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Abstract
Background: Despite increasing evidence that patients with heart failure (HF) are susceptible to sarcopenia, the reason 
for the association is not well understood.

Objective: The purpose of this study is to explore further the molecular mechanism of the occurrence of this complication.

Methods: Gene expression datasets for HF (GSE57345) and Sarcopenia (GSE1428) were obtained from the Gene 
Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified using ‘edgeR’ and “limma” 
packages of R, and their functions were analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG). Protein-protein interaction (PPI) networks were constructed and visualized using Search Tool for 
the Retrieval of Interacting Genes (STRING) and Cytoscape. Hub genes were selected using the plugin cytoHubba and 
validation with GSE76701 for HF and GSE136344 for Sarcopenia. The related pathways and molecular mechanisms of 
the hub genes were performed by Gene set enrichment analysis (GSEA). The statistical analyses were performed using 
R software. P < 0.05 was considered statistically significant.

Results: A total of 114 common DEGs were found. Pathways related to growth factor, Insulin secretion and cGMP-PKG 
were enriched in both HF and Sarcopenia. CYP27A1, KCNJ8, PIK3R5, TIMP2, CXCL12, KIT, and VCAM1 were found to 
be significant hub genes after validation, with GSEA emphasizing the importance of the hub genes in the regulation of 
the inflammatory response.

Conclusion: Our study reveals that HF and Sarcopenia share common pathways and pathogenic mechanisms. These 
findings may suggest new directions for future research into the underlying pathogenesis.
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Introduction
The overall aging of populations worldwide is leading to 

an increased prevalence of age-related disorders such as HF, 
which burdens healthcare systems significantly.1 The etiology 
of HF is complex and multifactorial, resulting in reduced 
functional capacity, often with poor prognosis. Sarcopenia 
has been identified as a potential extracardiac predictor of a 
poorer prognosis in HF patients.2 

Sarcopenia is a progressive disorder wherein affected 
individuals experience the progressive, debilitating loss of 
muscle mass, ultimately contributing to high rates of frailty 
among older populations.3 It is associated with an increased 
risk of falling, osteoporosis, loss of independence, and 

increased mortality.4 Muscle wasting is frequently described 
as a type of secondary sarcopenia, sometimes under the 
term “cachexia” in patients with HF.5 Nevertheless, while 
this age-associated loss of skeletal muscle mass remains a 
major concern for elderly patients with HF, the mechanisms 
underlying the co-occurrence of sarcopenia and HF are poorly 
understood.

An analysis of common genes and pathways may provide 
insight into the coexistence of HF and Sarcopenia. Thus, we 
analyzed hub genes common to both disorders and predicted 
the pathways associated with these genes by quantitative 
bioinformatic analysis of publicly available data. The findings 
may provide fresh insight into the mechanisms underlying the 
co-occurrence of these two common disorders.

Methods

Study design and data collection
Gene Expression Omnibus (GEO) is a public functional 

genomics data repository supporting MIAME-compliant 
data submissions. Tools are provided to help users query 
and download experiments and curated gene expression 
profiles. Gene expression datasets were obtained from the 
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 Excluded

Microarry datasets GSE1428 
Sarcopenia patients compared with  

matched control subjects

DEG of the two datasets were identified by the ‘edgeR’ e “limma” 
packages of R software, base on Fold changes >1.2 and  

P-value < 0.05. 224 common DEGs were obtained by taking the 
intersection of the Venn diagram.

A PPI network of common DEGs with combined score > 0.4 in 
STRING was considered as a funcitonal link, and was constructed 

using the Cytoscape sofware.

Microarry datasets GSE57345HF
HF patients compared with  
matched control subjects

6 up-regulated genes and  
108 down-regulated genes were obtained.

KEGG and GO enrichment analyses of the 
common DEGs were performed by the 
‘cluster profile’ package in R software

The expression levels of 10 hub genes were 
verified in  GSE76701 and GSE136344, 

respectively.

10 genes hub foram obtidos através do 
algoritmo Degree do plugin cytoHubba  

do Cytoscape.

The associations between pathways and 
functions of the hub genes was determined 

by GSEA.

Is the expression trend of common DEGs 
the same?

