B1 T521C variant is suggested, 
to enable clinicians to optimize the therapy prescribed, aiming 

at minimizing neuromuscular pain and maximizing the benefits 
from statins.

Also, the most strongly associated variant (with SLCO1B1), 
c.521T>C, reduces SLCO1B1 transport function, which can 
affect statin clearance, resulting in increased risk for toxicity in 
skeletal muscle. A meta-analysis of nine case-control studies, 
involving 4,500 patients, showed that individuals with the 
variant allele C were likely to experience statin-related myopathy  
(CT + CC versus TT: odds ratio = 2.09; 95%CI = 1.27-3.43).102 

Possible Barriers to the Implementation of 
Pharmacogenomics

Due to the advances in technology and sequencing 
techniques, the costs of PGx analysis have drastically reduced 
in the last years (Moore’s law), facilitating its use in clinical 
practice. However, the relatively high cost of PGx tests 
represents a barrier to its wider implementation. Also, there is a 
lack of familiarity by healthcare providers, a lack of a platform 
standardizing investigation and academic thinking and an 
insufficient volume of studies demonstrating the benefits of 
PGx. Those are factors that contribute to a low acceptance. 

Nevertheless, there is currently a global effort to overcome 
these obstacles, including the development of large studies,103 
like the UK’s 100.000 Genomes Project,104 the PREemptive 
PGx testing for prevention of Adverse drug REactions 
(PREPARE), with participation of seven European countries.105 

On the other side of the North Atlantic, in the United States, 
the Electronic Medical Records and Genomics (eMERGE),106 
the Network and the Implementation of Genomics in Practice 
(IGNITE),107 and the Clinical Sequencing Evidence Generating 
Research Consortium,108 are part of a series of projects 
funded by the National Human Genome Research Institute, 
with an estimated investment of at least U$ 775 million in 
genetic research from 2007 to 2022. In Asia, the South East 
Asian PGxs Research Network (SEAPharm) is a collaborative 
effort of five Asian countries to develop studies in PGx.109 In 
general, these studies are aimed to define, provide and analyze 
evidence of the clinical usefulness of genomic sequencing 
to guide treatment, cost-efficacy and the costs of its broad 
implementation in clinical practice. Of the available results, 
a review including 44 cost-benefit analyzes showed that 30% 
of them showed cost-effectiveness and 27% even showed a 
cost reduction.110 This may lead to an optimistic perspective 
of the future of PGx. 

Among global initiatives’ many contributions for the 
expansion of PGx in clinical practice, some of the crucial 
aspects worth to highlight are: education and training of 
healthcare providers, investment in technology, in research 
and in healthcare centers’ structure. Projects involving PGx not 
only contribute to knowledge in the area, but also promote 
training of healthcare professionals to an adequate practice 
of genomic medicine, which requires the adoption of basic 
routines that may be less relevant to other medical specialties. 
For example, the involvement of family members in counseling 
and treatment planning, and confidentiality that ensures that 
genetic information is being used exclusively for the purpose 
of assistance (thereby avoiding the inappropriate use of PGx 
in relation to legislation, insurance, marketing or employment 
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relationship). Education and training play a central role for 
the acceptance of genomic medicine in clinical practice, and 
acceptance, in turn, is the key to. The effort for data generation 
is of significant help, but commitment and involvement of 
healthcare providers that seek excellence are essential. The 
scale and the progress of efforts and investments in the world 
make clear the importance and potential attributed to genomic 
medicine, as it may be considered a component of high-quality 
medicine and one of the cornerstones of precision medicine.

Final Considerations
1) Area of consensus: PGx tests may be helpful in 

the optimization of drug treatments, allowing greater 
pharmacological safety;

2) Area of controversy: whether PGx tests may be 
extensively applied, including for the prescription of 
medications whose benefits are not so clear;

3) Area of expansion: individual genotype data have become 
more and more available to consumers. This will probably 
increase the demand for a personalized prescription, indicating 
that prescribers should consider PGx data. For example, we 
can site the 100,000 Genomes Project. This amazing project 
will provide complete genome sequences that may someday 
be included in patients’ medical records. This seems to be a 
valuable information in personalized prescription.
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