No

Yes

GEO database using the search terms “Heart Failure” and 
“Sarcopenia.”6 For inclusion, the criteria were the presence 
of independent arrays with large sample sizes and human 
data. This resulted in the inclusion of two datasets, namely, 
GSE573457 and GSE1428.8 The GSE57345 dataset included 
RNA-sequencing data from 177 patients with HF and 136 
healthy controls from Philadelphia, while the GSE1428 
dataset contained RNA-sequencing data of vastus lateralis 
muscle samples from 12 patients with Sarcopenia (70-80 
years old) and 10 young healthy controls (19-25 years old) 
from Boston. 

Identification of differentially expressed genes with R 
software

The data from GSE57345 and GSE1428 were normalized, 
and DEGs between patient and control samples were identified 
with the R package ‘edgeR’ and ‘limma’..9 Fold changes were 
determined for the expression of the individual genes, with 
genes showing Fold changes > 1.2 and P-value < 0.05 

classified as DEGs. Genes common to Sarcopenia and HF 
were obtained by overlapping the two sets of DEGs. R package 
‘VennDiagram’ was used to obtain their common DEGs.10 We 
then overlapped the related genes of HF and Sarcopenia to 
obtain common genes for further analysis.

Functional annotation and pathway enrichment analysis
Further functional analysis of the common DEGs was 

conducted by the assessment of GO annotations and KEGG 
enriched pathways using the ‘cluster’ package in R.11 GO 
annotations fall into three categories, namely, biological 
process (BP), cellular component (CC) and molecular function 
(MF). P value < 0.05 was used as the threshold of significance.

PPI network construction and identification of hub genes
The PPI networks for the common DEGs were then created 

in STRING with visualization by Cytoscape 3.9.0.12 Confidence 
scores > 0.4 were set to intermediate values. The Cytoscape 
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plugin, CytoHubba, was used for filtering the hub genes in 
the PPI network using the algorithm of Degree.13

Gene set enrichment analysis
GSEA was used to determine the associations between 

pathways and functions of the hub genes.14 Significance 
levels were set at nominal p values of < 0.05, normalized 
enrichment scores (NES) > 1, and false positive rate (FDR) q 
values of < 0.25.

Validation of hub genes expression in other data sets
The mRNA levels of the hub genes were then verified 

for GSE7670115 and GSE136344.16 GSE76701 contained 4 
HF subjects and 4 controls, while GSE136344 contained 19 
Sarcopenia subjects and 11 controls. T-test assessed differences 
between the two data sets with a p-value < 0.05 considered 
significant.

Statistical analysis
This study conducted all statistical analyses using R software 

(version 4.1.2; https://www.r-project.org/). The normal 
distribution of different parameters was verified with the 
Kolmogorov-Smirnov test. Differences between the groups 
were evaluated using Student’s unpaired t-test. A value of 
p < 0.05 was considered significant.

Results

Identification of DEGs
The research flowchart of this research was shown in 

the Central Figure. All data from two independent datasets 
(GSE57345: HF and GSE1428: Sarcopenia) were obtained 
from the GEO. The microarray data were normalized, and 
the DEGs were identified (1954 in GSE57345 and 2242 in 
GSE1428). For better visualization, the DEGs for HF and 
Sarcopenia were presented as volcano plots (Figures 1A, B). 
224 DEGs common to both groups were identified using the 
Venn diagram (Figure 1C). Genes that showed different trends 
in expression in the GSE57345 and GSE1428 datasets were 
discarded from the analysis, leaving 114 DEGs remaining.

GO and KEGG Pathway Analyses
The functions of these common DEGs were explored 

using GO and KEGG enrichment analyses in the ‘cluster 
profiler’ package in R software. The KEGG analysis indicated 
enrichment of the DEGs in pathways related to growth factor, 
Insulin secretion, and cGMP-PKG (Figure 2A, 2B). GO analyses 
showed that the genes were mainly enriched in the growth 
factor pathway (Figure 3A, 3B).

PPI Network Construction of Common DEGs and 
Identification of Hub Genes

The 114 common DEGs were then imported into STRING, 
with the STRING file subsequently imported into Cytoscape 
for visualization. Figure 4 shows the PPI network, in which 
64 nodes and 180 edges can be seen. The top 10 hub genes 

were found using the CytoHubba plugin and assessed by the 
degree to be CYP27A1, KCNJ8, PIK3R5, TM7SF2, TIMP2, 
CXCL12, KIT, VCAM1, CYP46A1, and VCAM1 (Figure 5A).

GSEA Results of Hub Genes
GSEA was then used to examine the possible functions of 

the hub genes, together with identifying pathways affected by 
the differential expression of the genes, thus leading to the 
identification of pathways associated with the development 
of HF and Sarcopenia. Results showed that the hub genes 
were significantly associated with activating the NF-kappa B 
signaling and TNF-signaling pathways (Figure 5B). 

Validation of Hub Genes
These findings were validated in the GEO datasets 

GSE76701 for HF and GSE136344 for Sarcopenia. 
Compared with controls, the intersection of 10 genes from 
the two matrix files of datasets revealed the significant 
downregulation of 7 candidate hub genes in HF (Figure 6A) 
and Sarcopenia (Figure 6B). These hub genes were CYP27A1, 
KCNJ8, PIK3R5, TIMP2, CXCL12, KIT, and VCAM1.

Discussion
There is evidence that many patients with HF experience 

fatigue, nutritional deficiency, decreased ability to walk, and 
reduced muscle strength, known as Sarcopenia. Sarcopenia 
is associated with aging and is characterized by reduced 
physical stamina and muscle mass.17 The incidence of 
Sarcopenia is higher in HF patients compared with age-
matched control subjects, and these patients often show 
more rapid muscle loss, which further compromises their 
cardiac function.2 It is thus likely that HF and Sarcopenia 
may have a common or overlapping pathogenesis. The 
elucidation of these pathogenic mechanisms is necessary to 
develop suitable treatments.

This study identified 114 DEGs that overlapped between 
the two diseases. PPI networks and subsequent validation 
of these overlapping DEGs identified 7 significant genes, 
namely, CYP27A1, KCNJ8, PIK3R5, TIMP2, CXCL12, KIT, 
and VCAM1. As shown by GO and KEGG enrichment 
analyses, these genes were significantly enriched in pathways 
responsible for growth factor, Insulin secretion, and cGMP-
PKG. Growth factor pathways play major roles in developing 
and maintaining the vasculature, preventing excess growth, 
remodeling , and destabilization by various feedback 
mechanisms.18 The insulin secretion pathway is key to glucose 
metabolism, and its dysregulation is associated with diabetes, 
a known risk factor for both HF and Sarcopenia.19 The cGMP-
PKG pathway is involved in diastolic dysfunction, associated 
with diastolic stiffness, slow relaxation, and reduced elasticity 
of the cardiomyocytes.20

GSEA indicated the association of inflammation-related 
pathways, including the NF-kappa B and TNF-signaling 
pathways, with HF and Sarcopenia pathogenesis. Both 
disorders are associated with chronic inflammation, as seen 
in the raised levels of pro-inflammatory cytokines, such as 
TNF-a, IL-6, and IL-12. These enhance visceral adiposity 
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Figure 2 – A) Based on the adj p value, the bar plot shows the Top KEGG pathways between sarcopenia and HF. B) The top enrichment pathways from KEGG 
were presented as bubble maps.
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Figure 1 – Volcano diagram and Venn diagram. A) Volcano map of GSE57345. B) Volcano map of GSE1428. Upregulated genes are marked in light red; 
downregulated genes are marked in light blue. C) The two datasets showed an overlap of 224 DEGs.
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and reduce muscle mass and strength, increasing the risk of 
HF.21,22 Our findings suggest that the hub genes are closely 
involved with inflammation-related processes mediated 
by the identified signaling pathways and contribute to the 
development of HF and Sarcopenia.

Considering the hub genes, CYP27A1 is a member of 
the cytochrome P450 family responsible for regulating 
cholesterol homeostasis by converting excess cholesterol 

to bile acid.23 It also catalyzes 25-hydroxylation of vitamin 
D3, resulting in functional activation.24 Both cholesterol 
homeostasis and vitamin D levels have been linked to the 
pathogenesis and outcomes of HF and Sarcopenia.25,26 
KCNJ8 is expressed by most mammalian cells, where it 
regulates membrane potentials; high levels are found 
in the heart, where it, together with SER2, forms an 
ATP-dependent potassium channel. KCNJ8 has been 
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and cellular component. B) The top enrichment pathways from GO database were presented as bubble maps.

Figure 4 – PPI network diagram. Red indicates up-regulated genes and light 
blue indicates down-regulated genes.

linked with cardiovascular disorders, including abnormal 
coronary vasomotion and microvascular dysfunction, 
ischemic heart disease, and type 2 diabetes.27-29 PIK3R5 
is involved in many cellular processes, including growth, 
proliferation, differentiation, motility, intracellular 
trafficking, and survival. It has also been proposed as a 
biomarker for hypertension and diabetes mellitus.30,31 
Raised blood pressure and glucose levels are reported 
to be associated with increased incidence of HF and 

Sarcopenia.32,33 TIMP2, together with other members of 
the TIMP gene family, inhibit matrix metalloproteinases 
(MMPs). 34 MMPs, including MMP-1, -2, -3, -9, and -19, 
are peptidases that degrade the extracellular matrix. 
TIMP2 and these MMPs can control homeostasis of the 
matrix, modulating, especially, collagen production and 
degradation, which is known to play an important role in 
HF pathogenesis.35 Disruption of the MMP/TIMP2 balance 
in aging skeletal muscles adversely affects the metabolic 
function of the extracellular matrix and excess collagen 
production; these, in turn, influence both muscle mass 
and function and can lead to Sarcopenia.36 CXCL12 is 
a ligand of a G-protein-coupled receptor and is known 
to be involved in various cellular activities, including 
immune and inflammatory responses, embryogenesis, 
tissue homeostasis, and carcinogenesis and metastasis.37 
CXCL12 is reported to be an important link between 
inflammation and fibrosis and has been proposed as a 
target for the treatment of HF.38 In sarcopenia, CXCL12 
influences the development and functioning of osteoblasts, 
osteoclasts, satellite cells, and myoblasts, all necessary for 
maintaining muscle homeostasis.39 KIT encodes a receptor 
tyrosine kinase that regulates cellular proliferation and 
survival, as well as mast cell development, gametogenesis, 
and melanogenesis.40 KIT is reportedly strongly expressed 
in heart tissue and appears to be involved in HF.41 KIT 
promotes the phosphorylation of MAPK1/ERK2 during 
mitophagy.42 Disruptions in mitophagy, the autophagic 
degradation of dysfunctional mitochondria, are associated 
with muscle fiber atrophy in sarcopenia.43 VCAM1 
belongs to the immunoglobulin superfamily and encodes 
a sialoglycoprotein expressed on endothelial surfaces 
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Figure 6 – Validation of hub genes. A) Hub genes were validated in GSE76701 for HF. B) Hub genes were validated in GSE136344 for Sarcopenia. *p < 0.05, 
**p < 0.01, ***p < 0.001.

following cytokine activation. It is involved in the 
immune response and promoting immune cell targeting to 
inflammation sites.44 Immune and inflammatory pathways 
are associated with the pathogenesis of both sarcopenia 
and HF.21,22 Thus, the identified hub genes and their 
associated signaling pathways are likely to be closely 
involved in the pathogenesis of both HF and Sarcopenia.

However, this study has several limitations. The 
retrospective study focused on a gene expression dataset with 
a relatively small sample size, potentially leading to selection 
bias. It is also possible that significant genes might have been 
overlooked during the different steps of the selection process. 
Future investigations should use larger samples and assess 
both cellular and animal models for verification.
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Conclusions
To summarize, common DEGs associated with HF 

and sarcopenia were identified, and their functions and 
interactions were analyzed by enrichment and PPI networks. 
The findings indicated that both diseases had many common 
pathogenic pathways, possibly under the control of the 
identified hub genes, illustrated the possible mechanism 
of sarcopenia secondary to HF, and identified novel gene 
candidates who could be used as biomarkers or as potential 
therapeutic targets.
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